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Abstract 
The paper derives a minimum bit error rate (BER) 
solution for the decision feedback equaliser (DFE) 
that employs a linear combination of the channel ob- 
servations and the past decisions. We show that by 
using a geometric translation the DFE is reduced to 
a simpler linear equaliser. A BER expression for the 
linear equaliser is obtained under the assumption of 
linearly separable decision regions, and a method is 
proposed to optimally set the linear-combiner coef- 
ficients of the DFE. This minimum BER solution is 
superior to the usual minimum mean square error 
(MSE) solution. 

1 Introduction 
Decision feedback is a powerful technique for corn- 
bating channel distortion. The conventional DFE 
[l] is based on a symbol-decision structure that em- 
ploys a linear combination of the channel observa- 
tions and the past decisions. We will call this DFE 
the linear-combiner DFE, in contrast to other DFE 
structures that use nonlinear combinations of the 
channel observations and the past decisions [2-71. 
The Wiener or minimum MSE solution is often said 
to be the optimal solution for the coefficients of the 
linear-combiner DFE. It is well-known however that 
the minimum MSE solution does not correspond to 
the minimum BER solution, the BER being the ul- 
timate performance criterion of equalisation. 

The linear-combiner DFE realises a linear decision 
boundary. Because of decision feedback, the subsets 

of channel states corresponding to different values of 
the data symbol are usually linearly separable. We 
demonstrate that the optimal linear decision bound- 
ary can be very different from the decision boundary 
of the Wiener solution. This shows that significant 
BER reduction over the Wiener solution is possible. 

To facilitate a deep understanding of the linear- 
combiner DFE, a simple geometric translation is in- 
troduced which reduces the DFE to an equivalent 
linear equaliser “without feedback”. A BER expres- 
sion is then derived. Using this BER estimator as 
the optimisation criterion, a method is proposed to 
optimally set the coefficients of the linear-combiner 
DFE. The decision boundary of this optimal linear- 
combiner DFE is the best linear approximation to 
the Bayesian decision boundary and its BER per- 
formance is close to that of the Bayesian DFE [a ] .  

Throughout this study, the channel is modelled as a 
finite impulse response (FIR) filter with the transfer 
function 

n,-1 

A ( z )  = a,z-’ (1) 
z=o 

where n, is the length of the channel impulse re- 
sponse and ap are the channel tap weights. For no- 
tational simplicity, the symbol sequence { s ( k ) }  is 
assumed to be independently identically distributed 
(i.i.d.), taking values from the set {ztl}.  The re- 
ceived signal is given by 

r ( k >  = +(IC> + e ( k >  = 
n,-1 

a , s ( ~  - z >  + e ( k )  (2) 
1=0 

0-7803-3250-4/96$5.000 1996 IEEE 1173 

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on April 07,2021 at 12:14:31 UTC from IEEE Xplore.  Restrictions apply. 



where ?(k) is the noiseless channel observation, e ( k )  
is an i.i.d. Gaussian noise source with zero mean 
and variance E[e2(k)] = 02 and is uncorrelated with 
s ( k ) .  The signal to  noise ratio (SNR) of the system 
is defined as 

/n“-l  \ 
I 
= 

SNR = E[?(k)]/E[e2(k)] = U: ( 2 a: 1 / U :  

- - 
0 . . .  0 0 

aw-1 0 

an,-2 ( h - 1  0 (8) 

0 
G L - 2  ana-l - . . .  - a1 

(3) 
\ i=o 1 

where U,” = E [ s 2 ( k ) ]  is the symbol variance. 
- . 

$(k-d) decision filtering t device 

Figure 1: Schematic of DFE. 

2 The linear-combiner DFE 
The DFE, depicted in Fig.1, uses the information 
present in the channel output vector 

r(k) = [ ~ ( k ) .  . . ~ ( k  - m t l)lT 

&b(k)  = [ i ( k  - d - 1). . i ( k  - d - n)lT 

(4) 

( 5 )  

and the past detected symbol vector 

to  produce an estimate i ( k  - d )  of s ( k  - d ) .  The 
integers d,  m and n are known as the decision delay, 
feedforward order and feedback order respectively. 
Without the loss of generality, d = n, - 1 is chosen 
to cover the entire channel dispersion, m is related 
to  d by m = d +  1 = n,, and n is given by n = n, - 1 
(see PI). 

In the linear-combiner DFE, the decision is made 
by quantizing the filter output 

f ( r ( k ) ,  & b ( k ) )  = W T r ( k )  4- b T % ( k )  (6) 
where w = [ W O . .  . wW,-lIT and b = [ b l . .  .b,lT are 
the coefficients of the feedforward and feedback fil- 
ters respectively. The Wiener solution is often said 
to  provide the optimal w and b. It is however opti- 
mal only in the sense of the minimum MSE solution 
and is generally not the minimum BER solution. 

