Mixed g Robust Finite Word Length Controller Design

Jun Wu, Gang Li, Sheng Chen and Jian Chu

Abstract—A novel finite word length (FWL) controller  stage by solving the design problem that properly considers
design is developed in the framework of mixedu theory. A FWL effects as well as standard robust control design factors
robust FWL controller performance measure is proposed which such as plant uncertainties and disturbances.

takes into account the standard robust control requirements . . .
as well as the FWL implementation considerations, and the This paper adopts the direct approach tg consider the
corresponding FWL robust controller design problem is natu-  robust FWL output feedback controller design. A robust
rally reformulated as a mixed . problem which can be treated FWL control performance measure is proposed which takes
effectively with the results of mixed . theory. into account the robust control requirements, such as plant
uncertainties and input-output characteristics, as welha
FWL effects on controller implementation. We show that the
It is well-known that the detrimental finite word length rejated robust FWL controller design problem can naturally
(FWL) effects cannot be ignored in digital control systenhe formulated as a mixed problem and thus it can be solved

designs [1]- [3]. Keel and Bhattacharyya [4] for examplexffectively with the aid of the mixeg: theory [22], [23].
showed that digital controllers designed by standard tobus

control methods may exhibit poor stability margin with 1. NOTATIONS AND PRELIMINARIES

respect to the controller coefficient perturbation, if tkesidn Let R be the field of real numbers, the field of complex
does not take into account properly the FWL implementatiof,mpers. and/ the closed unit disk irc. AT denotes the
related uncertainty. There exist mainly two types of FWLtranspose of matrid, A* the complex conjugate transpose
errors in digital controller implementation. The first oree i 5 A anda(A) the largest singular value k. Let p(A)

the rounding errors that occur in arithmetic operations [Shnqdet A represent the spectral radius and the determinant
[6] and the second one is the parameter representatiorserrgg square matrixA, respectively.I, denotes then x n

[7]- [21], both due to finite precision. Typically, these Wojgentity matrix, while I and 0 represent the identity and
types of errors are investigated separately for the reasggrq matrices of appropriate dimensions, respectively. Le
of mathematical tractability. In this paper we deal Wlthdn =[11---1] € R'*" whose elements are all equal to 1.
the second type of FWL errors, namely, FWL parameteA®B is the Kronecker product of matrice and B.

representation errors. DenoteF the set of all the causal finite-dimensional linear

Two alternative strategies which we refer to as the indire¢fne.invariant discrete-time systems. Any systemAincan
and direct approaches, respectively, can be used to desig jescribed as

digital controllers that take into account FWL parameter
representation errors. In the indirect strategy [7]- [13], { x(k+1) = Ax(k) +Bu(k) (1)
control law is firstly constructed by an existing controller y (k) = Cx(k) + Du(k)

synthesis method which may or may not take into accoufjherex(k) € R"=, u(k) € R"* andy(k) € R™ are state,
FWL effects. Optimal controller realizations are then skldc input and output, respectively, and the real constant oesri
that are most robust to FWL errors from all the realizationa, | B, ¢ and D have appropriate dimensions. The transfer

of the given control law. In the direct strategy [14]- [21].function matrix of the above systemtis
the controller realization, which achieves good robustmdn

performance as well as is robust to FWL parameter repre- G(N) = AC(I-)XA)"'B+D. 2
sentation errors, is directly determined in controllertegsis
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complex scalars, repeated real scalars and full complexLemma 1. Let a real matrixM € R"=*"= and a pertur-
blocks. A (p + g + r)-tuple of positive integers bation setk with k; = 1 fori e {p+1,---,p+ q} (i.e.
none of the real scalars are repeated). Then

k(p7q7r):[k1 ok k+1 kJr my - mr}T
n e ox(M)= _inf {a|o*E-M'EM>0}.  (11)
specifies the dimensions of the perturbation blocks, and we 0<alk ) )
require Corollary 1: ForM andK as inLemma 1, axc (M) < 1 if
g . and only if there exist& € Erx such thalE—MTEM > 0.
Zlki + Zlmj = Nt ) IIl. RoBUSTFWL PERFORMANCEMEASURE
1= Jj=

