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Abstract- Many signal processing applications 
pose optimization problems with multimodal and 
nonsmooth cost functions. Gradient methods 
are ineffective in these situations. The adap- 
tive simulated annealing (ASA) offers a viable 
optimization tool for tackling these difficult non- 
linear problems. We demonstrate the effective- 
ness of the ASA using three applications, infinite- 
impulse-response (IIR) filter design, maximum 
likelihood (ML) joint channel and data estima- 
tion and evaluation of minimum symbol-error- 
rate (MSER) decision feedback equalizer (DFE). 

1 Introduction 

Optimization problems with multimodal and nonsmooth 
cost functions are commonly encountered in signal pro- 
cessing applications. Gradient-based algorithms are inef- 
fective in these applications due to the problem of local 
minima or the difficulty in calculating gradients. Op- 
timization methods that require no gradient and can 
achieve a global optimal solution offer considerable ad- 
vantages in solving these difficult problems. Two best- 
known global optimization methods are the genetic algo- 
rithm (GA) [1]-[3] and simulated annealing (SA) [4]-[6]. 

The GA and SA belong to a class of so-called guided 
random search methods. The underlying mechanisms for 
guiding search process are, however, very different for the 
two methods. The GA is population based, and evolves 
a solution population according to the principles of the 
evolution of species in nature. The SA, on the other 
hand, evolves a single solution in the parameter space 
with certain guiding principles that imitate the random 
behaviour of molecules during the annealing process. 

While the GA seems to have attracted considerable 
attention in signal processing applications (e.g. [7]-[9]), 
the SA by contrast has not received similar interests. 
The SA is an optimization technique with some strik- 

ingly positive and negative features. An attractive fea- 
ture of SA is that it is very easy to program and the 
algorithm typically has few parameters that require tun- 
ing. A serious drawback of gA is that the standard SA 
can be very slow, often requiring much more number of 
cost-function evaluations to converge, compared with a 
carefully designed and tuned GA. 

The ASA, an improved version of SA also known as 
the very fast simulated reannealing [lo]-[13], provides 
significant improvement in convergence speed over stan- 
dard versions of SA and maintains all the advantages of 
standard SA algorithms. To illustrate its simplicity and 
versatility, we apply the ASG to three signal processing 
applications, IIR filter design, ML joint channel and data 
estimation and evaluation of the MSER DFE. Our study 
demonstrates that the ASA offers a viable approach for 
solving diverse signal processing problems. 

2 Adaptive simulated annealing 

Many signal processing applications pose the following 
optimization problem: 

min d(w), 
W € W  

where w = [wl.  . . w,IT is the n-dimensional parameter 
vector to be optimized, W is defined by 

Li and Vi are the lower and upper bounds of wi, and 
aj 5 gj(w) 5 Pj are inequality constraints. The cost 
function J(w) can be multimodal and nonsmooth. The 
ASA is an efficient global optimization scheme for solving 
this kind of constrained optimization problems. 
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2.1 Search guiding mechanisms 

The ASA evolves a single point w in the parameter or 
state space W .  The seemingly random search is guided 
by certain underlying probability distributions. An ele- 
gant discussion on how the general SA algorithm works 
can be found in [13]. Specifically, the general SA algo- 
rithm is described by three functions. 
1. Generating probability density function 

G ( w ~ ’ ~ ,  ~ y ~ , T i , ~ ~ ~ ;  1 5 i 5 n ) .  

This determines how a new state wnew is created, and 
from what neighbourhood and probability distributions 
it is generated, given the current state wold. The gener- 
ating “temperatures” describe the widths or scales 
of the generating distribution along each dimension wi 
of the state space. 

Often a cost function has different sensitivities along 
different dimensions of the state space. Ideally, the gen- 
erating distribution used to search a steeper and more 
sensitive dimension should have a narrower width than 
that of the distribution used in searching a dimension 
less sensitive to change. The ASA adopts a so-called re- 
annealing scheme to periodically re-scale so that 
they optimally adapt to the current status of the cost 
function. This is an important mechanism, which not 
only speeds up the search process but also makes the op- 
timization process robust to different problems. 
2. Acceptance function 

This gives the probability of wDew being accepted. The 
acceptance temperature determines the frequency of ac- 
cepting new states of poorer quality. 

