Communication Group S

Sparse Data Modelling Using Combined Locally Regularized Orthogonal Least Squares and D-Optimality Design

S. Chen[†], X. Hong[‡] and C.J. Harris[†]

† Department of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mail: sqc@ecs.soton.ac.uk

> [‡] Department of Cybernetics University of Reading, Reading RG6 6AY, U.K.

Presented at CACSCUK'2002, Beijing, China, September 20-21, 2002

Communication Group S Chen

Regression Model

$$y(k) = \hat{y}(k) + e(k) = \sum_{i=1}^{n_M} \theta_i \phi_i(k) + e(k), \ 1 \le k \le N$$

y(k): target or desired output, $e(k)=y(k)-\hat{y}(k)$, $\hat{y}(k)$: model output, θ_i : model weights, $\phi_i(k)$: regressors, n_M : number of candidate regressors, N: number of training samples.

Defining

$$\mathbf{y} = [y(1) \cdots y(N)]^T$$
, $\mathbf{e} = [e(1) \cdots e(N)]^T$, $\boldsymbol{\theta} = [\theta_1 \cdots \theta_{n_M}]^T$

$$\mathbf{\Phi} = [\boldsymbol{\phi}_1 \cdots \boldsymbol{\phi}_{n_M}]$$
 with $\boldsymbol{\phi}_i = [\phi_i(1) \cdots \phi_i(N)]^T$

leads to matrix form

$$y = \Phi\theta + e$$

Electronics and Computer Science

Motivation

Modelling from data: generalization, interpretability, knowledge extraction \implies all depend on ability to construct appropriate sparse models

- O Parsimonious principle: subset model selection
 - ★ OLS: significance of individual selected terms
- O Bayesian learning: maximum a posteriori (MAP)
 - ★ Bayesian framework: hyperparameters/regularization to enforce sparsity
- Optimal experimental designs: optimizing model robustness
 - * D-optimality design: maximizing determinant of design matrix
- OLS with individual regularization and D-optimality design

2

Communication Group

S Chen

Orthogonalization

Orthogonal decomposition: $\mathbf{\Phi} = \mathbf{W}\mathbf{A}$, where

$$\mathbf{A} = \begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,n_M} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n_M-1,n_M} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

and $\mathbf{W} = [\mathbf{w}_1 \cdots \mathbf{w}_{n_M}]$ with orthogonal columns: $\mathbf{w}_i^T \mathbf{w}_j = 0$, if $i \neq j$.

Regression model becomes

$$y = Wg + e$$

with orthogonal weight vector $\mathbf{g} = [g_1 \cdots g_{n_M}]^T$ satisfying

$$\mathbf{A}\mathbf{ heta} = \mathbf{g}$$

Communication Group S

LROLS Regression with D-Optimality Design

Given regularization parameter vector $\mathbf{\lambda} = [\lambda_1 \cdots \lambda_{n_M}]^T$ and denoting $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \cdots, \lambda_{n_M}\}$, and D-optimality weighting β , combined error criterion:

$$J_C(\mathbf{g}, \boldsymbol{\lambda}, \beta) = \mathbf{e}^T \mathbf{e} + \mathbf{g}^T \boldsymbol{\Lambda} \mathbf{g} - \beta \log \det (\mathbf{W}^T \mathbf{W})$$

$$=\mathbf{y}^{T}\mathbf{y}-\sum_{i=1}^{n_{M}}\left(\left(\mathbf{w}_{i}^{T}\mathbf{w}_{i}+\lambda_{i}\right)g_{i}^{2}+\beta\log\left(\mathbf{w}_{i}^{T}\mathbf{w}_{i}\right)\right)$$

ullet Forward-regression procedure selects significant regressors according to combined error reduction ratio due to each regressor $old w_i$

$$[\mathsf{cerr}]_i = \frac{\left(\mathbf{w}_i^T \mathbf{w}_i + \lambda_i\right) g_i^2 + \beta \log \left(\mathbf{w}_i^T \mathbf{w}_i\right)}{\mathbf{y}^T \mathbf{y}}$$

Selection terminated with n_s -term sub-model at the n_s -th stage when

$$[\operatorname{cerr}]_l \leq 0 \quad \text{for} \quad n_s + 1 \leq l \leq n_M$$

Communication Group S Chen

A Simple Scalar Function Modelling

Modelling f(x) given $y=f(x)+\epsilon$ and x. 100 x uniform distribution in $(0,\ 1)$ and ϵ zero mean Gaussian with variance 0.16.

The RBF Gaussian kernel function with variance of 0.04. Each training data was considered as a candidate RBF center and $n_M=100$.

Electronics and Computer Science

Communication Group S Chen

Regularization Parameter Update

Bayesian evidence procedure for updating regularization parameters:

$$\lambda_i^{\mathrm{new}} = rac{\gamma_i^{\mathrm{old}}}{N - \gamma^{\mathrm{old}}} rac{\mathbf{e}^T \mathbf{e}}{g_i^2}, \quad 1 \leq i \leq n_M$$

$$\gamma_i = rac{\mathbf{w}_i^T \mathbf{w}_i}{\lambda_i + \mathbf{w}_i^T \mathbf{w}_i}$$
 and $\gamma = \sum_{i=1}^{n_M} \gamma_i$

Iterative Procedure

Initialization. Set all λ_i to same small positive value (e.g. 0.001). Set $\beta > 0$.

