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Abstract

The paper introduces a construction algorithm for sparse
kernel modelling using the leave-one-out test score also
known as the PRESS (Predicted REsidual Sums of Squares)
statistic. An efficient subset model selection procedure is
developed in the orthogonal forward regression framework
by incrementally maximizing the model generalization ca-
pability to construct sparse models with good generaliza-
tion properties. The proposed algorithm achieves a fully
automated model construction without resort to any other
validation data set for costly model evaluation.

Index Terms — orthogonal forward regression, structure
identification, cross validation, generalization.

1 Introduction

The least squares (LS) principle has been fundamental to
data modelling and the training mean square error (MSE)
has always played a central role in model structure con-
struction and parameter estimation. It is well known that the
model based on the pure LS estimate tend to be unsatisfac-
tory for an ill conditioned design matrix, and may over-fit
the noise in training data to produce an oversized ill-posed
model with high parameter estimate variances. To produce
a model with good generalization capabilities, model selec-
tion criteria such as the Akaike information criterion (AIC)
[1], local regularization and optimal experimental design
[2]–[4] incorporate some sorts of model structure regular-
ization with the basic training MSE criterion. In forward
regression setting [5], which is a practical way of construct-
ing a kernel model from a large data set, local regularization
and optimal experimental design criteria are known to offer
better solutions [2]–[4], compared with the AIC.

In order to achieve a model structure with improved model
generalization, it is natural that a model generalization ca-
pability cost function should be used in the overall model
searching process, rather than only being applied as a mea-
sure of model complexity. Because the evaluation of the
model generalization capability is directly based on the con-

cept of cross validation [6], it is highly desirable to develop
model selective criteria based on the concept of cross vali-
dation that can distinguish model generalization capability
during the model construction process. A fundamental con-
cept in cross validation is that of delete-1 cross validation
in statistics, and the associated concept of the leave-one-out
test score also known as the PRESS (Predicted REsidual
Sums of Squares) statistic [7]–[9]. The leave-one-out test
score is a measure of model generalization capability. Tra-
ditional model structure determination based on the leave-
one-out test score or PRESS statistic is however inherently
inefficient and computationally prohibitive.

The paper introduces an efficient automatic model con-
struction algorithm that directly optimizes model general-
ization capability. The computational efficiency is achieved
through incrementally minimizing the leave-one-out test
score in an orthogonal forward regression framework,
which minimizes the effort in the computation of the PRESS
statistic. Further significant reduction in computation arises
owing to a forward recursive formula to compute PRESS er-
rors. In the proposed algorithm, the PRESS statistic, which
is a measure of model generalization capability, is applied
directly in the orthogonal forward regression model struc-
ture construction process as a cost function in order to op-
timize the model generalization capability. The proposed
algorithm achieves a fully automatic model selection pro-
cedure without resorting to another validation data set for
model assessment. Two examples are included to demon-
strate the effectiveness of the approach.

2 Kernel modelling

Consider a general discrete stochastic nonlinear system rep-
resented by [10]:y(t) = f(y(t� 1); � � � ; y(t� ny); u(t� 1); � � � ;u(t� nu);�) + �(t) = f(x(t);�) + �(t) (1)

whereu(t) andy(t) are the system input and output vari-
ables, respectively,nu andny are positive integers repre-
senting the known lags inu(t) andy(t), respectively, the



observation noise�(t) is uncorrelated with zero mean and
variance�2, x(t) = [y(t�1) � � � y(t�ny) u(t�1) � � �u(t�nu)℄T denotes the system input vector,f(�) is a priori un-
known system mapping, and� is an unknown parameter
vector associated with the model structure. The system
model (1) is to be identified from anN -sample system ob-
servational data setDN = fx(t); y(t)gNt=1.
Consider the modelling of the unknown dynamical process
(1) by using a linear-in-the-parameters model of the form:y(t) = MXk=1 pk(x(t))�k + �(t) = pT (t)� + �(t) (2)

whereM is the number of candidate regressors,p(t) =[p1(x(t)) � � � pM (x(t))℄T , �k are the model weights and� = [�1 � � � �M ℄T the model parameter vector. The model
(2) for 1 � t � N can be written in the matrix form asy = P� + � (3)

wherey = [y(1) � � � y(N)℄T is the desired output vec-
tor, � = [�(1) � � � �(N)℄T is the residual vector, andP =[p1 � � �pM ℄ is theN � M regression matrix withpj =[pj(x(1)) � � � pj(x(N))℄T , 1 � j � M . An orthogonal de-
composition ofP can be expressed asP =WA (4)

