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Abstract 

A family of blind equalisation algorithms identi- 
fies a channel model based on  a higher-order cumu- 
lant (HOC) fitting approach. Since HOC cost func- 
tions are multimodal, gradient search techniques 
require a good initial estimate to avoid converging 
to local minima. W e  present a blind identification 
scheme which uses genetic algorithms (GAS)  to op- 
timise a HOC cost function. Because GAS are e f i -  
cient global optimal search strategies, the proposed 
method guarantees to find a global optimal channel 
estimate. A micro- G A  implementation is adopted 
to further enhance computational eficienc y.  As 
is demonstrated in computer simulation, this G A  
based scheme is robust and accurate, and has a fast 

’ convergence performance. 

1. Introduction 

An important class of blind equalisation algo- 
rithms uses techniques based on HOCs [1]-[4]. A 
two-stage strategy is usually adopted, which first 
identifies a channel model using HOC fitting al- 
gorithms and then employs the estimated channel 
model to design an equaliser. The key step of this 
approach is its ability to obtain an accurate chan- 
nel model. Once a channel model is available, a 
variety of existing equaliser design methods can be 
employed, ranging from simple linear inverse filter 
to sophisticated maximum likelihood sequence es- 
timator, depending on a trade-off between perfor- 

mance and complexity. Therefore, we concentrate 
on blind channel identification using the HOC fit- 
ting approach in this paper. 

HOC fitting cost functions are however multi- 
modal, and conventional gradient techniques [3],[4] 
may converge to “wrong” solutions unless a good 
initial value for the channel parameters is pro- 
vided, which is not always possible. To overcome 
the problem of local minima, simulated annealing 
has been implemented to optimize a HOC cost 
function [5 ] .  We propose to use GAS [6]-[9] for 
blind channel identification based on HOC fitting. 
This GA based scheme is very robust and achieves 
a global optimal solution regardless of initial value 
of channel estimate. Furthermore, the number of 
parameters to be optimised in the problem of blind 
channel estimation is usually small, and GAS are 
particularly effective to solve this kind of optimisa- 
tion problems. The micro-GA implementation [8] 
is adopted to further improve convergence rate. 

The channel is modelled as a finite impulse re- 
sponse filter with an additive Gaussian white noise: 

na 

y(k) = a;s(k - i> + e ( k )  (1) 
i=O 

Blind channel identification refers to the determi- 
nation of the channel model a = [a0 a1 - .ana] us- 
ing only the noisy received signal { r ( k ) }  and some 
knowledge of statistic properties of s ( k ) .  We will 
assume a real-valued channel and a PAM symbol 
constellation. Extension to complex-valued chan- 
nels and modulation schemes is straightforward. 
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2. Higher-order cumulant fitting 

Since 3rd-order cumulants of r (b)  are zero, 4th- 
order cumulants have to be used [lo]. The 4th- 
order cumulant fitting cost function adopted in our 
application is defined by: 

J4(ii) = 

i=max{O,-T} 

where (?+.(T, T ,  T )  is the diagonal slice of the time 
estimate C 4 , T ( ~ 1 ,  T ~ ,  T ~ )  of the 4th-order cumulant, 
~ 4 , ~  the kurtosis of s ( k ) ,  6,  an estimated channel 
length and a the channel estimate. 

Most of the existing algorithms for HOC fitting 
employ gradient search techniques. HOC fitting 
cost functions are well-known to be multimodal, 
and gradient based optimisation methods may fail 
to work. Even with measures of providing good 
initial channel estimate, it has been observed that 
gradient algorithms sometimes converge to local 
minima [3]. Using GAS to optimize the cost func- 
tion (2) has the advantage of guaranteeing to find 
a global optimal channel estimate. 

A channel model (1) typically contains a few 
taps. Thus the number of parameters to  be op- 
timized in (2) is small, and GAS are efficient in 
solving this kind of “small-dimensional” optimisa- 
tion problems. In reality, the channel order n, 
is unknown. A simple method is to oirerfit with 
A, 2 n,. Although this will complicate the cost 
function and may cause problems to  gradient based 
methods, the GA based method is capable of iden- 
tifying those nonexisting taps with (near) zero val- 
ues. An inspection of the obtained channel esti- 
mate allows us to  delete those insignificant taps. 

