Jun Wu[†], Sheng Chen[‡] and Jian Chu[†]

† National Key Laboratory of Industrial Control Technology Institute of Advanced Process Control Zhejiang University, Hangzhou, 310027, China

[‡] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mail: sqc@ecs.soton.ac.uk

Presented at CACSCUK'2003, Luton, U,K., 20 September, 2002

The authors wish to thank the supports of the U.K. Royal Society (KC Wong fellowship RL/ART/CN/XFI/KCW/11949)

Communication Group S Chen

Number Formats

 \bigcirc Fixed-point of bit length $\beta=1+\beta_g+\beta_f$: 1 sign bit, β_g bits integer part, β_f bits fractional part. If no overflow

$$Q_1(x) = x + \delta_1, |\delta_1| < 2^{-(\beta_f + 1)}$$

 \bigcirc Floating point of bit length $\beta=1+\beta_e+\beta_w$: 1 sign bit, β_e bits exponent, β_w bits mantissa. If no overflow/underflow

$$Q_2(x) = x + x\delta_2, |\delta_2| < 2^{-(\beta_w + 1)}$$

 \bigcirc Block floating point of bit length $\beta=1+\beta_h+\beta_u$: 1 sign bit, β_h bits block exponent, β_u bits block mantissa (in fixed-point). If no overflow/underflow

$$\mathcal{Q}_3(x) = x + r(x)\delta_3, \ |\delta_3| < 2^{-(eta_u + 1)}$$
 $r(x) = 2\eta_i, \ ext{if} \ x \in \mathcal{S}_i \ ext{and} \ \eta_i = \max_{y \in \mathcal{S}_i} \{|y|\}$

Dynamic range bit length β_r (β_g , β_e or β_h); Precision bit length β_p (β_f , β_w or β_u)

Motivation

Finite word length effects

degrade designed closed-loop performance, even cause loss of closed-loop stability

Unified approach to different representation formats

fixed point, floating point, block floating point

Opnamic range and precision considerations

closed-loop stability robustness with respect to total bit length

S Chen

2

Communication Group

Closed-Loop

Plant

$$\begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{e}(k) \\ \mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) \end{cases}$$

Controller

$$\begin{cases} \mathbf{v}(k+1) = \mathbf{F}\mathbf{v}(k) + \mathbf{G}\mathbf{y}(k) + \mathbf{H}\mathbf{e}(k) \\ \mathbf{u}(k) = \mathbf{J}\mathbf{v}(k) + \mathbf{M}\mathbf{y}(k) \end{cases}$$

 \bigcirc Controller realizations $(\mathbf{F}, \mathbf{G}, \mathbf{J}, \mathbf{M}, \mathbf{H})$ infinite many. Let $(\mathbf{F}_0, \mathbf{G}_0, \mathbf{J}_0, \mathbf{M}_0, \mathbf{H}_0)$ be a realization designed by some standard procedure, all realizations form set:

$$\mathcal{S}_C \stackrel{\triangle}{=} \{ (\mathbf{F}, \mathbf{G}, \mathbf{J}, \mathbf{M}, \mathbf{H}) : \mathbf{F} = \mathbf{T}^{-1} \mathbf{F}_0 \mathbf{T}, \mathbf{G} = \mathbf{T}^{-1} \mathbf{G}_0,$$

$$\mathbf{J} = \mathbf{J}_0 \mathbf{T}, \mathbf{M} = \mathbf{M}_0, \mathbf{H} = \mathbf{T}^{-1} \mathbf{H}_0 \}$$

T being nonsingular. All are equivalent if implemented in infinite precision

O Different realizations have different degrees of robustness against FWL effect

Alternatively, realization presented as $\mathbf{w} = [w_1 \cdots w_N]^T \stackrel{\triangle}{=} [\mathbf{w}_F^T \mathbf{w}_G^T \mathbf{w}_J^T \mathbf{w}_M^T \mathbf{w}_H^T]^T$ with $\mathbf{w}_F = \mathrm{Vec}(\mathbf{F}), \cdots, \mathbf{w}_H = \mathrm{Vec}(\mathbf{H})$

