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Abstract—The memristive crossbar array (MCA) has been
successfully applied to accelerate matrix computations of signal
detection in massive multiple-input multiple-output (MIMO) sys-
tems. However, the unique property of massive MIMO channel
matrix makes the detection performance of existing MCA-based
detectors sensitive to conductance deviations of memristive de-
vices, and the conductance deviations are difficult to be avoided.
In this paper, we propose an MCA-based detector circuit, which
is robust to conductance deviations, to compute massive MIMO
zero forcing and minimum mean-square error algorithms. The
proposed detector circuit comprises an MCA-based matrix
computing module, utilized for processing the small-scale fading
coefficient matrix, and amplifier circuits based on operational
amplifiers (OAs), utilized for processing the large-scale fading
coefficient matrix. We investigate the impacts of the open-loop
gain of OAs, conductance mapping scheme, and conductance
deviation level on detection performance and demonstrate the
performance superiority of the proposed detector circuit over the
conventional MCA-based detector circuit. The energy efficiency
of the proposed detector circuit surpasses that of a traditional
digital processor by several tens to several hundreds of times.

Index Terms—Massive MIMO, signal detection, linear detec-
tor, analog matrix computing, in-memory computing, memristive
crossbar array.

I. INTRODUCTION

Modern and next-generation wireless communication sys-
tems employ massive multiple-input multiple-output (MIMO)
technology to increase transmission speed and improve user
experience [1]. However, the extremely large number of anten-
nas, while beneficial, also leads to extremely-high complexity
of signal detection algorithms. With the goal of reducing
detection latency in massive MIMO systems, a variety of low-
complexity detection algorithms have been proposed in the
past decades [2]. However, algorithms with low complexity
usually suffer from considerable performance loss, making
it difficult to trade off between high performance and low
latency. Another popular and effective approach is acceler-
ating MIMO detection by hardware innovations. However,
traditional processors based on the von Neumann architecture
struggle significantly to perform large-dimensional matrix op-
erations. As the number of users simultaneously transmitting
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data increases in next-generation wireless communication sys-
tems, the computational complexity of detection algorithms is
bound to increase, and traditional von Neumann architecture-
based processors are difficult to meet the requirements of
receiver for processing speed and energy efficiency.

As a form of in-memory computing, the analog matrix
computing technology based on memristive crossbar array
(MCA) constitutes a revolutionary new matrix computational
paradigm. The MCA can rapidly perform not only matrix-
vector multiplication (MVM) [3] through analog computing
approach but also other matrix operations, such as the com-
putation of inverse matrix [4] and pseudoinverse matrix [5],
with the assistance of operational amplifiers (OAs). The MCA-
based matrix computing circuit is not constrained by the so-
called von Neumann bottleneck, and thereby presents notable
benefits in computational speed and power consumption in
contrast to traditional processors based on the von Neumann
architecture. The MCA makes it possible to realize massive
MIMO detectors with superior detection performance, speed,
and energy efficiency, since that matrix operations constitute
the core task of massive MIMO detection.

While MCA has been successfully applied to accelerate
deep neural network training in artificial intelligence, research
on the application of it in massive MIMO detection is still in
its infancy. In the work [6], MCA was applied to baseband
processors to accelerate MIMO detection. But this work only
employed MCA to accelerate the MVM operations, relying
on another processor to perform inverse matrix computations.
An MCA-based zero forcing (ZF) precoder was proposed
in [7]. This idea can be extended to the ZF or minimum
mean-square error (MMSE) detector. In the study [8], MCA-
based ZF detector and regularized ZF detector were proposed.
In the study [9], an MCA-based detector circuit for ZF
and MMSE detection was proposed, which has a structure
similar to that of the circuit presented in [8]. However, in
practical scenarios, the large-scale fading coefficients (LSFCs)
of the user terminals (UTs) in a massive MIMO cell usually
vary from each other, and thus the elements of the matrices
computed in MCA-based circuits presented in [7]–[9] often
obey probability distributions with different variances, which
makes the detection performance of the existing MCA-based
detectors sensitive to conductance deviations.