Probability of acceptance is very high at  very high 
temperature Taccept, and it becomes smaller as Taccept 
is reduced. At every acceptance temperature, there is a 
finite probability of accepting the new state. This pro- 
duces occasionally uphill move, enables the algorithm to 
escape from local minima, and allows a more effective 
search of the state space to find a global minimum. The 
ASA also periodically adapts Taccept to best suit the sta- 
tus of the cost function. This helps to improve conver- 
gence speed and robustness. 
3. Reduce temperatures or annealing schedule 

1 ,  Taccept(ka) + Taccept(ka + 1) 

Z , g e n ( k i )  - Z,gen(k i  + I), 1 I i L 72 

where k a  and ki  are some annealing time indexes. The 
reduction of temperatures should be sufficiently gradual 
in order to ensure that the algorithm finds a global min- 
imum. 

This mechanism is based on the observations of the 
physical annealing process. When the metal is cooled 
from a high temperature, if the cooling is sufficiently 
slow, the atoms line themselves up and form a crystal, 
which is the state of minimum energy in the system. The 
slow convergence of many SA algorithms is rooted at this 
slow annealing process. The ASA, however, can employ 
a very fast annealing schedule, as it has self adaptation 
ability to re-scale temperatures. 

I h i  tialisation 

accept or reject 

c+ ’=Ngener 

Temperature 
annealing 

\ 

a 
0 
3 

8 
Y 

6 I 
Figure 1: Flow chart of ASA. 

2.2 Algorithm implementation 

Although there are many realizations of the ASA, an im- 
plementation is illustrated in Fig. 1, and this algorithm 
is detailed here. How the ASA realizes the above three 
functions will also become clear during the description. 

(i) In the initialization, an initial w E W is randomly 
generated, the initial temperature of the acceptance 
probability function, Taccept(0), is set to J(w), and 
the initial temperatures of the parameter generat- 
ing probability functions Ti,gen(0) are set to 1.0. An 
annealing control parameter c is given, and the an- 
nealing times Ici and k a ,  are set to 0. 
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(ii) The algorithm generates a new point in the param- 
eter space with: 

wineW = wpld + qd (Vi - Li)  , 1 5 i 5 n, and 

wnew E w, (3) 
where pi is calculated as 

qi = sgn vi - - x,gen(ki)~ ( 2 
( (1+ 'Z ,gen (ki ) ) ' 2 v i - 1 '  - 1) , (4) 

and vi a uniformly distributed random variable in 
[0, 13. If a generated wnew is not in W ,  it is dis- 
carded and a new point is tried again until wnew E 
W .  The value of the cost function J(wnew) is then 
evaluated and the acceptance probability function 
of wnew is given by 

A uniform random variable Punif is generated in 
[O, 11. If Punif 5 Pacceptr wnew is accepted; oth- 
erwise it is rejected. 

(iii) After every Naccept acceptance points, reannealing 
takes place by first calculating the sensitivities 

where wbest is the best point found so far, S is a 
small step size, the n-dimensional vector ei has unit 
i th element and the rest of elements of ei are all 
zeros. Let sma, = max{si, 1 5 i 5 n}.  Each 
is scaled by a factor sma,/s i  and the annealing time 
ki is reset 

Similarly, Taccept(0) is reset to the value of the 
last accepted cost function, Taccept(ICa) is reset to 
J(wbest) and the annealing time k, is rescaled ac- 
cordingly 

(iv) After every Ngenera generated points, annealing 
takes place for 1 5 i 5 n 

ICi = ICi + 1 

'Z,gen(kEi) = 'Z,gen(O) exp 

and 
k, = k, + 1 
Taccept(ko) = Taccept(0) exp ( - c k $ )  L } ; (10) 

Otherwise, goto step (ii). 

(v) The algorithm is terminlated if the parameters have 
remained unchanged foE a few successive reanneal- 
ings or a preset maximum number of cost function 
calls has been reached; otherwise, goto step (ii). 

As in astandard SA algorithm, this ASA contains two 
loops. The inner loop ensuras that the parameter space 
is searched sufficiently at a given temperature, which is 
necessary to guarantee that the algorithm finds a global 
optimum. The differences with standard SA algorithms 
are that the ASA uses a much faster annealing schedule 
and employs a reannealing scheme to adapt itself. 