4

Communication Group S

Dynamic Range Consideration

Oynamic range measure

$$\gamma(\mathbf{w}, \alpha) \stackrel{\triangle}{=} \left\{ \begin{array}{cc} \|\mathbf{w}\|_{\max}, & \alpha = 1 \text{ (fixed point)} \\ \log_2 \frac{4\|\mathbf{w}\|_{\max}}{\pi(\mathbf{w})}, & \alpha = 2 \text{ (floating point)} \\ \log_2 \frac{4\|\mathbf{z}(\mathbf{w})\|_{\max}}{\pi(\mathbf{z}(\mathbf{w}))}, & \alpha = 3 \text{ (block floating point)} \end{array} \right.$$

with
$$\|\mathbf{w}\|_{\max} \stackrel{\triangle}{=} \max_{j \in \{1, \cdots, N\}} |w_j|, \quad \pi(\mathbf{w}) \stackrel{\triangle}{=} \min_{j \in \{1, \cdots, N\}} \{|w_j| : w_j \neq 0\},$$

$$\mathbf{z}(\mathbf{w}) \stackrel{\triangle}{=} [\eta_F \ \eta_G \ \eta_J \ \eta_M \ \eta_H]^T$$

Proposition: Realization \mathbf{w} can be represented in format α of β_r dynamic-range bit length without overflow and/or underflow, if $2^{\beta_r} \geq \gamma(\mathbf{w}, \alpha)$

 \bigcirc Let $\beta_r^{min}(\mathbf{w}, \alpha)$ be minimum dynamic range bit length that guarantees no overflow and/or underflow. $\gamma(\mathbf{w}, \alpha)$ provides an estimate of $\beta_r^{min}(\mathbf{w}, \alpha)$:

$$\hat{\beta}_r^{min}(\mathbf{w}, \alpha) \stackrel{\triangle}{=} \lceil \log_2 \gamma(\mathbf{w}, \alpha) \rceil$$
 with $\hat{\beta}_r^{min}(\mathbf{w}, \alpha) \ge \beta_r^{min}(\mathbf{w}, \alpha)$

where [.] is ceiling function

Communication Group S Chen

Robustness of Closed-Loop Stability

 \bigcirc Assuming sufficient β_r , precision or stability measure:

$$\mu(\mathbf{w}, \alpha) \stackrel{\triangle}{=} \min_{i \in \{1, \dots, m+n\}} \frac{1 - |\lambda_i(\mathbf{w})|}{\left\| \frac{\partial |\lambda_i|}{\partial \Delta} \right\|_{\Delta = 0}}$$

where
$$\left\| \frac{\partial |\lambda_i|}{\partial \Delta} \right\|_1 \stackrel{\triangle}{=} \sum_{j=1}^N \left| \frac{\partial |\lambda_i|}{\partial \delta_j} \right|$$
 and $\left. \frac{\partial |\lambda_i|}{\partial \Delta} \right|_{\Delta=0} = \mathbf{r}(\mathbf{w}, \alpha) \circ \frac{\partial |\lambda_i|}{\partial \mathbf{w}}$

Proposition: Under mild conditions, if $\|\Delta\|_{\max} < \mu(\mathbf{w}, \alpha)$, then

$$|\lambda_i(\mathbf{w} + \mathbf{r}(\mathbf{w}, \alpha) \circ \mathbf{\Delta})| < 1, \ \forall i$$

 \bigcap Let $\beta_p^{min}(\mathbf{w}, \alpha)$ be minimum precision bit length that guarantees closed-loop stability $\mu(\mathbf{w}, \alpha)$ provides an estimate of $\beta_p^{min}(\mathbf{w}, \alpha)$:

$$\hat{\beta}_{p}^{min}(\mathbf{w},\alpha) \stackrel{\triangle}{=} -\lfloor \log_{2}\mu(\mathbf{w},\alpha) \rfloor - 1 \quad \text{with} \quad \hat{\beta}_{p}^{min}(\mathbf{w},\alpha) \geq \beta_{p}^{min}(\mathbf{w},\alpha)$$

where | | is floor function

Communication Group S Chen

Precision Consideration

O By design, closed-loop eigenvalues

$$|\lambda_i(\mathbf{w})| < 1, \quad \forall i$$

But w cannot be implemented exactly (infinite precision)

 \bigcirc Assume sufficient large β_r (no overflow and/or underflow). Since β_p is finite

$$\mathbf{w} \Rightarrow \mathbf{w} + \mathbf{r}(\mathbf{w}, \alpha) \circ \mathbf{\Delta}$$

where $\mathbf{x} \circ \mathbf{y} \stackrel{\triangle}{=} [x_j y_j]$ is Hadamard product of two same-dimensional vectors \mathbf{x} and \mathbf{y} , $\mathbf{r}(\mathbf{w},1) = [1\ 1 \cdots 1]^T$, $\mathbf{r}(\mathbf{w},2) = \mathbf{w}$, $\mathbf{r}(\mathbf{w},3) = 2 [\eta_F \cdots \eta_F \ \eta_G \cdots \eta_H \cdots \eta_H]^T$, and perturbation vector $\mathbf{\Delta}$ is bounded: $\|\mathbf{\Delta}\|_{\max} < 2^{-(\beta_P+1)}$