To solve this problem, we propose an MCA-based detector
circuit in this paper, which can be employed to compute
massive MIMO ZF and MMSE algorithms and is robust to



conductance deviations. The proposed detector circuit com-
prises an MCA-based matrix computing module, utilized for
processing the small-scale fading coefficient (SSFC) matrix,
and OA-based amplifier circuits, utilized for processing the
LSFC matrix. We investigate the impacts of the open-loop gain
(OLG) of OAs, conductance mapping scheme, and conduc-
tance deviation level on detection performance. We demon-
strate the performance superiority of the proposed detector
circuit over the conventional MCA-based detector circuit and
the energy efficiency superiority of the proposed circuit over
the traditional digital processor.

The rest of this paper is organized as follows. Section II
introduces the system model and basic algorithms considered
in this paper. Section III presents the proposed MCA-based
detector circuit. Section IV provides the conductance mapping
schemes for the MCA-based detectors. Section V provides
extensive simulation results. Section VI concludes this paper.

II. SYSTEM MODEL AND BASIC ALGORITHMS

A. System Model

We consider a massive MIMO cell, where a base station
(BS) with R antennas serves K UTs, each equipped with a
single antenna. The uplink signals can be described by:

ỹ = H̃s̃+ ñ, (1)

where ỹ ∈ CR×1 denotes the received signals, s̃ ∈ CK×1

denotes the transmitted signals, H̃ ∈ CR×K

denotes the
channel matrix, and ñ ∈ CR×1 is a complex additive white
Gaussian noise (AWGN) vector with variance σ2

n per element.
Let λ1, · · · , λK be the LSFCs between the K UTs and the

BS, then H̃ can be described by:

H̃ = G̃Λ̃, (2)

where Λ̃ = diag
(√

λ1, · · · ,
√
λK

)
and G̃ ∈ CR×K

are the
LSFC matrix and the SSFC matrix, respectively. We consider
the Rayleigh fading channel model in this paper, which means
that the elements of G̃ are zero-mean complex Gaussian
random variables with variance σ2

g per dimension, i.e.,

g̃i,j ∼ CN
(
0, 2σ2

g

)
, 1 ≤ i ≤ R, 1 ≤ j ≤ K. (3)

The complex-valued system model of (1) can be alterna-
tively described as an equivalent real-valued expression of

y = Hs+ n, (4)

where

y =

[
ℜ
(
ỹ
)

ℑ
(
ỹ
) ]

, s =

[
ℜ
(
s̃
)

ℑ(s̃
) ]

, n =

[
ℜ
(
ñ
)

ℑ
(
ñ
) ]

,

H =

[
ℜ
(
H̃
)

−ℑ
(
H̃
)

ℑ
(
H̃
)

ℜ
(
H̃
) ]

,

in which ℜ(·) and ℑ(·) respectively denote the real and imag-
inary parts of the corresponding vector or matrix. Obviously,
H ∈ R2R×2K can be alternatively described by:

H = GΛ, (5)

where Λ = diag
(√

λ1, · · · ,
√
λK ,

√
λ1, · · · ,

√
λK

)
and

G =

[
ℜ
(
G̃
)

−ℑ
(
G̃
)

ℑ
(
G̃
)

ℜ
(
G̃
) ]

.

A massive MIMO detector needs to estimate s from y given
H.

B. Basic Detection Algorithms

1) ZF Algorithm: The ZF algorithm can be expressed as:

ŝZF =
(
HTH

)−1
HTy, (6)

where (·)T and (·)−1 denote the transpose matrix and inverse
matrix, respectively.

2) MMSE Algorithm: The MMSE algorithm can be ex-
pressed as:

ŝMMSE =
(
HTH+ ρI

)−1
HTy, (7)

where the parameter ρ =
σ2
n

ps
, ps is the average symbol

energy of s, and I donotes the identity matrix of appropriate
dimension.

III. PROPOSED MCA-BASED CIRCUIT DESIGN

A. Transformations of Computational Expressions

Upon substituting (5) into (6) and (7) we obtain:

ŝZF = Λ−1
(
GTG

)−1
GTy, (8)

and
ŝMMSE = Λ−1

(
GTG+P

)−1
GTy, (9)

where P = diag
(

ρ
λ1
, ρ
λ2
, · · · , ρ

λK
, ρ
λ1
, ρ
λ2
, · · · , ρ

λK

)
.

