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1. Introduction 
The radial basis function (RBF) network [I]  offers a 
viable alternative to the twdayer neural network in 

many signal processing applications. A novel learning 
algorithm for RBF networks [2-41 has been derived 
based on the orthogonal least squares (OLS) method 
operating in a forward regression manner [ S I .  This is a 
rational way to choose RBF centres from data points 
because each selected centre maximizes the increment to 
the explained variance of the desired output and the 
algorithm does not suffer numerical ill-conditioning 
problems. This learning algorithm was originally derived 
for RBF networks w>ith a scalar output. The present 
study extends this previous result to multi-output RBF 
networks. The basic idea is IO use the trace of the 
desired output covariance as the selection criterion 
instead of the original variance in the single-output case. 
Reconstruction of PAM signals and nonlinear system 
modelling are used as two examples to demonstrate the 
effectiveness of this learning algorithm. 

2. Multi-output RBF network 
The RBF network with t i  Inputs and in  outputs depicted 
in Fig.1 implements a mappingj',. :R" -R"' according to 

. 

where x FR" . @(,) is a given function from R - to R . 11./1 
denotes the Euclidean norm, A,,  are the weights. L ~ CR" 
are known as the RBF centres and t ih is the number ot 
centres. Two typical choices of @(.) are the thin-plate- 
spline function 
$(1, ) = v2log(v ), 

d(v ) = exp ( --v2/0), 

12) 

( 3 )  

and the Gaussian function 

where u is a width constant. The centres are fixed points 
in R" and are normally selected from the input data 
points. If a set of the inputs and the corresponding 
desired outputs { x ( r ) , d ( t ) } E  is provided, the weights 
A,( can be determined using the LS method. 

The RBF network (1) is a special case of the multi- 
output linear regression model 

M 
di ( t ) =  2 p ,  ( r )e j i  +ei ( r  ), I ~ i s r n ,  (4) 

J = 1  

where d i ( t )  is the ith desired output, O j i  are the 
parameters, p j ( t )  are known as the regressors which are 
some fixed functions of the input x(t )  and ei(t) is the 
ith error signal. It is apparent that a fixed centre c, with 
a given nonlinearity @(.) represents a regressor in (4). 

Define 
d i =[dj ( l) . . .d; (N)]' , 15; 5m , 

e ,  =[ei(l)...ei ( N ) I T ,  15; 5 n 1 ,  

p, =I~ , ( I ) . . . ~ ; (N) ] ' ,  I s j c M .  

Then for r = 1 to N (4) can be collectively written as 

or more concisely in the matrix form 

D = P O + E .  (9 

3, Multi-output OLS algorithm 
The OLS method involves the transformation of the set 
of basis vectors p , into a set of orthogonal basis vectors 

I 
The space spanned by the set of w, is the same space 
spanned by the set of p j ,  and (9) can be rewritten as 

D = W G + E .  
The OLS solution 
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and the ordinary LS solution 0 satisfy the triangular 
system 

A O=G. (16) 
The classical and modified Gram-Schmidt methods [6] 
can be employed to derive A and G and thus to solve 
for 0 from (16). The Householder transformation 
method [7] can alternatively be used to obtain a similar 
orthogonal decomposition. In the case of RBF 
networks, each data point x ( f )  is a candidate centre 
which corresponds to a candidate regressor. The number 
of data points is often very large and, therefore, the 
number of all the candidate regressors M can be very 
large. An adequate modelling however may only require 
M , y ( ~ < M )  significant regressors. The OLS algorithm [SI 
offers a simple and effective means to select these 
significant regressors. Because the error matrix E is 
orthogonal to W ,  after some simple calculation, the 
trace of the covariance of d ( t )  is 

+trace (ET EIN). (17) 

The error reduction ratio due to w can be defined as 

(18) 

The following forward regression procedure can be used 
to select a subset of significant regressors. At the kth 
step, a regressor is selected if it produces the largest 
value of [err ]k from amongst the rest of the M -k + 1 
candidates. The selection is terminated when 

k = l  

where 0<p<l is a chosen tolerance. This gives rise to a 
subset model containing M,7 significant regressors. 