 \bigcirc With Δ , closed-loop eigenvalues

$$\lambda_i(\mathbf{w}) \longrightarrow \lambda_i(\mathbf{w} + \mathbf{r}(\mathbf{w}, \alpha) \circ \mathbf{\Delta})$$

If $|\lambda_i(\mathbf{w} + \mathbf{r}(\mathbf{w}, \alpha) \circ \Delta)| \geq 1$ for some i, closed-loop becomes unstable

Communication Group S Chen

Optimal Realization Problem

Combined FWL measure:

$$\rho(\mathbf{w}, \alpha) \stackrel{\triangle}{=} \mu(\mathbf{w}, \alpha) / \gamma(\mathbf{w}, \alpha)$$

Let $\beta^{min}(\mathbf{w}, \alpha) \stackrel{\triangle}{=} \beta_r^{min}(\mathbf{w}, \alpha) + \beta_p^{min}(\mathbf{w}, \alpha) + 1$ be minimum required total bit length. $\rho(\mathbf{w}, \alpha)$ provides an estimate of $\beta^{min}(\mathbf{w}, \alpha)$:

$$\hat{\beta}^{min}(\mathbf{w}, \alpha) \stackrel{\triangle}{=} -\lfloor \log_2 \rho(\mathbf{w}, \alpha) \rfloor + 1$$

 \bigcirc Given \mathbf{w}_0 , optimal realization problem:

$$\max_{\mathbf{w} \in \mathcal{S}_C} \rho(\mathbf{w}, \alpha) = \max_{\substack{\mathbf{T} \in \mathcal{R}^{m \times m} \\ \det(\mathbf{T}) \neq 0}} \left(\min_{i \in \{1, \cdots, m+n\}} \frac{1 - |\lambda_i(\mathbf{w}_0)|}{\left\| \mathbf{r}(\mathbf{w}, \alpha) \circ \frac{\partial |\lambda_i|}{\partial \mathbf{w}} \right\|_1 \gamma(\mathbf{w}, \alpha)} \right)$$

Optimization algorithms based on function values only can be used to solve this problem With $\mathbf{T}_{\mathrm{opt}}(\alpha) \Rightarrow$ optimal controller realization $\mathbf{w}_{\mathrm{opt}}(\alpha)$

An Example

Plant

$$\mathbf{A} = \left[\begin{array}{ccccc} 3.7156e + 0 & -5.4143e + 0 & 3.6525e + 0 & -9.6420e - 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

$$\mathbf{B} = \left[1 \ 0 \ 0 \ 0 \right]^T, \quad \mathbf{C} = \left[1.1160e - 6 \ 4.3000e - 8 \ 1.0880e - 6 \ 1.4000e - 8 \right]$$

Initial designed controller

$$\mathbf{F}_0 = \begin{bmatrix} 2.6963e + 2 & -4.2709e + 1 & 2.2873e + 1 & 2.6184e + 2 \\ 2.5561e + 2 & -4.0497e + 1 & 2.1052e + 1 & 2.4806e + 2 \\ 5.6096e + 1 & -8.5715e + 0 & 5.2162e + 0 & 5.4920e + 1 \\ -2.3907e + 2 & 3.7998e + 1 & -2.0338e + 1 & -2.3203e + 2 \end{bmatrix}$$

$$\begin{aligned} \mathbf{G}_0 = \begin{bmatrix} & -4.6765e + 1 \\ & -4.5625e + 1 \\ & -9.5195e + 0 \\ & 4.1609e + 1 \end{bmatrix}, & \mathbf{J}_0 = \begin{bmatrix} -2.5548e + 2 & -2.7185e + 2 & -2.7188e + 2 & 2.7188e + 2 \end{bmatrix}, \\ & \mathbf{M}_0 = \begin{bmatrix} 0 \end{bmatrix}, & \mathbf{H}_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T. \end{aligned}$$

MATLAB routine fminsearch.m used to solve optimization

Communication Group S Chen

Realization	Representation scheme measure		β^{min}	β_p^{min}	β_r^{min}
\mathbf{w}_0	fixed-point $egin{array}{ccc} 1.2312\mathrm{e} - 1 \end{array}$		31	21	9
$\mathbf{w}_{\mathrm{opt}}(1)$	fixed-point $1.2003\mathrm{e}-6$		19	10	8
\mathbf{w}_0	floating-point	2.9062e - 11	33	29	3
$\mathbf{w}_{\mathrm{opt}}(2)$	floating-point	9.5931e - 6	13	8	4
\mathbf{w}_0	block-floating-point	1.4347e - 11	33	30	2
$\mathbf{w}_{\mathrm{opt}}(3)$	block-floating-point	3.5012e - 6	16	12	3