For expression convenience, we define W = GTG, and
W̃ = G̃HG̃, where (·)H denotes the Hermitian transpose.
Thus ℜ

(
W̃

)
and ℑ

(
W̃

)
are two real symmetric matrices and

W can be expressed as:

W =

[
ℜ
(
W̃

)
−ℑ

(
W̃

)
ℑ
(
W̃

)
ℜ
(
W̃

) ]
. (10)

The real and imaginary parts of the elements g̃i,j of G̃
are independent identically distributed Gaussian random vari-
ables, namely, ℜ

(
g̃i,j

)
∼ N (0, σ2

g) and ℑ
(
g̃i,j

)
∼ N (0, σ2

g).
Thus the mean values of the nondiagonal elements of both
ℜ
(
W̃

)
and ℑ

(
W̃

)
are zeros, and the diagonal elements of

ℑ
(
W̃

)
are zeros, while the diagonal elements of ℜ

(
W̃

)
obey

a chi-square distribution:

ℜ(w̃i,i)

σ2
g

∼ χ2(2R), (11)

which means that the mean value of the diagonal elements of
ℜ
(
W̃

)
is 2Rσ2

g .
By defining QZF=2Rσ2

gI, QMMSE=2Rσ2
gI+P and X=

W − 2Rσ2
gI, we obtain:

ŝZF = Λ−1
(
X+QZF

)−1
GTy, (12)

and
ŝMMSE = Λ−1

(
X+QMMSE

)−1
GTy. (13)



Fig. 1. The proposed MCA-based detector circuit.

B. Proposed MCA-Based Circuit

The proposed detector circuit is illustrated in Fig. 1, which
comprises an MCA-based computing module and 2K am-
plifier circuits. The MCA-based computing module consists
of five MCAs, two sets of analog inverters, a set of voltage
followers and a set of OAs.

Owing to the virtual ground property of OA networks,
the voltages at the inverting-input nodes of the set of OAs
are approximately zeros. Let A, B, C, D and E be the
conductance matrices of the five MCAs. According to Ohm’s
law and Kirchhoff’s law, the input voltages vin and the
currents i1 in Fig. 1 satisfy:

i1 = (A−B)vin. (14)

A voltage follower has a unity-gain. Therefore, let v1 be
the output voltages of the set of OAs, we have:

(C+D−E)v1 + i1 = i−, (15)

where i− denotes the currents flowing into the inverting-input
nodes of OAs. Since i− is approximately zeros owing to the
inherent characteristic of OAs, we have

v1 = −(C+D−E)−1i1. (16)

The stability of the output voltages requires that the signs
of the diagonal elements of C−1 are all positive [4], which
is always valid, since C is a diagonal matrix with positive
diagonal elements.

In the amplifier circuits, the conductance values of the
memristive devices connected to the output nodes of the
MCA-based computing module are all θ0. Let θ1, θ2, · · · , θ2K
be the conductance values of the feedback memristive devices,
respectively. The output voltages of the amplifier circuits are:

vout = −Θ−1v1, (17)

where Θ = diag
(
θ1
θ0
, θ2
θ0
, · · · , θ2K

θ0

)
. Upon substituting (14)

and (16) into (17), we obtain:

vout = Θ−1(C+D−E)−1(A−B)vin. (18)

The conductance value of a memristive device can be
changed by charge or flux through it. Therefore, the conduc-
tance value of a memristive device can be set to any desired
value within a specified range by a dedicated program [10],
[11]. By mapping y onto vin, mapping GT onto A − B,
mapping QZF or QMMSE onto C, mapping X onto D − E
and mapping Λ onto Θ, the result of (12) or (13), i.e., ŝZF
or ŝMMSE, can be obtained by measuring vout.