whereA = faijg is anM�M upper triangular matrix with
unity diagonal elements andW is anN �M matrix having
orthogonal columns that satisfiesWTW = diagf�1; � � � ; �Mg (5)

with �k = wTkwk, 1 � k �M . The model (3) can alterna-
tively be expressed asy = (PA�1)(A�) + � =Wg + � (6)

in whichg = [g1 � � � gM ℄T is the orthogonal weight vector.
Knowingg, the original model weight vector� can be cal-
culated fromA� = g. The space spanned by the original
model basespk(t) = pk(x(t)), 1 � k � M , is identical to
that spanned by the orthogonal baseswk(t), 1 � k � M ,
and the model (2) is equivalently expressed byy(t) = wT (t)g + �(t) (7)

wherew(t) = [w1(t) � � �wM (t)℄T .

3 Orthogonal forward regression using PRESS statistic

Consider the model selection problem for modelling (1) by
a set ofK models, indexed byk = 1; 2; � � � ;K, that are
based on a variety of model structures. Denote these models
asŷk(tjt�1) if they are identified using all theN data points
in DN . To optimize the model generalization capability, the

model selection criteria are often based on cross-validation
[6], and one commonly used version of cross validation is
called delete-1 cross validation [8],[9]. The idea is that,for
every model, each data point in the training data setDN is
sequentially set aside in turn, a model is estimated using the
remainingN � 1 data points, and the prediction error is de-
rived using only the data point that was removed from the
estimation data set. Specifically, letD(�t)N be the resulting
data set by removing thet-th data point fromDN , and de-
note thek-th model estimated usingD(�t)N asŷ(�t)k (tjt� 1)
and the related predicted model residual att as:�(�t)k (tjt� 1) = y(t)� ŷ(�t)k (tjt� 1): (8)

The leave-one-out test score or the mean square PRESS er-
ror [8],[9] for thek-th modelŷ(�t)k (tjt � 1) is obtained by
averaging all these prediction errors:E ���(�t)k (tjt� 1)�2� = 1N NXt=1 ��(�t)k (tjt� 1)�2 : (9)

To select the best model from theK candidateŝyk(tjt� 1),1 � k � K, the same modelling process is applied to all
theK models, and the predictor with the minimum PRESS
statistic is selected, i.e. then�-th model is selected ifn� = arg min1�k�K �E ���(�t)k (tjt� 1)�2�� : (10)

For linear-in-the-parameters models, the PRESS statistic
can be generated without actually sequentially splitting the
training data set and repeatedly estimating the associated
models [8]. Consider that anM -term model̂yM (tjt� 1) is
identified usingDN based on the model form of (2). The
PRESS errors�(�t)M (tjt� 1) can be calculated using [8],[9]:�(�t)M (tjt� 1) = y(t)� ŷ(�t)M (tjt� 1)= �M (t)1� pT (k) (PTP)�1 p(k) ; (11)

where�M (t) = y(t) � ŷM (tjt � 1). Obviously, choos-
ing the best subset model that minimizes the PRESS statis-
tic quickly becomes computationally prohibitive even for
a modestM -term model set. Moreover, the PRESS error
(11) itself is computational expensive because the matrix
inversion involved. However, if we choose only to incre-
mentally minimize the PRESS statistic in an orthogonal for-
ward regression manner with an efficient computation of the
PRESS error, the model selection procedure based on the
PRESS statistic becomes computationally affordable.

It can readily be shown that the PRESS error�(�t)M (tjt� 1)
for theM -term orthogonal weight model (7) is given by:�(�t)M (tjt� 1) = y(t)� ŷ(�t)M (tjt� 1)= �M (t)1�w(t)T (WTW +�)�1w(t) = �M (t)�M (t) (12)



assuming that regularization is applied with a regularization
parameter�, where� = diagf�; � � � ; �g is anM � M
diagonal matrix and�M (t) = 1� MXi=1 w2i (t)�i + �: (13)

Consider the orthogonal forward regression, in which a sub-
set model of thek regressors (k �M ) is selected from the
full model set consisting of theM initial regressors given
by (7). The PRESS errors (12) and (13) can be written, by
replacingM with a variable model sizek, as�(�t)k (tjt� 1) = �k(t)�k(t) (14)

where �k(t) = 1� kXi=1 w2i (t)�i + � (15)

and �k(t) is the model residual associated with the sub-
set model structure consisting of thek selected regressors.�k(t) can be written as a recursive formula, given by�k(t) = �k�1(t)� w2k(t)�k + � : (16)

