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Motivation

Modelling from data: generalization, interpretability, knowledge extraction ⇒
All depend on ability to construct appropriate sparse models

© Existing state-of-art sparse kernel regression modelling:

• Kernels position at training input data points with a common kernel variance

© This contribution considers generalized kernel model with tunable kernel centers
and covariance matrices

⇑ Enhancing modelling capability with much sparser representation

⇓ Much more difficult nonlinear learning problem

• To manage learning complexity, incremental modelling is adopted to append
kernel regressors one by one.
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Generalized Kernel Modelling

© Modelling training data set {xl, yl}N
l=1 with regression model

ŷ(x) =
M∑
i=1

wigi(x)

© Generalized kernel

gi(x) = G

(√
(x− µi)TΣ−1

i (x− µi)
)

where µi is kernel center and Σi diagonal kernel covariance matrix

© Define k-term model residuals over training set

y
(k)
i = y

(k−1)
i − wkgk(xi), 1 ≤ i ≤ N

Obviously y
(0)
i = yi, the desired output
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Incremental Modelling

© Mean square error of k-term regression model

MSEk =
1

N

N∑
i=1

(
y

(k−1)
i − wkgk(xi)

)2

© k-th regression stage constructs the k-th regressor by determining:

kernel center µk and covariance Σk, as well as the usual LS weight solution

wk =

∑N
i=1 y

(k−1)
i gk(xi)∑N

i=1 g2
k(xi)

© Model construction is terminated at M stage if

MSEM < ξ

where ξ is a prescribed modelling accuracy, yielding an M -term generalized kernel model
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Correlation Criterion

© Correlation between regressor gk(x) and training set {y(k−1)
i ,xi}N

i=1

Ck(µk, Σk) =

∑N
i=1 gk(xi)y

(k−1)
i√∑N

i=1 g2
k(xi)

√∑N
i=1

(
y

(k−1)
i

)2

defines similarity between regressor and training set

© Regressor positioning and shaping

max
µk,Σk

|Ck (µk,Σk)|

© It can be shown

max
µk,Σk

|Ck (µk,Σk)| ⇔ min
µk,Σk

MSEk
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Guided Random Search

Consider task of minimizing f(u)

Outer Loop: NG number of generations

Initialization: keep best solution found in previous generation as u1 and randomly choose rest

of population u2, · · · , uPS

Inner Loop: NI iterations

• Perform a convex combination

uPS+1 =

PS∑
i=1

δiui

• Weightings

δi ≥ 0 and

PS∑
i=1

δi = 1

are adopted (boosting) to reflect goodness of ui

• uPS+1 replaces worst member in population ui, 1 ≤ i ≤ PS

End of Inner Loop
End of Outer Loop
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Optimization Example

© Population size PS = 6, number of Inner iterations NI = 20 and number of
generations NG = 12

© 100 random experiments, populations of all 100 runs converge to global
minimum
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Simple Modelling Example

© 500 points of training data generated from

y(x) = 0.1x +
sinx

x
+ sin 0.5x + ε

where x ∈ [−10, 10] and ε Gaussian white noise of variance 0.01

© Generalized Gaussian kernel used, modelling accuracy set to ξ = 0.012:

regression step k mean µk variance σ2
k weight wk MSE MSEk

0 – – – 0.8431

1 2.6905 4.2488 1.6088 0.3703

2 -4.0837 2.1853 -1.6019 0.0341

3 0.2982 0.6000 0.3781 0.0243

4 6.6062 0.6610 0.3116 0.0173

5 3.4162 0.6091 -0.2242 0.0138

6 -8.4780 0.4295 0.1787 0.0119
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Gas Furnace Data Modelling

© Modelling relationship between coded input gas feed rate (input u(t)) and CO2

concentration from gas furnace (output y(t)):

Series J in: G.E.P. Box and G.M. Jenkins, Time Series Analysis, Forecasting
and Control. Holden Day Inc., 1976.

© Data set contains 296 pairs of input-output samples (ui, yi), modelled as
yi = fs(xi) + εi with

xi = [yi−1 yi−2 yi−3 ui−1 ui−2 ui−3]T

© Generalized Gaussian kernel used, modelling accuracy set to ξ = 0.054: proposed
incremental modelling method yields a 18-term generalized kernel model

© To achieve same modelling accuracy for this data set, best of existing state-of-art
kernel regression techniques required at least 28 regressors
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Gas Furnace Data Modelling (continue)
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Conclusions

• A novel construction algorithm has been proposed for parsimonious regression
modelling based on generalized kernel model

• Proposed algorithm has ability to tune center and diagonal covariance matrix
of individual regressor to incrementally maximize correlation criterion (minimize
training mean square error)

• A guided random search method has been developed to append regressors one
by one in an incremental modelling procedure

• Our method offers enhanced modelling capability with very sparse representation
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