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Nonlinear System ldentification

Modelling the nonlinear system

Y = f(WUk=1o"" s Yk—ny> Uk—1," " s Uk—ny; 0) + €k

= f(xk;0) +ex

based on a set of N training input-output data {xy, yx } 1,

ur and y, are the system input and output variables with n,, and n,
Indicating the lags in the input and output, respectively

6 is the unknown parameter vector associated with the system model
structure yet to be determined

Xip = [Yk—1"" " Yk—n, Uk—1"" ‘up_n, |1, and ey is the system noise
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Existing Kernel Modellings

e Nonlinear optimisation to determine all the kernel centres, variances
and weights

|} Local minimum and structure determination problems

e Clustering to determine kernel centres and variances
|} Structure determination problem

e Orthogonal Least Squares (OLS) forward selection, and sparse kernel
methods, such as Support Vector Machine (SVM)

{ Select centres from data points and use cross validation to deter-
mine a single common kernel variance for every kernel basis
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The Previous State-of-the-Art

e Model selection should be based on generalisation capability, rather
than training performance, and Leave-One-Out (LOQ) criterion is a
measure of generalisation

e S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modelling us-
Ing orthogonal forward regression with PRESS statistic and regularisa-
tion,” IEEE Trans. Systems, Man and Cybernetics, Pa@4/2), 898-911,
2004

e This Locally Regularised OLS with LOO (LROLS-LOO) selects kernel
centres from training data and adopts a single common kernel variance
for every selected kernel
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Novelty of the Proposed Algorithm

e Extend to tunable kernels
[1 Kernel centre is not restricted to training data, and each kernel has
an individual diagonal covariance matrix
e Combine OLS / nonlinear optimisation
[1 Orthogonal Forward Selection (OFS) to select kernels one by one
[1 Each kernel is determined by nonlinear optimisation based on the
LOQ criterion
e This OFS-LOOQO algorithm enables
[1 Enhanced modelling capability and sparser representation
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Generalised Kernel Model

e Generalised kernel modelling of the training data {x, yx }5_,

M

Yk = Yk T er = sz’gi<xk) +ep =g (h)w+ e
1=1

where M is the number of kernels, w = [w; - - - wy]? the kernel weight
vector, and g(k) = [g1(x%) - - - gar (X )]? the kernel regressors

e Generic kernel regressor

i) = K¢ (/= ) 0 )

where y; is the ith kernel centre, X; = diag{o;,--- ,07,,} the ith
diagonal kernel covariance matrix, K (e) the chosen kernel function
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Orthogonal Decomposition

The kernel model over the training set: y = Gw + e, Wwhere the
regression matrix G = [g1 - - - g

Orthogonal decomposition: G = PA, where the orthogonal matrix
P = [p: - - - pu;] has orthogonal columns

The regression model becomes: y = P60+ e, with = Aw

The space spanned by the original model bases is identical to the
space spanned by the orthogonal model bases, and thus

gk =g" (kyw=p" (k)0

gl (k)is the kth row of G while gy, is the kth column of G, and p!'(k) is
the kth row of P while p;, is the £th column of P
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Leave-One-Out criterion

e The LOO mean square error for the n-term kernel model
1 N (n)
_ (n,—k)
=) = A ()

Where e, ) is the LOO modelling error, e(”) the usual modelling error, and
M, (") the LOO weighting

(n,—

e Computing the LOO criterion is very efficient, since

(= =30 = e — 0l
n 2 2
(n) i (k) (n—1) pn(k)
— 11— _ _
K ; pTpitA PIpn + A

where A > 0 is a small regularisation parameter
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OFS-LOO Algorithm

The algorithm constructs kernels one by one, i.e. at the nth stage,

determines the nth kernel by minimising J,,

min Jy, (fn, 20)
Pn,2n

J,, 1s at least locally convex, i.e. there exists an M such that

Jp_1>J, fn< M and Jy < JM_|_1

The construction procedure is terminated automatically, and the user

does not need to specify any learning algorithmic parameter

After construction, the LROLS-LOO can be called to optimise regular-

Isation parameters and to further reduce the model size M
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Position and Shape Kernel

e Determine the nth kernel centre u,, and covariance matrix X,, by min-
imising J,, (i, X5 ) IS @ nonconvex nonlinear optimisation

