ICC 2007 Presentation

Joint Maximum Likelihood Channel Estimation and Data Detection for MIMO Systems

M. Abuthinien, S. Chen, A. Wolfgang and L. Hanzo

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
Outline

- Motivations for joint maximum likelihood channel estimation and data detection for MIMO

- MIMO Signal model and proposed semi-blind joint ML channel estimation and data detection

- Simulation investigation and performance comparison
Motivations

- Knowledge of **channel state information** is critical to achieve capacity enhancement promised by MIMO, but perfect CSI is often unavailable.

- Estimating MIMO channel matrix is a tough job, and **training**-based channel estimation is simple but it reduces achievable throughput.

- **Blind** joint channel estimation and data detection does not reduce achievable throughput but is computationally complex.

- To resolve **ambiguities** in channel estimation and symbol detection, a few pilot symbols, i.e. some training, are necessary.

- We propose a **semi-blind** joint maximum likelihood channel estimation and data detection scheme.
Signal Model

- MIMO system of \(n_T \) transmitters/\(n_R \) receivers with flat fading channels

\[
y(k) = H s(k) + n(k)
\]

- Transmitted symbol vector \(s(k) = [s_1(k) \ s_2(k) \cdot \cdot \cdot s_{n_T}(k)]^T \)
 Received signal vector \(y(k) = [y_1(k) \ y_2(k) \cdot \cdot \cdot y_{n_R}(k)]^T \)
 Channel AWGN vector \(n(k) = [n_1(k) \ n_2(k) \cdot \cdot \cdot n_{n_R}(k)]^T \)

- \(n_R \times n_T \) channel matrix \(H \) with \(H(p, m) = h_{p,m} \), for \(1 \leq p \leq n_R \) and \(1 \leq m \leq n_T \)

- \(h_{p,m} \) is a complex Gaussian process with zero mean and \(E[|h_{p,m}|^2] = 1 \)

- Block fading is assumed, where \(h_{p,m} \) is kept constant over small block of \(N \) symbols
Known Channel or Known Data

- Define $n_R \times N$ matrix of received data

$$\mathbf{Y} = [y(1) \ y(2) \cdot \cdot \cdot y(N)]$$

and corresponding $n_T \times N$ matrix of transmitted data

$$\mathbf{S} = [s(1) \ s(2) \cdot \cdot \cdot s(N)]$$

- Knowing data \mathbf{S}, channel \mathbf{H} can be estimated by LSCE

$$\hat{\mathbf{H}}_{\text{LSCE}} = \mathbf{Y} \mathbf{S}^H (\mathbf{S} \mathbf{S}^H)^{-1}$$

- Knowing channel \mathbf{H}, **ML detection** of \mathbf{S} can be performed using OHRSA

Joint Channel and Data Estimation

- Both channel and data are unknown, joint ML channel and data estimation is defined by

$$\hat{(\hat{S}, \hat{H})} = \arg \left\{ \min_{\hat{s}, \hat{H}} J_{ML}(\hat{s}, \hat{H}) \right\}$$

where

$$J_{ML}(\hat{s}, \hat{H}) = \frac{1}{n_R \times N} \sum_{k=1}^{N} \|\mathbf{y}(k) - \hat{H} \hat{s}(k)\|^2$$

but this joint ML search is computationally prohibitive.

- Joint optimisation can be decomposed into tractable iterative loop first over all possible data and then over all possible channels

$$\hat{(\hat{S}, \hat{H})} = \arg \left\{ \min_{\hat{H}} \left[\min_{\hat{s}} J_{ML}(\hat{s}, \hat{H}) \right] \right\}$$
Joint ML Estimation (continue)

- **Upper-level Optimisation**: RWBS\(^\dagger\) searches MIMO channel space to find optimal channel estimate \(\hat{H}\) by minimising MSE

\[
J_{MSE}(\hat{H}) = J_{ML}(\hat{S}(\hat{H}), \hat{H})
\]

\(\hat{S}(\hat{H})\) denotes ML estimate of transmitted data for given channel \(\hat{H}\)

- **Lower-level Optimisation**: Given MIMO channel matrix \(\hat{H}\), OHRSA detector finds ML estimate of transmitted data \(\hat{S}(\hat{H})\)

\(\hat{S}(\hat{H})\) feeds back corresponding ML metric \(J_{MSE}(\hat{H})\) to upper level

