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Abstract 
Based on a lower bound stability measure for sampled- 
data controller structures subject to finite-word-length 
(FWL) constraints, the optimal realization of the dig- 
ital PID controller with FWL considerations is formu- 
lated as a nonlinear optimization problem. An efficient 
strategy based on adaptive simulated annealing (ASA) 
is adopted to solve this complex optimization problem. 
A numerical example of optimizing the finite-precision 
PID controller for a steel rolling mill system is used to 
demonstrate the effectiveness of the proposed method. 

1 Introduction 
Controller implementations with fixed-point arithmetic 
offer the advantages of speed, memory space, cost and 
simplicity over floating-point arithmetic. However, a 
designed stable closed-loop system may become unsta- 
ble when the infinite-precision controller is implemented 
using a fixed-point processor due to FWL effects. In 
recent years, many results have been reported in the 
literature, addressing FWL issues [1]-[9]. It remains an 
unsolved problem to compute the exact stability robust- 
ness measure for obtaining realizable digital controller 
design with FWL effects [2]. To overcome this problem, 
a tractable lower bound stability measure has been de- 
rived [6],[7]. 

Based on this lower bound stability measure, the opti- 
mal realization of the digital PID controller under FWL 
constraints can be solved as a nonlinear optimization 
problem with four variables [8],[9]. The optimization 
criteria are however nonsmooth and nonconvex func- 
tions, and conventional optimization methods may fail 

to obtain an optimal solution. To overcome this diffi- 
culty, we propose to use an efficient global optimization 
method, called the ASA [lo]-[13], to search for a true 
optimal PID controller realization. The effectiveness of 
the proposed optimization strategy is illustrated by the 
example of a steel rolling mill control problem. 

continuous 
time plant 

C ( Z )  
hold digital sampler 
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Figure 1: Sampled-data control system. 

2 Stability robustness measures 

Consider the sampled-data system depicted in Fig. 1 ,  
where P(s )  is strictly proper. The plant P ( z )  = 
ShP(s)Nh has a state-space description (A,, B,, C,, 0) 
with A, E RmXm, B, E Rmxl and C, E Rqxm. 

The controller C ( r )  has a state-space description 
(A,, B,, C,, 0,) with A,  E Rnxn, B, E Rnxq, C, E 
Rlxn and D, E RIXq. We will refer to ( A , ,  B,, C,, D,) 
as a realization of C(z) .  The realizations of C ( t )  are not 
unique. If (A,, B,, C,, De)  is a realization of C ( r ) ,  so 
is ( 7 - ' A c 7 ,  7 - ' B C ,  C,7, 0,) for any similarity trans- 
formation 7 E Rnxn. The transition matrix of the 
closed-loop system is given by: 
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= [ $  00]+ [Bd  l ] [ B c  Dc Cc A , ] [ ?  i ]  
= MO + MlXM2, (1) 

where the controller matrix 

. . .  
P2(q+n) 
pq; . (2) 

Pl 
. . .  
... 

When (Ac, Bcr C,, Dc)  is implemented using a finite- 
precision processor, X is perturbed to X + AX with 

r APl ... APq+n 1 

where xi is a right eigenvector related to A i  and yj is 
the corresponding reciprocal left eigenvector. 

Let Byin be the minimal word length that can gua;an- 
tee the closed-loop stability. We can calculate a 
based on pl(X) as a super estimate of Byin. F'urther- 
more, there are different realizations for a given C ( z )  
and p,(X) is a function of the realization. We can 
search for a realization that maximizes pl(X).  Such a 
realization will be referred to as an optimal realization 
in the sense that it has maximum stability robustness to 
FWL effects. The controller implemented with an op- 
timal realization means that the stability of the closed- 
loop system is guaranteed with a minimum hardware 
requirement in terms of word length. 