[1 Gradient-based techniques may be trapped at a local minimum
[1 Global optimisation techniques are preferred, e.g. genetic algorithm

e We adopt a simple yet efficient global search algorithm called the Re-
peated Weighted Boosting Search (RWBS) to perform this task

e S. Chen, X.X. Wang and C.J. Harris, “Experiments with repeating weighted
boosting search for optimisation in signal processing applications,” IEEE Trans.
Systems, Man and Cybernetics, Pajt33(4), 682-693, 2005
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RWBS for Minimising J(u)

Outer Loop Ng humber of generations

Initialisation: Keep the best solution found in the previous generation as u;
and randomly choose rest of the population us, - - - , upg

Inner Loop N7y iterations
e Perform a convex combination

PS PS

upg11 = » &u; where §; >0and» §; =1

=1 =1

e The weightings ¢; are adapted by boosting to reflect goodness of u;
e up. 1 Or its mirror image replaces the worst member in the population

End of Inner Loop

End of Outer Loop
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Optimisation Example

Population size Ps = 6, number of inner iterations N; = 20 and number of

generations Ng = 12
100 random experiments, populations in all the 100 runs converge to the
global minimum
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Engine Data

Modelling the relationship between the fuel rack position (input ux) and the engine speed
(output yx) for a Leyland TL11 turbocharged, direct injection diesel engine

Data set contains 410 pairs of input-output samples, modelled as y, = f(xx) + exr with
Xp = [yr_1 ur_1 up_2]", first 210 data points for training and last 200 points for testing
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Engine Data Modelling

e The OFS-LOO using Gaussian
kernels

— The LOO mean square error
as a function of model size for
the engine data set

— The OFS-LOO constructed
17 kernels

— The LROLS-LOO reduced the
model to 15 kernels

e The SVM and LROLS-LOO were also used for comparison
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Engine Data Results

20 100

150 200 250 300 330 400
sample

algorithm kernel type model size | training MSE | test MSE
fixed Gaussian 92 0.000447 0.000498
LROLS-LOO fixed Gaussian 22 0.000453 0.000490
OFS-LOO tunable Gaussian 15 0.000466 0.000480
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Gas Furnace Data

Modelling the relationship between the coded input gas feed rate (input ux) and the CO5
concentration (output yx) for a gas furnace data set

Data set contains 296 pairs of input-output samples, modelled as y, = f(xx) + ex With
Xp = [Yr—1 Yr—2 Yr—3 Uk_1 Uk_2 ur_3]", all the data points for training
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Gas Furnace Modelling

e The OFS-LOO using Gaussian A0
kernels

— The LOO mean square error
as a function of model size for
the gas furnace data set

— The OFS-LOO constructed 0.1 l\\‘w—al
16 kernels B T s

— The LROLS-LOO reduced the 0 2 4 6 8 10 12 14 16 18
model to 15 kernels nurmber of kernels

LOOQ mean sguare error

e The SVM and LROLS-LOO were also used for comparison
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Gas Furnace Results

algorithm kernel type model size | training MSE | LOO MSE
SVM fixed Gaussian 62 0.052416 0.054376
LROLS-LOO | fixed thin-plate-spline 28 0.053306 0.053685
OFS-LOO tunable Gaussian 15 0.054306 0.054306
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Boston Housing Data

e Boston Housing: http://www.ics.uci.edutmlearn/MLRepository.html

— Data set comprises 506 data points with 14 variables

— Predicting the median house value from the remaining 13 attributes

e Modelling: randomly selected 456 data points from the data set for training and
used the remaining 50 data points to form test set

— Average results were given over 100 repetitions

e The SVM, LROLS-LOO and OFS-LOO algorithms using Gaussian kernels

algorithm kernel type | model size training MSE test MSE
SVM fixed 243.2 + 5.3 6.7986 + 0.4444 23.1750 + 9.0459
LROLS-LOO fixed 58.6 = 11.3 12.9690 4 2.6628 17.4157 4+ 4.6670
OFS-LOO tunable 34.6 8.4 | 10.0997 £3.4047 | 14.0745 £ 3.6178
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Conclusions

e A construction algorithm has been proposed for nonlinear system iden-
tification using the generalised kernel model

— The algorithm has ability to tune the centre and covariance matrix
of individual kernel to minimise the leave-one-out error

— A global search algorithm is used to construct the generalised ker-
nel model in an orthogonal forward selection procedure

— The model construction procedure is fully automatic and user does
not need to specify any learning algorithmic parameter

e |t offers enhanced modelling capability with sparser representation

S. Chen wish to thank the support of the United Kingdom
Royal Academy of Engineering.
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