As is in the conventional orthogonal LS algorithm [5], a
Gram-Schmidt procedure is used to construct the orthogo-
nal basiswi in a forward regression manner. At each re-
gression stepk, the PRESS statistic can be computed with:Jk = E ���(�t)k (tjt� 1)�2�= E � �2k(t)�2k(t)� = 1N NXt=1 �2k(t)�2k(t) (17)

and this is used as the regressor selective criterion for
the model construction which minimizes this mean square
PRESS error. Note that the functionJk is concave ver-
susk, and there exists an “optimal” model sizen� such
that for k < n� Jk decreases ask increases, while fork > n� Jk increases ask increases [11]. This property,
i.e.�J = Jk+1� Jk changes the sign at certain model sizek, can be applied to construct the automatic algorithm.

The proposed algorithm selects significant regressors that
minimizes the PRESS statistic, with a growing model struc-
ture until�J > 0 at a desired model sizen�, where the
contribution of the(n�+1)th regressor in model approxima-
tion becomes insignificant. Thus the algorithm terminates
atJn�+1 > Jn� , where the model is optimized based on the
minimization of the PRESS statistics atJn� . Note that nei-
ther a separate criterion to terminate the selection procedure
nor any iteration of the procedure is needed. The proposed
algorithm based on the standard Gram-Schmidt procedure
is summarized in Appendix, in which the orthogonal ba-
siswi is constructed in a forward regression manner. In

this algorithm a small fixed positive regularization parame-
ter, e.g.� = 10�4, is used to improve parameter estimation
variance. Note that the algorithm selects only those model
terms which satisfyE[w2k+1(t)℄ 6= 0. Thus any numerical
ill-conditioning problem is automatically avoided.

4 Numerical examples

Two examples were used to demonstrate the effectiveness
of the proposed model construction algorithm.

Example 1. Consider using a radial basis function (RBF)
network to approximate an unknown scalar functionf(x) = sin(x)x ; � 10 � x � 10: (18)

Four hundred training data were generated fromy = f(x)+�, where the inputx was uniformly distributed in[�10; 10℄
and the noise� was Gaussian with zero mean and standard
deviation 0.2. The first two hundred samples were used for
training and the last two hundred data points for possible
model validation. The Gaussian basis functionpi(x) = exp��kx� 
ik22�2 �

(19)

was used, with a kernel width�2 = 10:0. All the two hun-
dred training data points were used as the candidate RBF
center set for
i. Two hundred noise-free dataf(x) with
equally spacedx in [�10; 10℄ were also generated as an ad-
ditional testing data set for evaluating model performance.
The regularization parameter was fixed to� = 0:001.

Fig. 1 depicts the evolution of the training MSE and PRESS
statistic inlog scale during the orthogonal forward regres-
sion with a typical set of noisy training data using the pro-
posed algorithm. It can be seen from Fig. 1 that the PRESS
statistic continuously decreased untilJ8 = 0:041589 �J7 = 0:041589, and the algorithm terminated with a 7-term
model. Fig. 2 shows the noisy training pointsy and the un-
derlying functionf(x) together with the mapping generated
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Figure 1: Evolution of training MSE and PRESS statistic versus
model size for simple scalar function modelling.
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Figure 2: Simple scalar function modelling problem: a typical
set of noisy training datay (dots), underlying functionf(x) (thin curve), model mapping (thick curve), and
selected RBF centers (circles). The 7-term model was
identified without the help of a validation set.

using this 7-term model identified. Table 1 summarizes the
modelling accuracy (mean� standard deviation) averaged
over ten sets of different data realizations. It can be seen
that the proposed algorithm was able to produce very sparse
models with excellent generalization performance, without
the need to use additional validation set for model evalua-
tion during the model construction process.

Example 2. This example constructed a model represent-
ing the relationship between the fuel rack position (inputu(t)) and the engine speed (outputy(t)) for a Leyland TL11
turbocharged, direct injection diesel engine operated at low
engine speed. Detailed system description and experimental
setup can be found in [12]. The data set, depicted in Fig. 3,
contained 410 samples. The first 210 data points were used
in training and the last 200 points in possible model valida-
tion. A RBF model with the input vectorx(t) = [y(t� 1) u(t� 1) u(t� 2)℄T (20)

and the Gaussian basis function of variance�2 = 1:69 was
used to model the data. All the 210 training data points were
used as the candidate RBF centre set and the regularisation
parameter was fixed to� = 10�7.
Fig. 4 shows the evolution of the training MSE and PRESS
statistic during the forward regression procedure, where it
can be seen that the PRESS statistic continuously decreased
until J24 = 0:000548 � J23 = 0:000548. The algo-
rithm thus automatically terminated with a 23-term model.

