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Motivation

d FWL effect may degrade designed closed-loop performance, and this

problem is particularly serious in fixed-point implementation

1 Care must be exercised in implementing or designed control

law so as to minimise FWL effect

1 Most existing techniques are based on maximising some FWL closed-

loop stability measures = far from “optimal”:

v¢ In fixed-point implementation, total available bits have to accommo-
date dynamic range or integer part, and remaining bits left are

then used to implement precision or fractional part

v« Optimising a FWL closed-loop stability measure, while minimising

fractional bit length, may not guarantee a small dynamic range
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Motivation (continue)

1 Normalising with [s-norm will minimise integer bit length but may

not guarantee adequate FWL closed-loop stability robustness

A True optimal FWL controller design is computationally challenging

multi-objective optimisation

v¢ Simultaneously maximise a FWL closed-loop stability measure and

minimise a dynamic rage measure

A Our previous work: optimising FWL closed-loop stability

measure and dynamic-range measure

“A unified closed-loop stability measure for finite-precision digi-
tal controller realizations implemented in different representation
schemes,” IEEE Trans. Automatic Control, 48, pp.816—822, 2003
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Proposed Approach

A True optimal controller realisation: Simultaneously achieves maximum

robustness of FWL closed-loop stability and minimum dynamic range

We propose a computationally attractive two-step approach to solve this
challenging multi-objective optimisation

1 Step one: Maximise FWL closed-loop stability measure

v« Assuming sufficient integer bit length to avoid overflow, resulting re-
alisation achieves robustness of FWL closed-loop stability

v« We know great deal how to do this

v< Solution is an infinite set of controller realisations

1 Step two: Search solution set of optimal FWL closed-loop stability to
yield a realisation that has a integer bit length
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System Model

Discrete-time closed-loop system with generalised operator p
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System Model (continue)

(1 State-space description of plant P
px(k) = A, x(k)+ B,e(k)
y(k) = Cpx(k)

A, e R"" B, € R"*? and C, € R?*"

(1 State-space description of controller C
pv(k) =F,v(k) + Gpy(k) + Hye(k)
u(k) = J,v (k) + M,y (k)

F,e R™™ G,e R™"*1, J,c RP*™ M, € RP*? and H, € R™*P

a C includes , full-order observer-based, and

reduced-order observer-based controllers
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Controller Realisation Set

[ Given initial realisation (F 0, G,0,J 0, M0, H,0) by standard controller

design, all realisations of C form realisation set
S, = {(Fy,G,,J,,M, H,):F,=T,'F,0T,,G, =T, "G,
Jp=JdpoTp, My, =Mpo,H, = T;1Hp0}

T, € R™*™ is any real-valued nonsingular transformation matrix

4 We can also write a controller realisation in vector form

W, = [VeCT(Fp) VecT(Gp) Vec(J,) VeCT(Mp) VecT(Hp)}T
A of closed-loop system
_ A +B M, C B J I 0 | — I O
A= | e e, E o, = lo 1] A0 g 1
pp ptV1pLp p pJ p p P

whose eigenvalues are A\; = \;(A(w,)), Vi € {1,---,m+n}
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FWL Robustness

Fixed-point format of bit length b = 1 + b, + bs: one bit for sign, b,
bits for integer part, and by bits for fractional part

Assume b,, is sufficient so occurs, i.e.
1w ollar < 2%
pllM >

where ||U||as denotes maximum absolute element of matrix U

In FWL implementation, w, is perturbed into w, + A due to finite by

% With perturbation A, \;(A(w,)) moves to \;(A(w, + A))

% Will A(w, + A) remain stable?

v¢ Under condition of no overflow, closed-loop stability depends only
on A, i.e. of fractional part representation

We want a controller realisation w, whose closed-loop stability has

maximuim to controller perturbation A
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Optimal Realisation

1 Optimal FWL realisation problem

v = min f (W)

1 with Frobenius-norm || e ||, FWL closed-loop stability measure

H 8Wp

f(wp) = i€ {Lmmtn} SM(\; )
] of )\i(K(Wp))
SM(\; (A W, — -
M [ TV v TR

d Note this says nothing about ||w,||as or dynamic range of w,
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Optimal Realisation Solution

[ An optimal realisation solution w,opt, i.€. (Fsopt, G popts J popts M popt

H ,,pt), can readily be obtained using algorithm of

“A search algorithm for a class of optimal finite-precision controller
realization problems with saddle points,” SIAM J. Control and Op-
timization, 44, pp.1787—-1810, 2005

[ This actually defines optimal solution set w, ot (V), where V.€ R™*™

is an arbitrary , 1.e.
Spopt = {(Fp, Gp, I, M, Hy)  F = V_leopth G, = V_lGPOPt7

J,=J0ptV, M, = M,opt, H, = V'H i, V € R™*™ VIV =1}

d Any W opt (V) in S,opt is a solution of optimal FWL realisation problem,
but different w,.p¢(V) have different dynamic range ||Wopt (V)| a1
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Minimising Dynamic Range

d Search S,qpt for a with smallest dynamic range

{4 = 1min d(Wpopt (V))