2.3 Algorithm parameter tuning 

The ASA uses only the value of the cost function in the 
optimization process and is very simple to program, just 
as in a standard SA algorithm. For the above ASA algo- 
rithm, most of the algorithm parameters are automati- 
cally set and "tuned", and the user only needs to assign 
a control parameter c and 6et two values Nacc-pt and 

Obviously, the optimal d u e s  of Naccept and Ngenera 

are problem dependent, but our experience suggests that 
an adequate choice for Naccept is in the range of tens to 
hundreds and an appropriate value for N,,,,,, is in the 
range of hundreds to thousands. The annealing rate con- 
trol parameter c can be determined form the chosen ini- 
tial temperature, final temperature and predetermined 
number of annealing steps [11],[12]. We have found out 
that a choice of c in the range 1.0 to 10.0 is often ade- 
quate. 

It should be emphasized that,  as the ASA has excel- 
lent self adaptation ability, the performance of the algo- 
rithm is not critically influeDced by the specific chosen 
values of C, Nac-ept and N g q e , , .  This has been observed 
in a variety of applications. 

Ngenera. 

3 Optimization applications 

The versatility of the ASA as a global optimization tool 
is demonstrated on the three very different problems. 

3.1 IIR filter desiga 

Consider the IIR filter with the transfer function: 
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Figure 2: Normalized cost function versus number of 
cost function evaluations averaged over 100 random 
runs using the ASA for Example 1. The dashed line 
indicates the global minimum. 

where M ( >  L )  is the filter order. The IIR filter design 
can be formulated as an optimization problem with the 
mean square error (MSE) as the cost function 

J(wH) = E[(d(b) - Y(b))2], (12) 

where WH = [UO a1 . . . U L  b l  . . . bn.i'JT denotes the filter 
coefficient vector, y(b) and d(b) are the filter's output 
and desired response, respectively. In practice, ensemble 
operation is difficult to realize, and the cost function (12) 
is usually substituted by the time-averaged one 

k = l  

A major concern is that the cost function is gener- 
ally multimodal, and a gradient algorithm can easily be 
stuck at  local minima. The GA has been applied to 
IIR filter design (e.g. [8],[14],[15]) to overcome this diffi- 
culty. We show that the ASA offers an alternative. To 
maintain the stability during optimization, the direct- 
form coefficients bi ,  1 < i < M ,  are converted into the 
lattice-form reflection coefficients ~ i ,  0 5 i 5 M - 1. 
Thus the filter coefficient vector used in optimization is 
w = [uo a1 . . . u L  K O  . . . K M - ~ ] ~ ,  with the constraints 
I K ~ I  < 1. Converting the reflection coefficients back to 
the direct-form coefficients is straightforward [IS]. 

System identification application is used in the ex- 
periment. The unknown plant has a transfer function 
H s ( z ) ,  and the ASA is employed to adjust the IIR filter 
that is used to model the system. When the filter order 
M is smaller than the system order, local minima prob- 
lems can be encountered [17], and this is used to simulate 
a multimodal environment. Two examples were tested. 

Exumple 1. This example is taken from [17]. The system 
and filter transfer functions are respectively 

0.05-0.4~-' 
H s ( z )  = 1-1.1314~-'+0.25~-~ 

Hn.i(z) = 1+6qoz-' 
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Figure 3: Filter parameter trajectories averaged 
over 100 runs using the ASA for Example 1, started 
from the fixed initial positions: (a) [0.9 - 0.9IT, (b) 
[-0.8 O.OIT, (c) [0.9 0.9IT and (d) [0.114 0.519IT. 

The analytical MSE (12) in this case is known when 
the input is a white sequence and the noise is absent. 

-0.906IT with the normalized MSE value 0.2772, and a 
local minimum at wlocal = [0.114 0.519IT. Fig. 2 depicts 
the evolution of the normalized MSE averaged over 100 
random runs. Fig. 3 shows the trajectories of the filter 
parameter vector averaged over 100 runs, started from 
four fixed initial positions. It can be seen that the ASA 
consistently found the global optimal solution. 