IV. CONDUCTANCE MAPPING SCHEMES

We map a matrix that contains both negative and positive
elements onto the difference between two positive conduc-
tance matrices, rather than a single one, in order to align with
physical constraint. Let the conductance range of memristive
devices be [ωmin, ωmax]. Let U be the mapped matrix and
let A and B be the two conductance matrices. The scheme
for mapping U onto A−B is:

ai,j =

{
ωmax, ui,j > 0

ωmin, ui,j ≤ 0
(19)

and
bi,j = ai,j − αui,j , (20)

where α is called the mapping factor. The conductance values
exceeding the permissible range will be truncated to the limits.

The actual conductance value of a memristive device typi-
cally deviates from the ideal value, with these deviations being
modeled as zero-mean Gaussian random variables with a
variance of σ2

m [12]. In this section, we give two conductance
mapping schemes, namely, the fixed mapping factor (FMF)
scheme and the adjustable mapping factor (AMF) scheme.

A. FMF Scheme

The core concept of the FMF scheme is to select a
fixed mapping factor based on the probability distribution
of elements of the mapped matrix. To map a matrix U
onto conductance matrices, the FMF scheme calculates the
mapping factor by:

α =
ω

βσu
, (21)

where ω = ωmax−ωmin, β is a parameter of the FMF scheme
and σu is the standard deviation of the elements of U.

B. AMF Scheme

The AMF scheme calculates the mapping factor by:

α =
ω

max{|ui,j |}
, (22)

to map U onto conductance matrices.



V. SIMULATIONS

We consider a 4 × 64 massive MIMO system, employing
64 quadrature amplitude modulation (QAM). We consider the
memristive devices whose conductance range is 0.1 ∼ 30µS.
The conventional MCA-based detection scheme computes ŝZF
or ŝMMSE based on (6) or (7). Therefore, the MCA-based
computing module in Fig. 1 is employed as a conventional
MCA-based detector circuit in our experiments. We perform
SPICE simulations with the aid of LTspice®.

A. Computation Time

We gauge the computation time of an MCA-based detector
circuit by its convergence time, which is mainly influenced by
the gain-bandwidth product (GBP) of OAs [13]. The output
voltage waveforms of the proposed detector circuit and the
conventional MCA-based detector circuit are shown in Fig. 2,
and the OAs are assumed to have a GBP of 500 MHz. The
convergence time of the proposed circuit is about 110 ns,
exhibiting almost no difference compared with that of the
conventional MCA-based detector circuit, and can be further
enhanced by increasing the GBP of OAs.

B. Detection Performance

In this subsection, we first investigate the impacts of the
OLG of OAs, conductance mapping scheme and conductance
deviations on detection performance of the proposed detector
circuit, and then demonstrate the performance superiority of
the proposed detector circuit over the conventional MCA-
based detector circuit. We do not distinguish between the
ZF and MMSE algorithms in the figures due to the absence
of observable disparity in their detection performances in the
considered scenario.

The computational accuracy of an MCA-based detector
circuit is significantly constrained by the OLG of OAs. Fig. 3
shows the bit error rate (BER) results as the functions of the
signal-to-noise ratio (SNR) for the proposed detector circuit,
given various values of the OLG of OAs with σm = 0 and
adopting the AMF scheme, in comparison with the BER of
the digital benchmark. When the OLG of OAs is too low,
the detection performance is poor. The OLG of OAs needs to
be at least 80 dB for the proposed detector circuit to ensure
satisfactory performance, i.e., achieving the performance of
the digital benchmark. In the rest of this subsection, we
assume that the OLG of OAs is sufficiently large.

Fig. 4 shows the BER results of the proposed detector
circuit adopting the FMF scheme under different β values with
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Fig. 2. Waveforms of output voltages: (a) the proposed detector circuit, and
(b) the conventional MCA-based detector circuit.
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Fig. 3. BERs of the proposed detector circuit under different values of the
OLG of OAs when σm = 0 and adopting the AMF scheme.

Fig. 4. BERs of the proposed detector circuit under different values of β
when σm = 0 and adopting the FMF scheme.

σm = 0, again using the digital approach as the benchmark.
Obviously, when σm = 0, a higher value of β results in fewer
elements being truncated, and thus results in a lower BER and
closer performance to the digital approach for the proposed
detector circuit. Although the truncated elements degrade the
detection performance, such an impact is mainly noticeable
in high SNR. In low SNR, however, the primary constraint
on detection performance remains the AWGN. Even without
AWGN, detection errors still occur due to the truncated
elements, causing the BER to gradually converge to a fixed
value as the SNR increases.