The plant is described by a known nominal moﬁ’PgI(/\)

in order that these dimensions are compatible Wth The o4 an uncertaintyI(\) which is unknown but bounded.
block structurek(p, ¢,r) determines the set of allowable p (\) is given as
g

perturbations, namely

Xp(k + 1) = Apo(k‘) + B,Uv(k)—|—
T = diag (glIk’la ) CpIkpa BwW(k) + ]BPUPUC)7
<p+1Ikp+17 B <:D+qup+q’ h(k) = Cupxp(k)+
K é T ] | TR FT) € ClaxMa . (5) Dl,lv(k) + D1,2W(k)7 (12)
vie{l,--,p}h, G €C; z(k) = C.xp(k)+
Vi€ {p+ 13"'7p+q}7Ci € R; Dg,lv(l{}) —&-DggW(k‘),
Vje{l,---,r}, T eCmixm yp(k) = Cpxp(k),

The mixed . of a matrix M € C™**"« with respect to a wherexp(k) € R", v(k) € R™, w(k) € R", up(k) €
perturbation sek is defined as R, h(k) € R™, z(k) € R™, yp(k) € R', w(k) is the
1 external disturbance input, amdk) is the controlled output.
11 (M) 2 ( inf {7(7)|det(I— YM) = 0}> . (6) We have assumed without loss of generality th@k) and
ek h(k) have the same dimension while(k) and z(k) have
the same dimension. If the paired variables have different

with uxc(M) =0 if no T € K solvesdet(I — YM) = 0. X : . .
. imensions, they can be made equal by adding an appropriate
Presently, except for a few special cases, how to compute

. number of zero rows/columns to the corresponding plant
pc(M) is unknown. However, an upper bound k(M) matrices. In addition, it is assumed thBtITDBp > 0 and

Eg()e\(ljldt?)drénlgle fo(lll\?lv)vlir:]g Irs’a;(;icsg g)e;:iﬂ?pute and is ofterb pCH > 0. This assumption reflects a reasonable practical
placex P ' situation of no redundant actuator or sensor. Throhgh)

E = diag (Ey, -, E,, andv(k), P,()\) connects withFL()\), i.e.
Ep+17"'7Ep+q7 1
e N E 7711m1 R aanmr) € CMaXna . (7) vV = H()\)h. (13)
k= Vie{1l,---,p+q}, ’ H()) is included in the set
§<BecH®; () e 7, H(\) is stabl
Vie{l--,r)0<n eR HTA{PI(A)‘ ) €T, IS sta e} (14)
[HM oo <7
G = diag (0L, - - -, 0L, with a given constant > 0. The digital controllerC()\) of
A Gpr1,0o0: Gty mth-order is described by
G 2la 0Ly, -, 0Ly, ) € CreXme . b (8)
G, =G} ¢ Chkixki uP(k) = C(jXC(k‘) + DCYP(IC)
Then with Ac € R™*™ Be € R™*t, Co € R¥*™ andD¢ €
sXt
M) s o2F — M*EM o R***. Let us denote
KV = 20 —V/=1(GM - M*G) >0 X2 { Dc Ce } € R(stm)x(t+m) (16)
LY Bc Ac
is an upper bound gfix (M), i.e. (M) < ayc(M). When ~Denote furthermore
the real _scalars oft € K are not re.peate.d andI is a N 2 (5 +m)(t +m), 17)
real matrix,ax (M) can be expressed in a simpler form and A NaN
computed more easily. Define O = {A[AecR"*", Aisdiagona}l, (18)
A
O3 = {A|A€O,a(A) <[} 19
ERKé{E€5K|EERn“XTL“}. (10) B8 { | ( ) /8} ( )

. . _ When X is implemented in fixed-point format of FWL, it
The following lemma is Theorem 5.12 in [23]. is perturbed intoX + (dim @ Lsm) A(Tim @ Ay,



where A € O and 0 < g € R is the maximum
representation error of the fixed-point digital processor.

The above description represents a closed-loop system

consisting of P,(\) and H(\) as well asX and A.
Denote this closed-loop system d@s(\, H(\),X,A) and
the closed-loop transfer function frow(k) to z(k) as
®,.(\, H()\),X,A). For0 < £ € R, a set is defined which
consists of all thenth-order robust controllers without FWL
consideration, that is,

}. (20)

N X e Rlstm)x(t+m) vH(\) € H,,
X, 2{X

&(\, H()\),X,0) is stable
[ @2 (A, H(A), X, 0)[loc <&

To take into account the FWL erroA, we propose the
following FWL performance measure fof € X,

VYH()\) € H,,VA € Op,

Bl ®(\H()),X,A) is stable 5.
1902 (A HA), X, A) [l < €
(21)