3 Optimal realization of PID 
controller structures 

We assume that C ( z )  is a physically realizable non- 
interacting PID controller. Let an initial realization of 
C ( z )  be (A: E RZx2, B," E R2x1,C," E Rlx2, 02 E R).  
Then the initial controller matrix is 

\ ,  

To see when the round off error will cause the closed- Any realization of C ( z )  can be represented as 
loop system to become unstable, define 

po(X) 2 inf{p(AX) : A(X + AX) is unstable}, (4) 

where 
(5) 

A 
4 A X )  = jEtyyN) I b i I  

and N = (/ + n)(q + n). po(X) is a stability robustness 
measure of the controller realization X with FWL con- 
siderations [6],[?]. However, how to compute p o ( X )  is 
still an unsolved problem. To overcome this difficulty, 
a lower bound of ,uo(X) has been introduced as [7] 

where { X i ,  i = 1, . . . , m+n) are the eigenvalues of A(X). 
pl(X) can be computed easily as [7] 

ax .  . . .  e1 

where 7 E R2x2 and det(7) # 0. For the complex- 
valued matrix 

define the norm 
m n  

The optimal realization of the digital PID controller is 
the solution of the following optimization problem: 

v 1 m a ~ p i ( X 7 )  = 
XI 
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and {A: , i = 1 , . . . , rn + 2) are the eigenvalues of .?(Xo). 

The following theorem shows that (12) can be solved by 
solving the two "simpler" optimization problems [8],[9]. 

Theorem. Let 

where 

and 

w o o  l o o  

O Y ,  
r i = [  o 3: : ] a i [  i 0 -y ; c o ]  

Let 

where 

and 

W O  l o o  

A i =  [ ly--l e % ]  [ l--ry E ;U 1 .  (19) 
U 

Then 

v = min{ v1, v2). (20) 

Specifically, if v = vl and (coptl, yoptl, woptl) is the so- 
lution of (14), the solution of (12) is given as: 

If v = v2 and (xopt2, yopt2, uopt2, wopt2) is the solution 
of (17), the solution of (12) is given as: 

The optimization problems (14) and (17) are highly 
complex and difficult. A conventional optimization 
method can only search for local optimal solutions. In 
order to obtain a global optimal solution, global opti- 
mization methods are required. 

4 Adaptive simulated annealing 

The ASA is an efficient algorithm for solving the follow- 
ing general constrained optimization problem: 

min W J(w) (23) 

subject to 

and 
aj 5 gj(w) 5 b j ,  j = l , " . , m J ,  (25) 

where w = [w1 . . w,,IT is the parameter vector. Fig. 2 
shows the flow chart of ASA. Detailed description of the 
algorithm can be found in [lo]-[13]. 

I Initialisation I 
generate a new 
accept or reject 

Figure 2: Flow chart of ASA. 
The ASA has several important advantages. I t  can find 
a global minimum solution, uses only the value of the 
cost function in the optimization process, is very simple 
to program, and has very few algorithm parameters that 
require tuning. The algorithm is very efficient because 
it uses a very fast annealing schedule and employs a re- 
annealing scheme to adapt itself. These features makes 
the ASA an ideal method for solving the optimization 
problems (14) and (17). 

5 A numerical example 

The approach is applied to design the optimal PID con- 
troller for a steel rolling mill system. The continuous- 
time plant model P ( s )  is given in [14]. Discretizing P ( s )  
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with the sampling period h = 0.001 yields P(z) :  

(26) 

0.9951 -9.7260 0.0049 
A,  = [ 0.0010 0.9884 -0.0010 

0.0067 13.3732 0.9933 

0.2486 [ 0.0006] 
B, = 0.0001 , c, = [l 0 01. 

A stabilized PID controller for vibration suppression 
and disturbance rejection is designed and the digital 
PID controller is given by 

+ 1.3512. (27) 
0 01426 1.1956 C(2)  = -- - 

z -  1 2-0.3333 

The initial realization of C(z )  is set to 

C," = [0.01426 1.19561, 0," = [1.3512]. (28) 

From A ( X o ) ,  the poles of the ideal closed-loop system 
can be computed and are given as: 

0.9431 f 0.07253 , (29) 
0.9089 f 0.23712' 

0.9422 1 
where 2' = a. The corresponding eigenvalue sensitiv- 
ity matrices are: 

5.3222 f 2.41172' 16.3783 =F 16.15092' 

7.6870 f 8.17662' 40.9014 16.6993i 
-0.2336 f 0.23032' 0.5165 f 1.18352' 