3. Genetic algorithms 

GAS belong to a problem solving approach based 
loosely on the evolution of species in nature. 
They differ from gradient optimisation techniques 
mainly in four aspects [7]. Firstly, GAS work with 
an encoding of the parameter set to be searched, 
not the parameters themselves. Secondly, unlike 

gradient techniques, which concentrate their ef- 
forts on a single potential solution in the search 
space, GAS search with a population of potential 
solutions. Thirdly, GAS use the value of the ob- 
jective function (termed fitness), not derivatives, 
to evaluate potential solutions. Lastly, GAS use 
probabilistic transition rules. The seemingly undi- 
rected search is guided by the fitness value of each 
individual and how it compares with others. 

A popular encoding scheme is the bit-string en- 
coding [6], which is adopted in our application. 
A simple GA usually consists of three operations, 
namely selection, crossover and mutation [7] ,  at 
each cycle or generation. An “elitist” strategy, 
which automatically copies a few of the best solu- 
tions in the population into the next genneration, 
is often incorporated. In crossover operation, we 
adopt multiple crossover points [7], and the num- 
ber of crossover points in our application is 4. 

Since our goal is to  find a global optimum so- 
lution quickly, the micro-GA [8] offers certain ad- 
vantages. The population size in a micro-GA is 
much smaller than those in “standard” GAS. This 
feature of the micro-GA not only makes it partic- 
ularly useful for nonstationary optimisation prob- 
lems but also improves convergence rate in gen- 
eral [8]. Simply adopting a very small population 
size and letting the search converge just once is 
not very useful apart from quickly allocating some 
local optimum. In a micro-GA, after the search 
has converged, the population is reinitialised with 
random values while the best individual found so 
far is copied to the newly generated population. 
The reinitialisation is repeated until no further im- 
provement can be achieved. 

In general, the more complex the search space 
is, the larger the population size should be. The 
population size in our micro-GA is 2 times of the 
number of parameters. The crossover rate is set 
to  1.0 to  facilitate a high rate of information ex- 
change while the mutation rate is set to 0.0 as the 
reinitialisation ‘of the population will keep the di- 
versity of potential solutions fairly well. Most of 
GAS adopt the proportional selection [7].  Due to 
small population size of the micro-GA, the tour- 
nament selection is used in choosing parents [8]. 
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4. GA based cumulant fitting scheme 

Our GA based scheme is summarized as follows: 
Step 1. Given a set of { ~ ( k ) } : = ~ ,  assume an over- 
length iia and compute the time estimate of the 
required cumulant to form the cost function (2). 
Step 2. With a set of initial channel parameter vec- 
tors where np is the population size, use 
the micro-GA to optimise the cost function (2). 

The fitness function value f ;  for a i  is defined as 
1 

f ;  = -j.Jq (3) 

A measure is used to  ensure that each a i  satisfies 

U G r J  
j=O 74,s 

(4) 

In the population initialisation, the taps of each 
a; first take values randomly from (-1) 1)) and 
each chosen ai  is normalised using (4). When a 
new population is produced, each member is also 
normalised. This ensures that the population is 
inside the feasible set of channel models and has 
an effect of improving convergence rate. 

It is well-known that sign and time-shift am- 
biguities exist in blind identification. Sign ambi- 
guity is due to the fact that both a and -a are 
global optimal solutions of (2). Time-shift ambi- 
guity can be illustrated as follows. Let the true 
channel be [ag.~.an,lT, a0 # 0 and a,, # 0. Let 
iia = na+2. Then [a0 . - . a,, 0 0IT, [0 a o .  - .U, ,  0]* 
and [0 0 a0 - - . a n a l T  are all global optimal solu- 
tions. A solution to  time-shift ambiguity is to fix 
the first tap. We do not fix a tap but use the fol- 
lowing measure. If the first tap of a member is zero 
(absolute value smaller than a threshold), a shift- 
ing is performed to ensure that the first tap is al- 
ways nonzero. Complexity of the GA based scheme 
is determined by the number of cost-function eval- 
uations. The micro-GA employed is specifically 
designed to minimize this complexity. 

