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Introduction

Nonlinear System Identification

• Modelling the nonlinear system

yk = f(yk−1, · · · , yk−ny
, uk−1, · · · , uk−nu

; θ) + ek

= f(xk; θ) + ek

based on a set of N training input-output data {xk, yk}N
k=1

• uk and yk are the system input and output variables with nu and ny

indicating the lags in the input and output, respectively

• θ is the unknown parameter vector associated with the system model
structure yet to be determined

• xk = [yk−1 · · · yk−ny
uk−1 · · ·uk−nu

]T , and ek is the system noise
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Introduction

Existing Kernel Modellings

• Nonlinear optimisation to determine all the kernel centres, variances
and weights

⇓ Local minimum and structure determination problems

• Clustering to determine kernel centres and variances

⇓ Structure determination problem

• Orthogonal Least Squares (OLS) forward selection, and sparse kernel
methods, such as Support Vector Machine (SVM)

♦ Select centres from data points and use cross validation to deter-
mine a single common kernel variance for every kernel basis
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Introduction

The Previous State-of-the-Art

• Model selection should be based on generalisation capability, rather
than training performance, and Leave-One-Out (LOO) criterion is a
measure of generalisation

• S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modelling us-
ing orthogonal forward regression with PRESS statistic and regularisa-
tion,” IEEE Trans. Systems, Man and Cybernetics, Part B,34(2), 898–911,
2004

• This Locally Regularised OLS with LOO (LROLS-LOO) selects kernel
centres from training data and adopts a single common kernel variance
for every selected kernel
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Introduction

Novelty of the Proposed Algorithm

• Extend to tunable kernels

� Kernel centre is not restricted to training data, and each kernel has
an individual diagonal covariance matrix

• Combine OLS / nonlinear optimisation

� Orthogonal Forward Selection (OFS) to select kernels one by one

� Each kernel is determined by nonlinear optimisation based on the
LOO criterion

• This OFS-LOO algorithm enables

� Enhanced modelling capability and sparser representation
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Generalised Kernel

Generalised Kernel Model

• Generalised kernel modelling of the training data {xk, yk}N
k=1

yk = ŷk + ek =
M∑
i=1

wigi(xk) + ek = gT (k)w + ek

where M is the number of kernels, w = [w1 · · ·wM ]T the kernel weight
vector, and g(k) = [g1(xk) · · · gM (xk)]T the kernel regressors

• Generic kernel regressor

gi(x) = K

(√
(x− µi)T Σ−1

i (x− µi)
)

where µi is the ith kernel centre, Σi = diag{σ2
i,1, · · · , σ2

i,m} the ith
diagonal kernel covariance matrix, K(•) the chosen kernel function
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Generalised Kernel

Orthogonal Decomposition

• The kernel model over the training set: y = Gw + e, where the
regression matrix G = [g1 · · ·gM ]

• Orthogonal decomposition: G = PA, where the orthogonal matrix
P = [p1 · · ·pM ] has orthogonal columns

• The regression model becomes: y = Pθ + e, with θ = Aw

• The space spanned by the original model bases is identical to the
space spanned by the orthogonal model bases, and thus

ŷk = gT (k)w = pT (k)θ

• gT (k)is the kth row of G while gk is the kth column of G, and pT (k) is
the kth row of P while pk is the kth column of P
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Sparse Construction

Leave-One-Out criterion

• The LOO mean square error for the n-term kernel model

Jn =
1

N

NX
k=1

“
e
(n,−k)
k

”2

=
1

N

NX
k=1

 
e
(n)
k

η
(n)
k

!2

where e
(n,−k)
k is the LOO modelling error, e

(n)
k the usual modelling error, and

η
(n)
k the LOO weighting

• Computing the LOO criterion is very efficient, since

e
(n)
k = yk −

nX
i=1

θipi(k) = e
(n−1)
k − θnpn(k)

η
(n)
k = 1−

nX
i=1

p2
i (k)

pT
i pi + λ

= η
(n−1)
k − p2

n(k)

pT
npn + λ

where λ ≥ 0 is a small regularisation parameter
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Sparse Construction

OFS-LOO Algorithm

• The algorithm constructs kernels one by one, i.e. at the nth stage,
determines the nth kernel by minimising Jn

min
µn,Σn

Jn(µn,Σn)

• Jn is at least locally convex, i.e. there exists an M such that

Jn−1 > Jn if n ≤ M and JM < JM+1

• The construction procedure is terminated automatically, and the user
does not need to specify any learning algorithmic parameter

• After construction, the LROLS-LOO can be called to optimise regular-
isation parameters and to further reduce the model size M
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Sparse Construction

Position and Shape Kernel

• Determine the nth kernel centre µn and covariance matrix Σn by min-
imising Jn(µn,Σn) is a nonconvex nonlinear optimisation

� Gradient-based techniques may be trapped at a local minimum

� Global optimisation techniques are preferred, e.g. genetic algorithm

• We adopt a simple yet efficient global search algorithm called the Re-
peated Weighted Boosting Search (RWBS) to perform this task

• S. Chen, X.X. Wang and C.J. Harris, “Experiments with repeating weighted

boosting search for optimisation in signal processing applications,” IEEE Trans.