Example 2. This is a 3rd order system with the transfer 
function given by 

The MSE has a global minimum at wgloba1 = [-0.311 

The system input was a uniform white sequence taking 
values in (-0.5,0.5), and the signal to noise ration (SNR) 
was 30 dB. The data length used in calculating the MSE 
(13) was N = 2000. When a reduced-order filter with 
M = 2 and L = 1 was used, the MSE was multimodal. 
Extensive simulation showed that the MSE had a global 
minimum of 0.059. The ASA consistently reached this 
global minimum, as shown in Fig. 4. To illustrate the 
multimodal nature of the cost function, Fig. 5 shows the 
behaviours of a standard gradient algorithm. 
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Figure 4: Cost function versus number of cost 
function evaluations averaged over 100 random 
runs using the ASA for Example 2. 
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Figure 5: Convergence behaviours of the gradient 
algorithm, started from the two initial conditions: 
(a) [O.O 0.0 0.3  0.1IT and (b) [O.O 0.0 0.3 O . O I T ,  for 
Example 2. 

3.2 ML joint channel and data estimation 

Consider the digital communication channel modelled as 
a finite impulse response filter with an additive noise 
source. The received signal at sample k is given by 

na-1 

r ( k )  = ais(k - i) + e ( k ) ,  (16) 
i = O  

where n, is the channel length, ai are the channel taps, 
the symbol sequence { s ( k ) }  is independently identically 
distributed with an M-PAM symbol constellation, and 
e ( k )  is a Gaussian white noise. Let 

be the vector of N received datasamples, the transmitted 
data sequence and the channel tap vector, respectively. 

The joint ML estimate of a and s is obtained by max- 
imizing the conditional probability density function of r 
given a and s. Equivalently, the ML solution is the min- 
imum of the cost function 

N 

J,(a,s) = ( r ( k )  - ais(k - i) 
k = l  i = O  

that is, 

(a*, s* )  = arg [ g i g  J,(a, s) . 1 (19) 

This joint ML estimate, however, is too expensive to 
compute except for the simplest case. In practice, subop- 
timal solutions are adopted for computational purpose. 
The algorithm based on a blind trellis search technique 
[18] is such an example. 

The joint minimization pmcess (19) can also be per- 
formed using an iterative loop first over the data se- 
quences s and then over all the possible channels a 

(a*, s*> = arg [ min ( mjn J,(a, s )  13 .  
The inner optimization can be carried out using the 
Viterbi algorithm (VA). The previous research has used 
the quantized channel algorithm [19] and the GA [9] to 
perform the outer optimization. In this study, we apply 
the ASA to perform the outer optimization. Specifically, 
given the channel estimate a, let the data sequence de- 
coded by the VA be i*. The cost function used by the 
ASA is the MSE: 

1 
N (21) J(a) = -$,(a, $*). 

The search range for each channel tap is -1.0 5 ai 5 1.0, 
since the channel can always be normalized. 

The following numerical example was used to illus- 
trate the combined ASA and VA approach for ML joint 
channel and data estimation. The channel was given by 

a = [0.407 0.815 0.407IT. (22) 

Because the true channel length na = 3 is unknown, an 
estimated length ii, = 4 was assumed in the simulation. 
In practice, the performance of the algorithm is observed 
through the MSE. In simulation, the performance of the 
algorithm can also be assessed by the mean tap error 
(MTE), defined as MTE = 116 - all2. 

Figs. 6 and 7 show the wolutions of the MSE and 
MTE with 2-PAM and 4-PAM symbols and different 
SNRs, respectively. All the results were averaged over 
100 different runs. Each run had a different noisy re- 
ceived data sequence and a different random initializa- 
tion of the algorithm. No divergence was observed for 
any run. It can be seen from Figs. 6 and 7 that the MSE 
converged to the noise floor. 
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Figure 6: MSE (a) and MTE (b) against number 
of VA evaluations averaged over 100 different runs. 
2-PAM and data  samples N = 50. 