Step 1. Given current λ , orthogonal forward procedure selects n_s -term subset model.

Step 2. Update λ . If λ remains sufficiently unchanged in two successive iterations or a pre-set maximum iteration number is reached, stop; otherwise go to $Step \ 1$.

- Step 1 termination automatically, insensitive to β value
- Very sparse models with excellent generalization, without costly cross validation

Communication Group S Chen

Modelling Using LROLS with D-Optimality Design

number	variance over noise	variance over noise-free
of terms	training data	testing data
6	0.15766	0.00168
6	0.15766	0.00168
6	0.15823	0.00202
5	0.15705	0.00194
5	0.15826	0.00246
5	0.15705	0.00194
5	0.15705	0.00194
5	0.15911	0.00223
	of terms 6 6 6 5 5 5 5	of terms training data 6 0.15766 6 0.15766 6 0.15823 5 0.15705 5 0.15826 5 0.15705 5 0.15705

- Insensitive to D-optimality cost weighting β
- Sparser model with equally good generalization performance, compared with using LROLS alone (6 terms)

5-term model mapping (curve) produced by the combined LROLS and Doptimality algorithm with $\beta=10^{-5}$ for simple scalar function modelling problem. Dots indicate noisy training data y and circles the RBF centers.

Communication Group

Modelling Using LROLS with D-Optimality Design

RBF model $\hat{y}_k = f_{RBF}(y_{k-1}, y_{k-2})$ with Gaussian kernel function of variance 0.81

D-optimality	number	variance over	variance over
weighting eta	of terms	training data	testing data
10^{-6}	19	0.09275	0.09635
10^{-4}	13	0.09311	0.09607
10^{-2}	13	0.09338	0.09750
10^{0}	13	0.09395	0.09667

- ullet Insensitive to D-optimality cost weighting eta
- Sparser model with equally good generalization performance, compared with using LROLS alone (18 terms, 0.09264, 0.09678)

S Chen

Simulated Nonlinear Time Series Modelling

$$y_k = \left(0.8 - 0.5 \exp(-y_{k-1}^2)\right) y_{k-1} - \left(0.3 + 0.9 \exp(-y_{k-1}^2)\right) y_{k-2} + 0.1 \sin(\pi y_{k-1}) + \epsilon_k$$

Noise ϵ_k Gaussian with zero mean and variance 0.09 1000 samples, first 500 for training (figure below), last 500 for testing.

10

S Chen Communication Group

Nonlinear Time Series Modelling Result

Comparison of underlying noise-free system $y_{d,k}$ and iterative RBF model output

$$\hat{y}_{d,k} = f_{RBF}(\hat{y}_{d,k-1}, \hat{y}_{d,k-2})$$

13-term model produced by combined LROLS and D-optimality algorithm with $\beta=10^{-4}$

Engine Data Modelling

System input u_k and output y_k

First 210 data points for modelling, last 200 points for testing

RBF one-step prediction: $\hat{y}_k = f_{RBF}(y_{k-1}, u_{k-1}, u_{k-2})$, Gaussian kernel function variance 1.69

RBF iterative model output: $\hat{y}_{d,k} = f_{RBF}(\hat{y}_{d,k-1}, u_{k-1}, u_{k-2})$

Communication Group S Chen

Engine Data Modelling Result

 y_k : solid \hat{y}_k : dashed

Comparison of system output y_k and model one-step prediction \hat{y}_k . 22-term model produced by combined LROLS and D-optimality algorithm with $\beta=10^{-5}$

Modelling Using LROLS with D-Optimality Design

D-optimality	number	variance over	variance over
weighting eta	of terms	training data	testing data
10^{-8}	22	0.000459	0.000488
10^{-7}	27	0.000442	0.000484
10^{-6}	25	0.000441	0.000479
10^{-5}	22	0.000452	0.000499
10^{-4}	20	0.000586	0.000606
10^{-3}	20	0.000478	0.000501
10^{-2}	16	0.000884	0.000982
10^{-1}	12	0.004951	0.005050

- ullet Insensitive to a wide range values of D-optimality cost weighting eta
- \bullet Sparser model with equally good generalization performance, compared with using LROLS alone (34 terms, 0.000435, 0.000487)

Engine Data Modelling Result

 y_k : solid $\hat{y}_{d,k}$: dashed

Comparison of system output y_k and model iterative output $\hat{y}_{d,k}$. 22-term model produced by combined LROLS and D-optimality algorithm with $\beta=10^{-5}$

Communication Group S Ch

Conclusions

Combining locally regularized orthogonal least squares with D-optimality experimental design — a state of art model construction algorithm

- Efficiency ensured as usual by orthogonal forward regression
- Coupling effects of local regularization and D-optimality design further enhance each other, and combined algorithm is capable of producing small-size models that generalize well
- User only needs to specify D-optimality cost weighting β , and model construction is automatic, without need of costly cross validation

Value of β does not critically influence performance, and it can be chosen with ease from a large range of values