2.1 Space translation 

We first show that the feedback term of the linear- 
combiner DFE performs a space translation. Define 

r----r-”’ 7 
a- J, 

m.,, & 
r r k - I )  r tk-2) r ik-m+l)  

linear equaliser 

Figure 2: Schematic of translated DFE. 

The translated vector r’(k) can be computed recur- 
sively according to  

T ’ ( k  - i )  = z - l r l ( k  - i + 1)- 

TQ)  = T ( k )  

ana-;S(k - d - l), i = m - 1 

and an alternative 
combiner DFE is shown in Fig.2. 

2.2 The minimum BER solution 

The symbol vector s j ( k )  = [ s ( k )  - - . s ( k  - d)lT has 
N s -  - 2d+1 = 2m combinations. Let these N ,  se- 
quences be s f , j ( k ) ,  1 5 j 5 N , .  In the translated 
space, the noise-free channel states are given by 
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I 

r .  a = F I’ s f , j (k) ,  1 L 2. L Ns (12) 
where the m x ( d  + 1) matrix FI’ has the form 

s (k  - 1) s(k - 2) 
-1 -1 

1 -1 

-1 1 
-1 1 
1 1 
1 1 

-1 -1 

1 -1 

I 

(13) 

?(k) ? ( k  - 1) 
-1.5 -1.5 

0.5 -0.5 

-1.5 0.5 
-0.5 0.5 
0.5 1.5 
1.5 1.5 

-0.5 -1.5 

1.5 -0.5 

These states can be divided into two subsets, Rf 
and R-, corresponding to  s ( k  - d )  = 51. 

Let Z s  and 2- be the regions of r’(k) related to 
the decisions > ( k  - d )  = fl respectively. The BER 
of the linear equaliser (10) is given by 

where pr,(r’(k)lr:) is the p.d.f. of r’(k) conditioned 
on the received channel state being r: and p; is the 
a priori probability of r:. 

Since decision feedback usually makes Rf and R- 
linearly separable, (14) can be simplified to 

where 

and 

(17) 

The derivation of (15) can be found in [9]. It is 
obvious that the minimum MSE solution does not 
necessarily minimize PE(w). The minimum-BER 
linear-combiner DFE should minimize the BER ex- 
pression (15). In practice, the optimal solution wept 
can be obtained using the gradient algorithm 

where 77 is an adaptive gain. The initial value w(0) 
can be chosen to  be the Wiener solution. Notice 
that the algorithm (18) is an iterative procedure 
and does not involve any channel observation r’( k ) .  
The optimisation procedure is also independent of 
feedback states. 1175 

Table 1: Chaanel states for Al(z) = 0.5 + 1 . 0 F 1 .  

The effect of decision feedback or space translation 
(11) is to  translate two sets of the channel states 
related to  the two values of i ( k  - d - 1) into a single 
set as illustrated in Fig.3. 

5 6  

..-... . .  ...... . .  . .  : ,  . .  ’.._..’ 

s(k-2)=1 

translated 

0 
~ ( k - 2 ) = - 1  

-2 -1 0 1 2  
r(k) 

Figure 3: Illustration of effect of feedback. 

The decision boundaries of the Bayesian DFE, the 
minimum-BER and minimum-MSE linear-combiner 
DFEs, plotted in the translated observation space, 
are shown in Fig.4. The decision boundary of the 
minimum-BER linear-combiner DFE is depicted in 
Fig.4 under the title “best linear approximation” to  
emphasize the fact that  it is the best linear approxi- 
mation to  the optimal nonlinear Bayesian boundary. 
This example also demonstrates that  the Wiener 
solution does not achieve the full performance po- 
tential of the linear-combiner DFE structure. Fig.5 
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compares the BERs as a function of SNR with de- 
tected symbols being fed back for these three DFEs. 

optimal 
Bayesian 

- - - - - - -  
best linear 
approximation 

Wiener 
solution 

-2 - I  0 1 2  
r 04 

Figure 4: Asymptotic decision boundaries 
corresponding to  large SNR for A l ( z )  = 
0.5 + l.Oz-’. 
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Figure 5: Performance comparison for 
Al(x) = 0.5 + 1.02-1 with detected sym- 
bols being fed back. (a): minimum-MSE 
linear-combiner DFE, (b): minimum-BER 
linear-combiner DFE, (c): Bayesian DFE. 