VeRme

vTv=1
where d(w,) = ||w,| s is dynamic range of w,
1 Using Givens rotation with r = m(”;_l) and 0; € [-m,m), 1 <i<r

dl (‘917 e 79?“) — d(WPOPt (V))
1 Using optimisation algorithm relying on function value only to solve

. in 6y, .0,
H 917...,££lg[l—7r,7r) 1( b 7 )

With optimal solution 1opt, -, Oropt = Vopt = Woopt:s = Woopt (Vopt);

optimal realisation with smallest dynamic range
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Numerical Example

Example from M. Gevers and G. Li, Parameterizations in Control,
Estimation and Filtering Problems: Accuracy Aspects. London:

Springer Verlag, 1993

P has order n = 4, controller C is output feedback one with

order m = 4
Initial controller realisation provided is denoted by w g

Optimal FWL controller realisation obtained by optimising FWL closed-
loop stability measure alone is denoted by wopt

Proposed optimal FWL controller realisation with smallest dynamic

range is denoted by W ,opt1
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Results

(1 Comparison of three realisations using z operator

Realisation f(w,) d(w,) brfnin piin | pmin
W0 3.9697e +6 | 1.0959¢ +6 | 20 21 42
W zopt 2.4246e + 3 | 1.9673e + 2 8 8 17
W 2opt1 2.4246e + 3 | 1.1799e + 2 8 7 16

d Comparison of three realisations using ¢ operator with h = 2714

Realisation f(wys) d(wy) b}nin prrin | prn
W50 2.7712e 4+ 5 | 1.7956e 4 10 | 15 35 ol
Wsopt 3.3740e — 1 | 5.1236e + 4 —4 16 13
Wsopt1 3.3740e — 1 | 2.5810e 44 —4 15 12
“_4 fractional bits”: entire fractional part and first lowest 4-bit integer part are omitted
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True Optimal Design

Comparison of wsept1 under different A

h F(Wsopt1) d(Wsopt1) bl}nin piin  pmin 27 1.9248e + 1 1.3349¢ + 3 1 11 13
210 2.4825e + 6 3.6871le + 0 18 2 21 2—8 9.7758e + 0 1.8878e + 3 0 11 12
29 1.2413e + 6 5.2144e + 0 17 3 21 29 5.0361e + 0 2.6698e + 3 -1 12 12
28 6.2063¢ + 5 7.3743e 4+ 0 16 3 20 2—10 2.660le + 0  3.7756e + 3 —2 12 11
27 3.1032e + 5 1.0429e + 1 15 4 20 2—11 1.4618e + O 5.3396e + 3 -3 13 11
26 1.5516e + 5 1.4749e + 1 14 4 19
25 7.7579¢ + 4 2.0858¢ + 1 13 5 19 2—13 5.2102e¢ — 1 1.2905e + 4 -3 14 12
o4 3.8790e + 4 2.9497e 4+ 1 12 5 18 o—14 3.3740e — 1 2.5810e + 4 —4 15 12
23 1.9395¢e + 4 4.1715e + 1 11 6 18 2—15 2.2681e — 1 5.1621e + 4 -5 16 12
22 9.6977e + 3 5.8994e + 1 10 6 17 2—16 1.5606e — 1 1.0324e + 5 —6 17 12
21 4.8490e + 3 8.3431e + 1 9 7 17 2—17 1.0879e — 1 2.0648e + 5 —6 18 13
20 2.4246e + 3 1.1799e + 2 8 7 16 2—18 7.6367e — 2 4.1297e + 5 —6 19 14
21 1.2125e + 3 1.6686e + 2 7 8 16 2—19 5.3801e — 2 8.2593¢ + 5 -7 20 14
2—2 6.0639¢ + 2 2.3598e + 2 6 8 15 2—20 3.7973e — 2 1.6519¢ + 6 -7 21 15
2—3 3.0335e + 2 3.3372¢ + 2 5 9 15 2—21 2.6826e — 2 3.3037e + 6 -8 22 15
2—4 1.5183e + 2 4.7195e + 2 4 9 14 g—22 1.8960e — 2 6.6075e + 6 -8 23 16
2—5 7.6071le + 1 6.6744e + 2 3 10 14 2—23 1.3404e — 2 1.3215e + 7 -9 24 16
2—6 3.8190e + 1 9.4391e + 2 2 10 13 2—24 9.4767e — 3 2.6430e + 7 —9 25 17

There exist optimal values of h for the 6 operator = resulting optimal controller

realisations ws,,t1 achieve maximum robustness to FWL errors
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Conclusions

d A two-step approach to design optimal fixed-point digital controller

realisations, which is optimisation problem

v« Step one: find an optimal realisation by minimising FWL closed-loop

stability measure

v« Step two: modifying this realisation to produce optimal realisation

with smallest dynamic range

(1 Approach developed within framework that includes both shift

and delta operator parameterisations of generic controller structure

1 With appropriate h, optimal J-operator realisation has much better
FWL closed-loop stability characteristics than optimal z-operator one
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