For a givenX € X,,,, how to compute the value af;(X)
is unknown. Therefore, a tractable lower boundvefX) is
derived with the aid of mixed.. By “pulling out” H(A) and

considering the composite systemBf (), X and A, the
description of this composite system can be obtained as

va(X) £

sup
0<BER

xpc(k+1) = (A(X)+B,AC,) xpc(k)
+B§V(1€) + BUWU{),
h = — D
(k) Ch ch(k) + 1,1V(k) (22)
-|—D1,2W(]{Z)7
Z(]{i) = CEXPc(k) + D2,1V(k)
+D2,2W(k),
where
— Ap+BpDcCp BpCce
AX) =
(X) [ BoCp Ao ]
. Ap 0 Bpr 0 Cp O
I
2 M+ M; XM, € R(+m)x(n+m) (23)
By = dpsm QM € ROFWXN, (24)
M, ®)dl,, € RN*(Hm), (25)
BU: |: :B()’U :| c R(n-‘rm)xnl’ (26)
By = { Bow } € R(mtm)xnz, (27)
p=[Cn 0]ermxtim, (28)
C: = [ Cz 0 ] c zR/n2><(n-i-m)7 (29)
and ")
_| XP

When the system (22) is stable, its transfer function matrix
is defined by

U\ X, A) 3 ] (I-MAX)+B,AC,))™ !

{ Dy Dy
)

Dy } (30)

where® (), X, A) € c(mtn2)x(nmitn2) For all \ € U, let

{7 2] Fes ) w

a 0
Accordingly, we can obtaipc, (¥(), X, A)) for all A € U.
The following result on robust performance [24] linkg(X)
to mixed p.
Lemma 2: For X € RGe+m)x(t+m) if and only if there
exists0 < 8 € R such that

0
Yoo

T’LZ}I c CTL] XNy ,

]Cw T¢2 € Cne2xnz

W(\, X, A) is stable VA € Op,
([, Jonn)

YA el, VA € Og,
then X € X, and VH(\) € H, VA € O,
®(A\,H(N), X, A) is stable,||®,,. (A, H(A), X, A) |l <&
Clearly, by replacing (33) with

In T
/“Cw <|: T %I :l \Il()\7XaA)) < 17
¢ no

VA EU, VA € O,

(32)

(33)

(34)

we have a sufficient and “almost necessary” condition. The
problem in dealing with (32) and (34) is that(\, X, A)
contains indeterminate and A. For this reason, we first
transform (32) and (34).

Theorem 1. For X e R(stm)x(t+m) if and only if there
exists0 < 8 € R such that

120 (G(Xaﬁ)) <1 (35)

then (32) and (34) hold. In (35®) (X, 5) and its correspond-
ing perturbation seiCy are defined respectively as

AX) B, By B
A BC, 0O 0 0
@(X,ﬁ) - TCE 0 TD1’1 TD172 » (36)
%CE 0 %DQ,l %D2,2
where® (X, 3) € R(ntmtNtnitna)x(ndmtNtni+na) gnd
N Y Yy € Ky,
’C9 ij Tw € ’Cw (37)
Due to the well-known difficulty in computing the
value of uk,(©(X,3)), we replaceux, (©(X,3)) with

aiCe(e(X7ﬁ>)'
Corollary 2: For X € R(stm)x(t+m) [if there exists) <
£ € R such that

0(X,8) <1 (38)

QKy (



then X € X, and vﬂ(g) € H. VA € Op, we can write the optimisation problem (44) as
®(NH(N), X, A) is stable,||®,,. (A, H(A), X, A)|| <&
Becausevi, (O(X, 8)) > ux, (©(X, 3)), (38) is a suffi- Ya = sup f, (49)

. . . 0<B€ER
cient condition for (35) to hold. Based on Corollary 2, define
(35) y E> (Y; + Y1XY2)TE(Y; + Y1XYs),

X 2 {X | X e REFmXEm) o (©(X,0)) < 1}, (39) E € Exic,, X € REFmx(tm),

which obviously is a subset ot,,. For X € Xy, define The following result [28], [29] is useful in solving the

Ta(X) £ imisati blem (49).
va(X) = sup {8 | ax,(®(X,3)) <1}, (40) optimisation pro
(%) OSﬂeR{ | oo (O 2 J Lemma 3: Suppose thaty7Y; > 0 and Y,YZ > 0.
which obviously is a lower bound af;(X) and is an FwL GV a0 <w € R and a0 < 3 € R. If and only if there

performance measure. Fd¢, given in (37), the related €Xist0 < E € Eri,, J € REFmx(namtNtnitnz) gnd
positive definite matrix set L € R(ntmtN+mtn2)x(t+m) sych that

E = dlag (El, €1, "",EN, { wE > (Y,@ + YlJ)TE(Yﬁ + YIJ)7 (50)
7711n1 y 772:[712) 5 wE > (Yﬁ + LYQ)TE(Y[} + LYQ)7
E 0<E, € R(n-&—m)x(n—i—m)’ (41)