Systems, Man and Cybernetics, Part B, 35(4), 682-693, 2005
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Sparse Construction

RWBS for Minimising J(u)

Outer Loop: NG number of generations

Initialisation: Keep the best solution found in the previous generation as u1

and randomly choose rest of the population u2, · · · ,uPS

Inner Loop: NI iterations
• Perform a convex combination

uPS+1 =

PSX
i=1

δiui where δi ≥ 0 and
PSX
i=1

δi = 1

• The weightings δi are adapted by boosting to reflect goodness of ui

• uPS+1 or its mirror image replaces the worst member in the population

End of Inner Loop

End of Outer Loop
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Sparse Construction

Optimisation Example

Population size PS = 6, number of inner iterations NI = 20 and number of
generations NG = 12
100 random experiments, populations in all the 100 runs converge to the
global minimum
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Modelling Results

Engine Data

Modelling the relationship between the fuel rack position (input uk) and the engine speed
(output yk) for a Leyland TL11 turbocharged, direct injection diesel engine
Data set contains 410 pairs of input-output samples, modelled as yk = f(xk) + ek with
xk = [yk−1 uk−1 uk−2]

T , first 210 data points for training and last 200 points for testing
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Modelling Results

Engine Data Modelling

• The OFS-LOO using Gaussian
kernels

– The LOO mean square error
as a function of model size for
the engine data set

– The OFS-LOO constructed
17 kernels

– The LROLS-LOO reduced the
model to 15 kernels

• The SVM and LROLS-LOO were also used for comparison
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Modelling Results

Engine Data Results

algorithm kernel type model size training MSE test MSE

SVM fixed Gaussian 92 0.000447 0.000498

LROLS-LOO fixed Gaussian 22 0.000453 0.000490

OFS-LOO tunable Gaussian 15 0.000466 0.000480
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Modelling Results

Gas Furnace Data

Modelling the relationship between the coded input gas feed rate (input uk) and the CO2

concentration (output yk) for a gas furnace data set
Data set contains 296 pairs of input-output samples, modelled as yk = f(xk) + ek with
xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3]

T , all the data points for training
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Modelling Results

Gas Furnace Modelling

• The OFS-LOO using Gaussian
kernels

– The LOO mean square error
as a function of model size for
the gas furnace data set

– The OFS-LOO constructed
16 kernels

– The LROLS-LOO reduced the
model to 15 kernels

• The SVM and LROLS-LOO were also used for comparison
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Modelling Results

Gas Furnace Results
algorithm kernel type model size training MSE LOO MSE

SVM fixed Gaussian 62 0.052416 0.054376

LROLS-LOO fixed thin-plate-spline 28 0.053306 0.053685

OFS-LOO tunable Gaussian 15 0.054306 0.054306
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Modelling Results

Boston Housing Data

• Boston Housing: http://www.ics.uci.edu/∼mlearn/MLRepository.html

– Data set comprises 506 data points with 14 variables

– Predicting the median house value from the remaining 13 attributes

• Modelling: randomly selected 456 data points from the data set for training and
used the remaining 50 data points to form test set

– Average results were given over 100 repetitions

• The SVM, LROLS-LOO and OFS-LOO algorithms using Gaussian kernels

algorithm kernel type model size training MSE test MSE

SVM fixed 243.2± 5.3 6.7986± 0.4444 23.1750± 9.0459

LROLS-LOO fixed 58.6± 11.3 12.9690± 2.6628 17.4157± 4.6670

OFS-LOO tunable 34.6± 8.4 10.0997± 3.4047 14.0745± 3.6178
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Conclusions

Conclusions

• A construction algorithm has been proposed for nonlinear system iden-
tification using the generalised kernel model

– The algorithm has ability to tune the centre and covariance matrix
of individual kernel to minimise the leave-one-out error

– A global search algorithm is used to construct the generalised ker-
nel model in an orthogonal forward selection procedure

– The model construction procedure is fully automatic and user does
not need to specify any learning algorithmic parameter

• It offers enhanced modelling capability with sparser representation

S. Chen wish to thank the support of the United Kingdom
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