Semi-Blind Joint ML Estimation

- Pure **blind** joint ML estimation converges slowly and solution (\hat{S}, \hat{H}) suffers from inherent permutation and scaling ambiguity problem

- Effective means of resolving ambiguities is to employ a few **pilot symbols** to determine **unitary** $n_T \times n_T$ permutation and scaling matrix

- Since we have a few pilots, it is **semi-blind**

- Let number of pilots be t, we can further use training data

$$Y_t = [y(1) \ y(2) \cdots y(t)], \ S_t = [s(1) \ s(2) \cdots s(t)]$$

To provide an initial LSCE $\hat{H}_{LSCE} = Y_t S_t^H (S_t S_t^H)^{-1}$ for adding RWBS†

† RWBS evolves population of channels $\{\hat{H}_i^{(g)}\}_{i=1}^{PS}$ over a number of generations $1 \leq g \leq N_G$. \hat{H}_{LSCE} is used to initialise the search population
Repeted Weighted Boosting Search

- **Algorithm initialisation**: \(\tilde{H}_{\text{best}}^{(0)} = \tilde{H}_{\text{LSCE}} \)

- **Generation loop**: for \((g = 1; g \leq N_G; g++)\) {
 - **Generation initialisation**: \(\tilde{H}_1^{(g)} = \tilde{H}_{\text{best}}^{(g-1)} \)

 \[
 \tilde{H}_i^{(g)} = \tilde{H}_1^{(g)} + (1 + j1)\eta, \quad 2 \leq i \leq P_S
 \]

 \(\eta\) being random variable uniformly distribution in \([-\gamma, \gamma]\)

- **OHRSA ML detector**: \(\{ \hat{S}(\tilde{H}_i^{(g)}) \}_{g=1}^{P_S} \)

- **Weighted boosting search**: for \((l = 1; l \leq N_I; l++)\) {
 - WBS/OHRSA: evolve \(\{ \tilde{H}_i^{(g)}, \hat{S}(\tilde{H}_i^{(g)}) \}_{i=1}^{P_S} \)
 - } End of weighted boosting search

- **Solution**: \(\tilde{H}_{\text{best}}^{(g)} \)

- } End of generation loop

- **Solution**: \(\left(\tilde{H}_{\text{best}}^{(N_G)}, \hat{S}(\tilde{H}_{\text{best}}^{(N_G)}) \right) \)
Simulation Set Up

- \(n_T = 4 \) and \(n_R = 4 \): 4 \(\times \) 4 MIMO system with flat fading channel
- Each channel \(h_{p,m} \) was complex Gaussian process with zero mean and \(E[|h_{p,m}|^2] = 1 \), block faded, i.e. kept constant over block of \(N \) symbols
- Modulation scheme: BPSK, data block: \(N = 50 \), pilot symbols: \(t = 4 \)
- Simulation was averaged over 100 runs, complexity was determined by number of OHRSA(\(N \)) evaluations, \(n_{ev} \)
- **Convergence metrics:** MSE \(J_{MSE}(\hat{H}(n_{ev})) \) and MCE \(J_{MCE}(\hat{H}(n_{ev})) \), with

\[
J_{MCE}(\hat{H}(n_{ev})) = \sum_{m=1}^{n_T} \sum_{p=1}^{n_R} |h_{p,m} - \hat{h}_{p,m}(n_{ev})|^2
\]

where \(\hat{H}(n_{ev}) \) was channel estimate after \(n_{ev} \) OHRSA(\(N \)) evaluations
Convergence performance, **mean square error** and **mean channel error**, of proposed semi-blind joint ML estimation algorithm, with $\gamma = 0.04$
Performance Investigation

Influence of **algorithmic parameter** γ to MCE at 800 OHRSA(N) evaluations, and **bit error ratio** comparison with $\gamma = 0.04$ for semi-blind scheme.
Conclusions

- An algorithm has been proposed for MIMO semi-blind joint maximum likelihood channel estimation and data detection
- The scheme uses RWBS to search MIMO channel space and OHRSA to provide ML data estimates for channel population
- A few pilot symbols are used to resolve ambiguity of blind joint ML estimate and to add RWBS search
- Effectiveness of proposed semi-blind joint ML scheme has been demonstrated using simulation
THANK YOU.

The financial support of the EU under the auspice of the Newcom project is gratefully acknowledged.