-6.4294 6.83892' 

@1,2 = 

-6.4145 F 16.84862' 

0.6130 f 6.05052' 55.7394 f 35.27292' 
-0.7948 0.50303 -9.6135 f 3.41612' 

-0.2065 f 11.83842' 99.6482f 81.01212' 

0.1727 =F 9.90173 

2.6112 F 19.10312' 

@3,4 = 

1 -8.0215 -138.6951 13.1745 
@5 = [ 1.9778 34.1969 -3.2483 . (30) 

-15.7514 -272.3494 25.8702 

For the optimization problem (14), starting from a 
variety of the initial points (x,y,  w), the ASA algo- 
rithm always converged to the solution: xoptl = 2.3704, 
yoptl = 3.3598 and woptl = 0.2004 with v1 = 136.5897. 
The corresponding realization is 

1 1.3512 0.1687 2.7560 
0.5888 1 0.9450 . (31) 

-0.4750 0 0.3333 

The evolution of the cost function fi(x, y, w) in a typical 
run is shown in Fig.3 (a). I t  is worth pointing out that 
in the previous study [8] a conventional optimization 
method, the Rosenbrock algorithm, failed to find this 
global optimum. Instead, a local minimum with v1 = 
148.1432 was found. 

For the optimization problem (17), two solutions were 
found by the ASA, and they are: 

a) x$L2 = 2.7967, y$t2 = 0.1540, u:2t2 = 0.3512, 

w$i2 = 0.2565, v 2  = 111.9901 with 

1 1.3512 1.7925 0.6277 
X$12 = -0.4553 0.6204 -0.1664 ; (32) 

-0.6273 -0.6548 0.7129 [ 
b) x$i2 = -3.0481, y$t2 = -0.1868, 
u$i2 = 0.4824, v2 = 111.9899 with 

= 0.2895, 

1 1.3512 0.6274 -0.5069 
-0.6274 0.7129 0.1852 . (33) 

1.6101 0.5883 0.6204 

The evolution of the cost function f2(z, y, U, w) in a typ- 
ical run is shown in Fig.3 (b). 
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Figure 3: Typical convergence performance of the 
ASA in optimizing: (a) cost function f ~ ( z , y , w )  
with initial (2, y, w) = (1.0,0.0,1.0) and  (b) cost 
function f2(2, y, U ,  w) with initial (2, y, U ,  w) = 
(1.0,1.0,1.0,1.0). 
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Since Y = min(v1, ~ 2 )  = v2, the optimal PID controller 
realization is either X$;, or X$;,. Table 1 summa- 
rizes the stability lower bound measures, estimated min- 
imal bit lengths and true minimal bit lengths that can 
ensure closed-loop stability for different controller re- 
alizations, where X1 and X2 are the two non-optimal 
realizations corresponding to (2, y, w) = (l.O,O.O, 1.0) 
and (2, y, U ,  w) = (1.0, 1.0, 1.0, 1.0), respectively. The 
largest absolute parameter value is 1.6101 for 
and 1.7925 for 
therefore, X$, is preferred over X$,i2. 

For practical implementation, 

Realization 
X 1  

Table 1: Lower stability bounds, estimated minimal 
bit lengths and true minimal bit lengths for different 
controller realizations. 

p1 win Pn 
0.001900 10 7 

Xopt2 (1) 

Xizi2 
0.008929 7 4 
0.008929 7 4 

6 Conclusions 
Based on a lower bound measuring stability robustness 
of sampled-data systems with FWL considerations, the 
optimal realization of finite-precision PID controller can 
be interpreted as a nonlinear optimization problem. An 
efficient global optimization strategy based on the ASA 
has been developed to solve this FWL optimal realiza- 
tion problem. The theoretical results have been verified 
using a numerical example of the digital PID controller 
realization for a steel rolling mill system. 

The results presented at this paper can be extended 
to high-order controllers, Ongoing work will also ex- 
plore the integration of the proposed optimization pro- 
cedure with the closed-loop controller performance and 
the sparseness consideration of optimal controller re- 
alizations. The ASA algorithm will offer an effective 
means for solving such a multi-objective constrained op- 
timization problem. 
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