3.3 MSER decision feedback equalizer 

DFE, shown in Fig. 8, is a powerful technique for combat- 
ing distortion and interference in communication links 
[20] ,[all and high-density data storage systems [22] ,[23], 
and is widely used in practice, as it provides a good 
balance between performance and complexity. For the 
channel defined in (16), the DFE produces an estimate 
i ( k  - d )  of s(k - d )  by quantizing the filter output 

f(r(k), h ( k ) )  = W T r ( k ) ,  +bTh(k) (23) 

where w = [ W O .  . . w,-1IT and b = [ b l .  . . b,IT are the 
coefficients of the feedforward and feedback filters re- 
spectively, r(k) = [r(k). . . r ( k  - m + 1)IT is the channel 
output vector and &,(k) = [i(k-d-l)...~(k-d-n)]~ is 
the past detected symbol vector. It is sufficient to choose 
d = n, - 1, m = n, and n = n, - 1 (see [24],[25]). 

The minimum MSE (MMSE) solution (WMMSE, 
bMMSE) is often said to be the optimal solution for the 
coefficients of the DFE [26]. However, the MMSE so- 
lution does not correspond to the MSER solution, the 
symbol error rate (SER) being the ultimate performance 
criterion of equalization. I t  can be shown that the de- 
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Figure 7: MSE (a) and MTE (b) against number 
of VA evaluations averaged over 100 different runs. 
4-PAM and data samples N = 100. 

cision feedback b&M&(k) in a DFE performs a space 
translation which mapps the DFE onto a “linear” equal- 
izer in the translated observation space [24],[25]: 

f ( r ’ (k) )  = wTr’(k), (24) 

where r‘(k) is the translated observation vector. This 
equivalent DFE is depicted in Fig. 9. In principle given 
the channel model, the analytic expression of the SER, 
PE(w), for the DFE with the weight vector w can be 
derived and the MSER solution WMSER can be obtained 
by minimizing PE(w). Furthermore, it becomes clear 
that the MMSE solution is not the MSER solution. 

For the 2-PAM case, the gradient algorithm has been 
used to optimize PE(w) to obtain the MSER solution 
[24],[25]. For high order PAM channels, however, the 
optimization based on gradient method becomes highly 
complex and very costly. We propose a Monte Carlo 
approach based on the ASA to achieve the MSER solu- 
tion for the general M-PAM channel. The SER can be 
approximated as 

l N  PE(w) = - N 
S(O(k - d)  - ~ ( k  - d ) ) ,  (25) 

k = l  
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where the indicator function 

(26) 
0,  i(k - d)  = s(k - d )  { 1, o(k - d )  # s(k - d )  S(i(k-d)-s(k-d)) = 

and N is the number of training data. The MSER solu- 
tion WMSER is obtained by minimizing PE(w) using the 
ASA algorithm. 

The proposed Monte Carlo approach was tested using 
the following example: 

} . (27) 
Channel a = [0.3482 0.8704 0.3482IT 

4 - PAM symbols 

For the case of SNR=20 dB and N = 2000 with the ini- 
tial w set to the WMMSE, Fig. 10 depicts the evolution 
of the training SER. The SERs obtained by the MSER 
DFE and the MMSE DFE with detected symbols be- 
ing fed back are compared in Fig. ll. The number of 
training data N for evaluating PE(w) ranged from 100 
to 100,000, depending on the SNR. The number of sym- 
bols used to estimate the SERs of the trained equalizers, 
shown in Figs. 11, was sufficient large to produce 400 
error counts for each SNR. 

As expected, the MSER solution is superior over the 
MMSE solution. This Monte Carlo algorithm is block- 

Figure 10: Evolution of the training SER versus 
number of SER evaluations. SNR=20 dB and 
the initial w is the MMSE solution. 

16 18 20 22, 24 26 28 
Signal tQ Noise Ratio (dB) 

Figure 11: Performance comparison for the MSER and 
MMSE DSFEs with detected symbols being fed back. 

4 Conclusions 

The ASA is a global optimiaation technique having cer- 
tain advantages. The algorithm is versatile and very easy 
to program, and has very few parameters that require 
tuning. In this study, we have applied the ASA to three 
very different signal processing applications, IIR filter 
design, ML joint channel and data estimation and evalu- 
ation of MSER DFE. Our results shows that, for the first 
two applications, the efficiency of the ASA appears to be 
in the same order as the GA, which are available in the 
literature. This study has demonstrated that  the ASA 
provides a viable alternative to the better known GA for 
solving diverse signal proce5sing applications with mul- 
timodal and nonsmooth coslt functions. 
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