Comparison of true minimum required bit lengths for \mathbf{w}_0 in three representation schemes with those of fixed-point implemented $\mathbf{w}_{\mathrm{opt}}(1)$, floating-point implemented $\mathbf{w}_{\mathrm{opt}}(2)$ and block-floating-point implemented $\mathbf{w}_{\mathrm{opt}}(3)$

 \bigcirc Any realization $\mathbf{w} \in \mathcal{S}_C$ implemented in infinite precision (unlimited β_r and infinite β_p) will achieve exact performance of infinite-precision implemented \mathbf{w}_0 , which is **designed** controller performance

Infinite-precision implemented \mathbf{w}_0 is referred to as **ideal** controller realization $\mathbf{w}_{\text{ideal}}$

		\mathbf{w}_0	$\mathbf{w}_{\mathrm{opt}}(1)$	$\mathbf{w}_{\mathrm{opt}}(2)$	$\mathbf{w}_{\mathrm{opt}}(3)$
	$\rho(\mathbf{w}, 1)$	1.2312e - 10	1.2003e - 6	1.0580e - 7	1.1321e - 6
	$\hat{\beta}^{min}(\mathbf{w}, 1)$	34	21	25	21
Fixed point	$\mu(\mathbf{w}, 1)$	3.3474e - 8	2.3082e - 4	9.6673e - 5	2.2287e - 4
	$\hat{\beta}_n^{min}(\mathbf{w}, 1)$	24	12	13	12
	$\gamma(\mathbf{w}, 1)$	2.7188e + 2	1.9231e + 2	9.1370e + 2	1.9687e + 2
	$\hat{\beta}_r^{min}(\mathbf{w}, 1)$	9	8	10	8
	$\rho(\mathbf{w}, 2)$	2.9062e - 11	7.6826e - 6	9.5931e - 6	8.5778e - 6
	$\hat{\beta}^{min}(\mathbf{w}, 2)$	37	18	18	18
Floating point	$\mu(\mathbf{w}, 2)$	2.2389e - 10	9.5628e - 5	1.5229e - 4	1.1822e - 4
	$\hat{\beta}_n^{min}(\mathbf{w}, 2)$	32	13	12	13
	$\gamma(\mathbf{w}, 2)$	7.7038e + 0	1.2447e + 1	$1.5875 \mathrm{e} + 1$	1.3782e + 1
	$\hat{eta}_r^{min}(\mathbf{w},2)$	3	4	4	4
	$\rho(\mathbf{w}, 3)$	1.4347e - 11	3.2975e - 6	3.6938e - 7	3.5012e - 6
Block floating point	$\hat{\beta}^{min}(\mathbf{w},3)$	38	20	23	20
	$\mu(\mathbf{w}, 3)$	6.5127e - 11	2.7666e - 5	2.9985e - 6	3.0083e - 5
	$\hat{\beta}_{p}^{min}(\mathbf{w},3)$	33	15	18	15
	$\gamma(\mathbf{w}, 3)$	$4.5395 \mathrm{e} + 0$	8.3902e + 0	8.1176e + 0	8.5923e + 0
	$\hat{\beta}_r^{min}(\mathbf{w},3)$	3	4	4	4

Values of various measures and corresponding estimated bit lengths for four realizations in three different formats

10

Communication Group S Chen

Unit impulse response of y(k) for \mathbf{w}_{ideal} , and 18-bit fixed-point implemented $\mathbf{w}_{opt}(1)$, floating-point implemented $\mathbf{w}_{opt}(2)$ and block-floating-point implemented $\mathbf{w}_{opt}(3)$

Communication Group S Che

Unit impulse response of y(k) for $\mathbf{w}_{\mathrm{ideal}}$. 19-bit fixed-point implemented $\mathbf{w}_{\mathrm{opt}}(1)$, floating-point implemented $\mathbf{w}_{\mathrm{opt}}(2)$ and block-floating-point implemented $\mathbf{w}_{\mathrm{opt}}(3)$

Communication Group S Chen

Conclusions

• Unified true closed-loop stability measure for FWL implemented controllers in different representation formats

Computationally tractable, taking into account both dynamic range and precision of arithmetic schemes

- Formulate and solve optimal controller realization problem
 - Design provides useful quantitative information regarding finite precision computational properties, namely robustness to FWL errors and estimated minimum bit length for guaranteeing closed-loop stability
- Designer can choose an optimal controller realization in an appropriate representation scheme to achieve best computational efficiency and closed-loop performance

13

14