The first term in the right-hand side of (17) is the part 
of the trace of the desired output covariance which can 
be explained by the regressors and the second term is the 
unexplained trace of the desired output covariance. Thus 

( 2 g$)wTw j/N 
r = l  

is the increment to the explained trace due to w j ,  and 
the above learning procedure has a property that each 
selected centre ( regrmr)  maximizes the increment to 
the explained trace of the desired output covariance. The 
selection of centres is therefore directly linked to the 
reduction of the error covarianc trace. This is clearly 
superior to a random selection of centres proposed 
originally in [l]. The detailed selection procedure is 
exactly the same as for the singleoutput case described 

in [5,8] except for some obvious alterations required by 
the multi-output natrure. Another advantage of this 
algorithm is that numerical ill-conditioning can easily be 
avoided. It is straightforward to show that w[wk=O 
implies that p t  is a linear combination of p 1  to Pk-1. 
Therefore if w f w k  is less than a small pre-set threshold, 
the regressor pk wiU not be selected and this ensures 
that the LS solution is well-conditioned. The desired 
choice of p is discussed in [S,8]. 

4. Reconstruction of PAM signals 
A general digital communications system is shown in 
Fig.2, where the channel is modelled as a finite impulse 
response filtex with additive white Gaussian noise e ( ? ) .  
The task of the equaliser is to reconstruct input symbol 
based on the channel observation vector 
b(t ) . . .y (r-q+l ) ]  T .  The integers q and 7 are known as 
the quaker  order and delay resptively. In the present 
study, ~ ( t )  is asumed to be a 4-ary PAM signal taking 
values from the set {+.1,?3}. Equalisation is a 
nonlinear classification problem, and this is best 
illustrated using a simple example where the channel 
transfer function is 
H(r)=l.O+O.Sz -1 

and the equaliser has a structure of 9 = 2  and T=O.  In 
the absence of noise, channel output vectors are some 
discrete points. Each of these points is shown in Fig.3 
using one of the 4 symbols {#,e, x ,n}, which correspond 
to the input set {-3,-1,1,3}. When noise is added, some 
probability distribution is introduced, giving rise to a 4- 
state classification problem. For a noise variance 0.0625, 
the optimal decision boundaries are plotted in Fig.3. 

A twooutput RBF network can be trained to 
approximate this optimal equaliser solution. The 
nonlinearity $(.) was chosen as (3), where u was set 10 
twice large of the noise varinace. 740 points of training 
data were generated and this gave rise to about 740 
candidate centres. A RBF network of 74 centres was 
selected using the OLS learning algorithm and the 
decision boundaries of this RBF network are also shown 
in Fig.3. Fig.4 compares the performance of the optimal 
equaliser with that of the selected RBF network. 

5. Nonlinear system modelling 
lo00 samples of simulated time series were generated 
using the nonlinear model 

Y i(r)=(0.8-0.5erp(-~ T ( f -1) ) )~  i( t  -1) 
-(0.3+0.9exp(-yf (r  --l)))yl(r -2) 

+O.lsinCy2(r -1 ) )+e l ( t )  

Y2( r )=0 .6Y2( t -1 )+0 .2Y2( t - l )YZ( t r2 )  , , , 

+1.2tanh l ( t  -2)) +eZ(r) 

where the Gaussian noise e (2) had a covariance 

0.01 0.0 [ 0.0 0.011 

A tweoutput RBF network was employed to model this 
nonlinear process. Let 
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x(r)=lvr(t-l)yT(r-2)JT 

9 0 )=f, (x ( t  1) 
The idea IS to use the RBI? network 

as the ow-stepahead predictor for \ ( f ) ,  $(.) was 
chosen to be (2) The OLS algonthm identified a RBF 
network wth 50 centres The observations and the 
selected centres are plotted in Fig 5. The selected 
network is a very good one-stepahead predictor for the 
simulated system This RBF model was also used to 
produce iteratively the network output 

where xd(r)=[j:(r  -l)fJ(r -2)IT Even though the 
RBF model was identified using noisy observations, the 
iterative network outputs closely match to the outputs 
from the autonomous system ( e ( t ) = O )  as can be Seen in 
Fig.6 This contirrns that the selected RBF model indeed 
captures the underlying dyndnucs ot the system 

6. Conclusions 
An orthogonal least squares algonthm has been 
developed for the ConStruction of multi-output radial 
basis function networks Thir learning strategy provides a 
systematic approach linking the selection of RBF centres 
from the data set to the reduction of the error 
covanance trace Application to two different area5 ot 
signal processing hac been demonstrated 

f d ( t ) = f r ( x d ( r ) )  
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Fig.1. Schematic of RBF Network. 
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Fig.2. Schematic of Data Transmission System. 
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Fig.3. Comparison of Decision Boundaries. Solid: 
optimal, dashed: RBF network, noise variance 0.0625. 
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Fig.4. Comparison of Performance. - optimal, 
-8- RBF network. 
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Fig.6. Response of Autonomous System and Iterative 
Network. Project to two subspaces, loo0 samples. 
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Fig.5. Subspace Projection of Observations (.) and 
Centres (0). 
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