Table 1: Modelling accuracy (mean� standard deviation) over
ten sets of different data realizations for simple scalar
function modelling.

model terms 7:8� 0:6
MSE over training set 0:037703� 0:003708

PRESS statistic 0:040725� 0:003893
MSE over noisy test set 0:041692� 0:002458

MSE over noise-free test set0:001749� 0:000630
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Figure 3: Engine data set (a) inputu(t) and (b) outputy(t).
The modelling accuracy is summarized in Table 2. The
constructed RBF model̂fRBF (�) was used to generate the
model prediction according toŷ(t) = f̂RBF(x(t)) (21)

with the input vectorx(t) given by (20). Fig. 5 depicts
the model prediction̂y(t) and the prediction error�(t) =y(t) � ŷ(t) for the 23-term model constructed. Again, it is
seen that the proposed algorithm was able to produce very
sparse models with excellent generalization performance,
without the need to use additional validation set for model
evaluation during the model construction process.
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Figure 4: Evolution of training MSE and PRESS statistic versus
model size for engine data set modelling.



Table 2: Modelling accuracy for engine data set modelling.

model terms 23
MSE over training set 0.000449

PRESS statistic 0.000548
MSE over test set 0.000487

5 Conclusions

This paper has introduced an automatic model construc-
tion algorithm for linear-in-the-parameters nonlinear mod-
els based directly on maximizing model generalization ca-
pability. The leave-one-out test score or PRESS statistic in
the framework of regularized orthogonal least squares has
been derived and, in particular, an efficient recursive com-
putation formula for PRESS errors has been developed. The
proposed algorithm based on orthogonal forward regression
combines parameter regularization technique in orthogonal
weight space and the PRESS statistic to optimize model
structure in order to achieve improved generalization capa-
bility, without resorting to another validation data set for
model assessment.

Appendix: Combined PRESS statistic and regularised
orthogonal least squares for subset model selection

1. Initialization: initializeJ0 = yTy, �0(t) = y(t) and�0(t) = 1 for t = 1; � � � ; N . For1 � i � M , com-
putew(i)1 = pi;�(i)1 = �w(i)1 �T w(i)1 ;g(i)1 = �w(i)1 �T y�w(i)1 �T w(i)1 + �;�(i)1 (t) = �0(t)� w(i)1 (t)g(i)1 ; t = 1; � � � ; N;�(i)1 (t) = �0(t)� �w(i)1 (t)�2�(i)1 + � ; t = 1; � � � ; N;J (i)1 = 1N NXt=1 ��(i)1 (t)�2��(i)1 (t)�2 :
Find i1 = argminfJ (i)1 ; 1 � i �Mg
and select w1 = w(i1)1 = pi1
with J1 = J (i1)1 and�1(t) = �0(t)� w1(t)g1 for t = 1; � � � ; N;
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(a) Model prediction̂y(t) (dashed) superimposed on
system outputy(t) (solid)
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Figure 5: Modelling performance for engine data set modelling

problem. The 23-term model was constructed without
the help of a validation set.�1(t) = �0(t)� w21(t)�1 + � for t = 1; � � � ; N:

2. At thekth step wherek � 2, for 1 � i � M andi 6= i1; � � � ; i 6= ik�1, computea(i)jk = wTj piwTj wj ; 1 � j < k;w(i)k = pi � k�1Xj=1 a(i)jkwj ;�(i)k = �w(i)k �T w(i)k ;g(i)k = �w(i)k �T y�w(i)k �T w(i)k + � ;�(i)k (t) = �k�1(t)� w(i)k (t)g(i)k ; t = 1; � � � ; N;�(i)k (t) = �k�1(t)� �w(i)k (t)�2�(i)k + � ; t = 1; � � � ; N;



J (i)k = 1N NXt=1 ��(i)k (t)�2��(i)k (t)�2 :
Findik = argminfJ (i)k ; 1 � i �M; i 6= i1; � � � ; i 6= ik�1g
and selectajk = a(ik)jk ;wk = w(ik)k = pik � k�1Xj=1 ajkwj
with Jk = J (ik)k and�k(t) = �k�1(t)� wk(t)gk for t = 1; � � � ; N;�k(t) = �k�1(t)� w2k(t)�k + � for t = 1; � � � ; N:

3. The selection procedure is terminated with ann�-
term model at thek = n� step, whenJk � Jk�1.
Otherwise, setk = k + 1, and go to step 2.
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