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Abstract 
The paper presents an approach for training 
multi-output radial basis function (RBF) net- 
works by combining subset selection with reg- 
ularisation. A regularised orthogonal least 
squares (ROLS) algorithm is derived, which is 
capable of constructing parsimonious networks 
that generalise well. A fast implementation of 
the ROLS algorithm further reduces computa- 
tional requirements significantly. System iden- 
tification is used as an example to  demonstrate 
the effectiveness of this training algorithm. 

1 Introduction 
In previous works [1],[2], we have presented 
an orthogonal least squares (OLS) algorithm 
for constructing parsimonious RBF networks 
based on an efficient forward subset selection 
approach. When training a large neural net- 
work, regularisation is often necessary in order 
to  overcome overfitting problem [3],[4]. Com- 
bining the parsimonious principle with regular- 
isation techniques is more attractive since the 
resulting learning algorithms are able to choose 
small networks that generalise well. 

Two examples of adopting this combined ap- 
proach are a first-order regularised step-wise se- 
lection of subset regression models [5] and a 
zero-order regularised forward selection for RBF' 
networks [6]. A disadvantage of these regu- 
larised subset selection algorithms is that they 
require considerably more computation than the 
OLS algorithm. A recent study [7], however, 
has overcome this difficulty and derived a ROLS 
algorithm which requires the same amount of 
computation as the OLS algorithm for subset 
model selection. The present study extends this 
ROLS algorithm to multi-output RBF networks 

by adopting the same technique used in [a]. 

Although the OLS algorithm is a very efficient 
subset model selection scheme, its computa- 
tional efficiency can further be improved by us- 
ing a fast implementation version [8]. This fast 
implemetation is equally applicable to  the ROLS 
algorithm and, when used for learning multi- 
output RBF networks, reduction in computa- 
tional complexity is even more significant. 

2 The ROLS algorithm 
The task of network learning can be formulated 
a s  the following regression model [a] 

D = + O + E  (1) 

is the desired output matrix, no is the number of 
network outputs and N is the number of training 
data; 

E = [el . . .e,,] (3) 

is the modelling error matrix; 

is the response matrix of the hidden layer or re- 
gression matrix and, when every training inputs 
are used as centres, M = N ;  
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is the network weight matrix. 

Let an orthogonal decomposition of 4j be i4 = 
WA. The model (1) can be rewritten as 

D = W G + E  (6) 

where 

glJ * . . gl,no 

G = [  ; i i ] = A @  (7) 
gM,l * * .  gM,no 

Introduce the following zero-order regularised 
error criterion 

J R  = trace[ETE + XGTG] (8) 

where X 2 0 is a regularisation parameter. It 
can be shown that 

trace[ETE + XGTG] = trace[DTD] 

where w j  are columns of W .  Similar to the 
case of the OLS algorithm [ 2 ] ,  we can define the 
regularised error reduction ratio due to Wk as 
r .  

[rerrlk = 

Based on this ratio, significant regressors can be 
selected in a forward-regression procedure ex- 
actly as in the case of the OLS algorithm [a]. 

2.1 Fast version 

Significant saving in computation can be 
achieved by adopting a fast implementation of 
the OLS algorithm [8]. Define two matrices 
B = !@'[a I D] and C = [A I GI. The ele- 
ments of B and C are denoted by ba,j and ci,j 
respectively. The kth stage of the selection pro- 
cedure consists of: 

(ii) Find 

[rerrlk := [rerr];') ( '  = 

max{[rerrf), IC 5 j 5 M I  

The jkth column of B is interchanged from 
the kth row upwards with the kth column 
of B, and then the jkth row of B is inter- 
changed from the kth column upwards with 
tlhe kth row of B. The jkth column of C is 
interchanged up to  the ( k  - 1)th row with 
tlhe kth column of C .  

(iii) For k + 1 5; j 5 M + no, compute 

ck,j = bk,j/t5k,k 

For k t 1 5 j 5 M and j 5 1 5 M + no, 
compute 

bj,l = llj,l -- Ck,jck,lbk,k 

bl,j = t5j,J, 1 5 M 

The selection is terminated at  the M, stage 
when a pre-set tolerance is satisfied 

This produces a subset network containing M, 
centres. 