0< €1," ", EeN, M, M2 € R
is defined. It is interesting to see tHA(X, 3) andKy satisfy wE > (Y5 + Y1XY2)"E(Ys + Y1XY>). (51)

the con_d|t|on of Coro_llary 1 _an_d h_en@@(X) Is computable When (50) holds, all th& satisfying (51) can be expressed
by solving the following optimisation problem

A
Erice =
then there existX e R(stm)x(t+m) gych that

as
vg(X) = sup 0, (42)
X) 0<BER X = —(Y{EY)) 'YTEY3E Y, (YoE,Y)) ™!
s.t. E > 0"(X,5)EO(X, ), +E2(Y,E, YD) ! (52)
E € Erx,,
o where
based on the combined linear matrix inequality (LMI) tech- |
nique [25] and bisection search [26]. 21 = WE-YZEY3+ Y EY (Y/EY,) 'YEYy) !,
53
IV. RoBUSTFWL CONTROLLERDESIGN (®3)
With the tractable FWL performance measuig(X), = 2 (YTEY)) ' - (YTEY,)) 'YTEY,
the proposed FWL controller design problem can now be x(B1 — B1 YT (Y2, YD) 1Y,5))
summarised. GiveR,()), 7, {, m and assuming a nonempty «YTEY,(YTEY,)"! (54)
X,,, find a controller realizatioX e X, that achieves B o A
N Q e RETXEM FQ) <1 (55)
va = sup v4(X), (43) The above lemma shows that (51) can be transformed into
. XX (50). It is easy to see that (50) actually is an LMI wh&n
or equivalently is given. Moreover, (50) is equivalent to
Vi = OSEER@ (44) { WE' > (Y + Y1 DE N (Y5 + Y )T, (56)
- E!'>(Y LY, E~ (Y LY,)T.
st E > 07(X, 5)EO(X, 3), v (Yo + LY,)E= (Y + LY)
(s+m)x (t+m) The inequality (56) is also an LMI wheh is given. Based
E e gRICg; XeR .

) L . . ] on the equivalent relations among (50), (51) and (56), the
Note that this optimisation problem contains a bilinearm®at ptimisation problem (49) is solved in this paper by an
inequality (BMI) [27] of size2(n+m+ N +n1+n3). Since  gigorithm similar to the dual iteration algorithm [29]. We

O(X,l) = Y5+ Y XY, (45) tackle t_he problem (49) in two stages. The fir;t stagg’s _lask [
" to obtain anL;,, € R("TmtN+nitn2)x(t+m) which satisfies
wi
A BC, O 0 0 E™'> (Yo 4+ LinY2)E™' (Yo + L, Yo) T,
YB = Ci 0 D D ,  (46)
TR Ol T2 for some0 < E € Eri, andJ € RsTm)x(ntm+Ntnitns)
¢Cz 0 D21 ¢D2p whereY) is the value ofY s at 8 = 0. In the second stage,
whereY; € R(ntmNtnitn)x(ntm+N+nitna)  gand the problem (49) is solved with the feasible starting point
M L;,. The details are as follows.
Yy, & [ 01 } e RntmAN+nitnz)x(s+m) = (47) Stage 1
Sep 1) Set the iterative index = 0 and arbitrarily select
Yg é [ Mg 0 ] c R(t+m)><(n+m+N+n1+n2)7 (48) an L(z) c R(n+m+N+n1+n,2)><(t+m)_



Sep 2) Solve

Jnf w, 8)

st. wE ! > (Yo + YlJ)E—l(YO n YlJ)T,
WET! > (Yo + L Y2)E7 (Yo + Ly Ya) ™,
0<E€érk,, Je fR,(s—&-m)><(n+m+N-~-nl_|-nQ)7

by a combination of LMI technique and bisection )
search. Let a minimiser b ;. Fig. 1. System configuration of the robust finite-word-léngontrol system
Sep 3) Solve design example.
wir1 = inf w 59
i+1 wER ) ( )

V. A NUMERICAL DESIGN EXAMPLE

The system configuration for this robust FWL control
system design example is shown in Figure 1, where

SLWE > (Yo + Y1J) B(Yo + Y1),
wE > (Yo + LY2)"E(Yo + LY>),
O0<Ec€ 57a;g9, Le R(”+W+N+”1+nz)><(t+m)’