5 .  Simulation results 

The two channels used in the simulation were: 

Channel 1 
Channel 2 

a = [-0.21 - 0.50 0.72 0.36 0.21IT 
a = [0.227 0.460 0.688 0.460 0.227IT 

The performance of the algorithm was assessed 
through the best cost function value J4(a), where 
a was the best channel model in the population, 
and the mean tap error (MTE) defined by: 

%a 

i=O 
( 5 )  MTE = 11 f a - all2 = (fG; - U ; )  2 

In the expression ( 5 ) ,  -a is used if a converges to 
-a. Otherwise a is used. 

8-PAM data symbols were transmitted and 
50000 noisy received data samples were used to 
compute the time estimate of the 4th-order cumu- 
lant. All the results were averaged over 100 dif- 
ferent runs. Figs. 1 and 2 depict evolutions of the 
cost function and the MTE for channel 1 with dif- 
ferent signal-to-noise ratio (SNR) conditions and 
assumed channel lengths ha, respectively. Table 1 
summarises the results (meanhariance) for chan- 
nel 1 with a SNR of 20 dB. Results for channel 2 
are similarly given in Figs. 3 and 4 and table 2. 

Some observations can be drawn. The GA based 
scheme always finds a global optimal channel esti- 
mate and the optimisation process converges fast. 
Compared with other existing methods of HOC fit- 
ting, our method is more accurate and robust, as is 
demonstrated by very small variances of estimated 
channel taps. Our method is capable of identifying 
nonexisting channel taps with (near) zero values 
(at least an order smaller than values for existing 
taps). Thus, model order selection can simply be 
carried out by first assuming an overlength iia and 
then inspecting the obtained channel estimate to  
delete those insignificant taps. We also performed 
a range of simulation with a data length of 25000 
samples and 16-PAM symbols. The results, not 
shown here, also confirm the above observations. 

6. Conclusions 

A GA based scheme has been developed for 
blind channel identification based on HOC fitting. 
Apart from ensuring a global optimal channel esti- 
mate regardless of initial conditions, the proposed 
method is highly accurate and very robust. Small 
variances of channel estimates and insensitivity to  
noise achieved in our simulation was not reported 
previously in other existing methods. Our appli- 
cation also demonstrates advantages of using the 
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micro-GA for fast global optimisation of multi- 
modal cost functions. 
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Figure 1. Cost function versus number 
of function evaluations for channel 1. 
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Figure 2. Mean tap error versus number 
of function evaluations for channel 1. 
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true I estimate (meanfvariancel 
na = 4 
-0.21 
-0.50 
0.72 
0.36 
0.21 
- 

- 

ha = 4 
-0.20975f0.00014 
-0.49957f0.00003 
0.72092f0.00002 
0.35788f0.00006 
0.21073f0.00016 

- 

- 

ha = 5 
-0.21124f0.00022 

0.71965f0.00002 
0.35859f0.00010 
0.21058f0.00013 

-0.49975f0.00004 

-0.00041f0.00050 
- 

ha = 4 
0.22731f0.00080 
0.45727f0.00097 
0.68913f0.00070 
0.45744f0.00052 
0.22564f0.00079 

- 

- 

ha = 6 
-0.21098f0.00020 
-0.49835f0.00005 
0.72087f0.00003 
0.35823f0.00011 
0.20870f0.00017 
-0.00184f0.00050 
-0.00173f0.00055 

?la = 5 ha = 6 
0.22221f0.00099 0.21743f0.00119 
0.45679f0.00127 0.45481f0.00242 
0.68095f0.00066 0.67408f0.00181 
0.46426f0.00077 0.46870f0.00262 
0.2232260.00074 0.22265f0.00217 
0 .O 1577fO. 0078 1 0 .O 15 14f0.00653 

- 0.00359f0.00485 

Table 1. Identification results for channel 1 with 8-PAM and SNR=20dB. 

No. of taps =7 - : -6 ......... ' - 
-5 ........... - 

true 
na = 4 
0.227 
0.460 
0.688 
0.460 
0.227 
- 

- 

Table 2. Identi 
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Figure 4. Mean tap error versus number 
of function evaluations for channel 2. 
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