2.2 Complexity analysis 

The number of multiplications required by this 
fast ROLS (IFROLS) algorithm to select a subset 
network of size M, from the matrix !@ of size 
N x 1M with no outputs is 

a(% -t l)Ms + N'(M 2 + l) + n,N(M + 1) 

If the ROLS is implemented using the original 
version [1],[2], the number of multiplications re- 
quired to perform the same subset network se- 
lection is 

(3n,N t- 2n, + 2)Ms + noN 

M, + x ( 2 ( n 0  + 1)(N + 1) + 1)(M - IC) (13) 

Figures 1 and 2 compare the complexity of these 
two versions for two different cases. 

k=l 
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Figure 1: Computational requirement for CP 
matrix of size 100 x 100 with 2 outputs. 
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Figure 2: Computational requirement for CP 
matrix of size 500 x 500 with 4 outputs. 

2.3 Determining value of X 

The appropriate value of X depends on the un- 
derlying system that generates the training data 
and the choice of basis function. Previous study 
[4],[7] has suggested that the performance of the 
RBF network may be fairly insensitive to the 
precise value of A. An elegant approach to the 
selection of regularisation parameter is to adopt 
a Bayesian interpretation and to calculate the 
best value of X using the evidence procedure [9]. 
This leads to  the re-estimation formula for X 

y trace[ETE] 
M - y trace[GTG] 

A=--- 

where 

- Ms WTW; 

- 2 = 1  WTW; + X 

is known as the number of good parameter mea- 
surements. 

3 Example 
A two-input two-output data set collected from 
a 50MW turboalternator is given in [lo]. This 

data set was fitted with a RBF network using 
the OLS algorithm [a]. The data set is very 
short, containing only 100 points, and therefore 
cannot be partitioned into a training set and a 
validating set. Also the measured system out- 
puts are clean. In order to demonstrate how 
overfitting can occur in noisy conditions, we ar- 
tificially create a set of noisy system outputs by 
adding Gaussian white noise to  the clean system 
outputs 

Yn,i (k)  = Y s , i ( k )  + e;@), 1 I k I 100 (16) 

where y s , ; ( k )  are the clean system outputs, e ; ( k )  
are Gaussian noises, each having zero mean and 
variance 0.04, and el(k) and e 2 ( k )  are uncorre- 
lated. The system inputs u j ( k ) ,  j = 1,2,  and 
y n , i ( k )  form the training set. 

The RBF network with thin-plate-spline nodes 
is used. The network training input is defined 
as 

Gt, i (k)  = Yn,i (k)  - $n,i@) (18) 

where &+(k) are the network predictions given 
the input (17). The iterative network output 
errors are defined by 

E d , @ )  = Y,,i(k) - $d,i(k) (19) 

where & , i ( k )  are iterative network outputs given 
the input 

The iterative network outputs can be used to  
evaluate validation perforamance. 

Similar to [a], a 45-centre RBF network was 
identified using the OLS algorithm. Table 1 
summarizes the covariances of the network pre- 
diction errors and iterative network output er- 
rors respectively. The iterative network outputs 
&,i(k) are superimposed on the clean system 
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covariance of network 
prediction errors 

covariance of iterative 
network output errors 

outputs ys,i(k) in Figure 3. Evidence of over- 
fitting can be seen from the covariance of the 
network prediction errors, which is much smaller 
than the noise covariance even after taking into 
account the small number of samples used in 
calculating the covariance. 

0.0075 0.0019 
0.0019 0.0091 
0.0194 -0.0036 
-0.0036 0.0162 

covariance of network 
prediction errors 

covariance of iterative 
network output errors 

0.0194 -0.0003 
-0.0003 0.0199 
0.0119 0.0003 
0.0003 0.0142 

The ROLS algorithm with X = 0.7 was also used 
to  identify a 45-centre RBF network. The mod- 
elling accuracy is given in Table 2, and Figure 4 
compares the iterative network outputs with the 
clean system outputs. The results clearly show 
that the network identified by the ROLS algo- 
rithm suffers less from overfitting and captures 
the underlying system dynamics better than the 
network obtained without regularisation. Re- 
estimation formula for X was also tested. Start- 
ing with X = 0.0 and after a few repeated runs, 
X converged to  0.63 and the resulting network 
was similar to  that obtained with X = 0.7. 

4 Conclusions 
A regularised orthogonal least squares algorithm 
has been extended for constructing multi-output 
radial basis function networks. A fast imple- 
mentation of this learning method has been pre- 
sented, which offers significant reduction in com- 
putational complexity for subset network selec- 
tion. An example has been included to  demon- 
strate the advantages of combining regularisa- 
tion with the orthogonal least squares learning. 
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Figure 3: Iterative network outputs (dashed) 
superimposed on clean system outputs 
(solid). The network was obtained by 

the OLS algorithm. 
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Figure 4: Iterative network outputs (dashed) 
superimposed on clean system outputs 
(solid). The network was obtained by 

the ROLS algorithm. 
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