R P.o(A
by a combination of LMI technique and bisection Po(A) = P OE/\))
search. Let a minimiser bB; ). X @0
Sep 4) Seti=i+1. If w; >1,gotoSep 2); if w; <1, Wwith Pp(A) = 3.3750 x 1073\ 4+ 1.3669 x 1072A?
let L;, = L;, and enterStage 2 +3.4605 x 1073A3 and P go(\) = 1 — 3.0488\ + 3.1001)\?
Stage 2 —1.0513\3,
Sep 5) Let the iterative index bé = 0 and L(;) = Ly, . 4.9875 x 103\
and setN,, to a sufficiently large integer. Wi(\) = 1= 99501 x 10-1\’
Sep 6) Solve e o 1o
W ) = 5.8512 x 107" A — 5.5933 x 107"\
sup (3, (60) ? 1—1.3390\ + 3.7908 x 10~1A2
0<BER

st. E7' > (Ys+ Y DE (Y + Y )T and the plant model unAcertainI§I(,\)A € M. with 7 = 0.4,
_ N 7 From the givenP,(\), W1()\) and W2 (), it was easy to
1 1 - :
E > (Ys+LyY2)E " (Ys+LY2) ", obtain the nominal plant modét,()\) described by
0<Ec€é&rk,, Je R(8+m)><(n+m+N+n1+n2),

0 1 0 0
by the combined LMI technique and bisection 0 0 1 0
search. Let a maximiser bE;). A _ 1.0513 —3.1001 3.0488 0
Sep 7) Solve L 0 0 0 0.99501
0 0 0 0
i1 S ) 61
Bita ogESRﬁ (61) 0 0 0 0
stE > (Yﬁ + Y1J(l))TE(Y5 + YlJ(i))7 0 0
E> (Ys+LY)TE(Ys + LY,), 0 0
0<EEe€¢ SRIC(,, Lec R(n+m+N+n1+n2)x(t+m)’ 8 8 ,
by the combined LMI technique and bisection 0 1
search. Let a maximiser bk, ), and denote —0.37908 1.3390
E(;41) the corresponding positive definite matrix. 33750 x 10-3 0
Sep 8) Seti =i+1. If i < Ny, go toSep 6); if i > Ny, 2'3959 % 10-2 0
go to Step 9). 6.6043 x 102 0
Sep 9) SetE; = E(;), denoteY, the value ofYg at B, = ' 0 , By = 49875 x 10-3 | °
B8 = B;, and calculate the optimal controller 0 ’ 0
Xaopt = —(YTEY1) 'YEY,E,Y] 0 0
X (Y2BEqY3) ! (62) 3.3750 x 103
with 2.3959 x 102
6.6043 x 1072
2y = (Ba— YJE.Y,+ YJE,Y, Bp = 0 :
<(YTE. Y1) "YTE,Y,) . (63) 0.58512
0.22413

Sep 10) Computevy(Xqopt) by solving (42) and termi-
nate the routine. C,=[0 00 0 1 0],



C.=[1 0010 0], 7]
Cp=[1 0010 0],
(8]
and
Di;1=0, Di2=0, Dy; =0, Dyp=0. (9]

For this example, the constafithat bounds the closed-loop [10]
gain fromw (k) to z(k) was set t¢ = 0.3, and the controller
order was chosen to be = 2. The task was thus to design all1]
2nd-order controller realization directly based on theustb
FWL performance measure;.

For this design example, the optimisation problem (4912
was formulated and the algorithm described in Section 1V
was used to find solutions of the optimal robust FWL design
problem (49) with an initial guess di) = [ I 0 }T e [13]
R'19%3 in Stage 1. The resulting controller realization was

—1.0344 x 1072 | —15.600 —1.4984 4]
X dops = —16.070 | —1.4261 0.25055
~19.469 | —3.0400 0.37517 [15]

which achieves a robust FWL performan®g(Xopt) =
8.2842 x 1073, This designed controller realization achieved'®
the required robust control performance as well as is rdioust
FWL perturbation errors because, for any FWL perturbatiof’]
t0 X gop SMaller thar8.2842 x 103 and for anyH()\) € H., 18]
with 7 = 0.4, the closed-loop system maintains stability an(E
the closed-loop gain fromw(k) to z(k) is always less than 1]
0.3.

VI. CONCLUSIONS [20]

A direct FWL controller design approach has been pro-
posed based on the mixed theory, where the task is to
design directly an optimal robust FWL controller. A novel
robust FWL control performance measure has been propos@
which takes into account the standard robust control reguir
ments as well as the FWL implementation consideration§2]
This robust FWL control performance measure can be com-
puted conveniently using an LMI method. The correspondings;
optimal robust FWL controller design problem has been
formulated naturally as a mixed problem which can be (24]

solved by means of BMI technigues. [25]
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