The second example is a 5-tap channel with the 
transfer function given by 

Az(z )  = 0.227 + 0 . 4 6 6 . ~ ~ ’  + 0 . 6 8 8 . ~ ~ ~  

+ 0 . 4 6 6 ~ - ~  + 0 . 2 7 7 ~ - ~  (20) 
The structure of the DFE is chosen to  be d = 
4, m = 5 and n = 4. The BERs of the 
Bayesian DFE, the minimum-BER and minimum- 
ItlSE linear-combiner DFEs with detected symbols 
being fed back are plotted in Fig.6, where it can 
be seen that the performance of the minimum-BER 
linear-combiner DFE is significantly better than 
that of the Wiener solution. The performance gap 
between the Bayesian DFE and the minimum-BER 

linear-combiner DFE confirms the fact that  the real 
optimal solution for the DFE structure is generally 
nonlinear. The “best linear solution” is suboptimal 
in nature. However the usual Wiener solution is 
inferior to this “best linear solution”. 

-1 

-2 
El m -3  

g -4  

0 
r- 

7-4 

-5 

-6 
10 12 14 16 18 20 22 24 

SNR (dB) 
Figure 6: Performance comparison for 
A ~ ( z )  = 0.227 + 0.466z-I f 0 . 6 8 8 . ~ ~ ’  + 
0 . 4 6 6 . ~ - ~  + 0 . 2 2 7 ~ ~ ~  with detected sym- 
bols being fed back. (a): minimum-MSE 
linear-combiner DFE, (b): minimum-BER 
linear-combiner DFE, (c): Bayesian DFE. 

4 Adaptive implementation 
The algorithm (18) is an off-line optimisation pro- 
cedure suitable for application to stationary chan- 
nels. The following adaptive procedure is suggested 
for on-line implementation of the minimum-BER 
linear-combiner DFE. At the sample k ,  the proce- 
dure consists of: 

(i) Using an adaptive algorithm such as the least 
mean square (LMS) algorithm to update the 
channel estimate and a noise variance estimator 
to  estimate a,2(k); 

(ii) Computing the subset of the channel states 
B f ( k )  and the gradient 

(iii) Using the feedback 2( k - d - 1) and the channel 
estimate to  obtain the translated observation 
vector r’(b); 

w(k) = w(k - 1)- 

(iv) Updating the equaliser’s weights using 

(21) 
rl dPE(W(k  - 1)) 

a PE (W (k - 1 dW ll aw )’I1 
(v) Making the decision S(k -(I) based on the filter 

output wT(k)r’(k).  
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Computational complexity of this adaptive linear- 
combiner DFE is considerably more than that of the 
standard adaptive linear-combiner DFE. However 
the performance gain justifies the increase in com- 
putation. Some of the channel states r: E R+ are 
far away from the decision boundary and contribute 
little to  the performance criterion (15). Compu- 
tational requirements of the minimum-BER linear- 
combiner DFE can be reduced by neglecting these 
states from the optimisation procedure with little 
performance degradation. For example, consider 
the case of Fig.4. By just using the single state 
at (0.5, 0.5) in the optimisation, little performance 
degradation will occur, compared with using the full 
set R+ of the two states. 

1 

$ 0.8 

2 0 . 6  

$ 0 . 4  

U 

.ri 
U 

0 . 2  

0 ’  ” ’ I ’  ” ’ 
Figure 7: Trajectories of channel esti 
mates and equaliser weights. Two lines 
indicate the respective optimal values 

0 10 20 30 40 50 6 0  7 0  80 
samples 

The convergence behaviour of this adaptive pro- 
cedure is tested using the following example. Ini- 
tially, the channel has a transfer function A ~ ( z )  = 
0.8 + 0.8z-’ with a SNR=15 dB. At the sample 
k = 0, the channel jumps to  the transfer function 
A l ( z )  = 0 . 5 + 1 . 0 ~ - ~ .  The LMS algorithm is used to 
estimate the channel taps with an adaptive gain 0.1 
and (21) is used to  update the equaliser weights with 
7 = 0.1. The trajectories of the channel estimates 
ag(k) /aI  ( I C )  and the equaliser weights wg(k)/ w1 ( k ) ,  
averaged over 50 different runs, are plotted in Fig.7. 
It can be seen from Fig.7 that the convergence speed 
of this adaptive procedure is reasonable. 

5 Conclusions 
The geometric translation property of the decision 
feedback in the linear-combiner DFE structure has 
been established in this paper. Basically, the de- 
cision feedback performs a space translation that 
maps the DFE onto an equivalent and simpler lin- 

ear equaliser without feedback in the translated ob- 
servation space. It has been shown that the Wiener 
solution can be far from the best possible perfor- 
mance of the linear-combiner DFE structure. Based 
on a BER expression, a novel minimum-BER linear- 
combiner DFE h.as been derived, which achieves the 
full performance potential of the linear-combiner 
DFE structure ,and offers the best linear approxi- 
mation to the Bayesian solution. 
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