Fig. 5 shows the BER results of the proposed detector
circuit, with σm = 1%ω. Obviously, the BER decreases and
then increases as β increases, because the primary factor
constraining detection performance shifts from the truncated
elements to the perturbations caused by conductance devia-
tions as β increases.

To facilitate the observation of the performance differences
among the detector circuits with similar BERs, we use the
normalized mean squared error (NMSE) of the computa-
tional results relative to the transmitted signals to measure
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Fig. 5. BERs of the proposed detector circuit with σm = 1%ω.

the detection performance of a detector circuit. In order to
visualize the impact of conductance mapping scheme and
conductance deviations on the detection performance of the
proposed detector circuit, Fig. 6 depicts the NMSEs of the
computational results of the proposed detector circuit and
the conventional detector circuit as the functions of both
conductance deviation level and β, given an SNR of 20 dB
and using the digital approach as the benchmark. For the FMF
scheme, in the absence of conductance deviation, the larger
the parameter β, the smaller the NMSE, while in the presence
of conductance deviations, the NMSE first decreases and then
increases as β increases, which confirms the trend observed in
Fig. 5. Besides, only when the conductance deviation level is
high and an appropriate β is selected, the performance of the
FMF scheme surpasses that of the AMF scheme, otherwise it
is worse than that of the AMF scheme.

In practical scenarios, UTs in a cell are usually located
at different positions, the disparity in LSFCs associated with
UTs results in great differences in the variances of the dif-
ferent elements of the matrices computed in the conventional

mσ
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Fig. 6. NMSEs of the computational results relative to the transmitted signals
of the proposed MCA-based detector circuit, adopting the FMF scheme and
the AMF scheme, given an SNR of 20 dB and using the digital approach as
the benchmark.
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Fig. 7. BERs of the proposed detector circuit and the conventional detector
circuit, varying with β value in a massive MIMO cell, with σm = 0.5%ω.

MCA-based detector circuit, and the perturbations caused by
conductance deviations are particularly severe to the elements
with smaller variance. For the proposed detector circuit, the el-
ements of G obey the same distribution, although the diagonal
and nondiagonal elements of X follow different distributions,
their variance disparity is not significant. Consequently, the
impact of conductance deviations on the performance of the
proposed detector circuit is relatively minor compared to that
on the conventional MCA-based detector circuit.

To showcase the performance superiority of our proposed
circuit over the conventional MCA-based detector circuit, we
consider a multi-user massive MIMO cell whose radius is
150 m. UTs randomly appear within the cell, with each UT
has a transmitting power of 20 dBm. The carrier frequency of
uplink signals is 2 GHz with a bandwidth of 25 MHz. Fig. 7
shows the BER results of the proposed detector circuit and
the conventional MCA-based detector circuit varying with β
value, with σm = 0.5%ω. Consequently, regardless of whether
the AMF or FMF mapping scheme is employed, the proposed
detector circuit consistently achieves a notably lower BER
compared to the conventional MCA-based detector circuit.

C. Power Consumption and Energy Efficiency

In this subsection, we consider the OA of [14]. Digital-
to-analog converters (DACs) of [15] and analog-to-digital
converters (ADCs) of [16] are employed in our experiments
to supply input voltages to the circuits and measure output
voltages of the circuits, respectively.

Fig. 8 shows the power consumption results of the proposed
circuit and the conventional MCA-based detector circuit vary-
ing with K. Fig. 8 also shows the relative additional power
consumption of the proposed circuit, i.e., the ratio of the power
consumption of the introduced amplifier circuits to that of the
conventional MCA-based detector circuit, which is less than
1%. Evidently, the introduced amplifier circuits do not lead to
a noticeable increase in power consumption.

The energy efficiency of an MCA-based detector circuit
can be gauged by the ratio of its equivalent floating-point
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operation (FLOP) number to the energy consumed during
its computation time, which is measured in tera-FLOPs per
second per watt (TOPS/W) in this paper. It is noted that
either a real multiplication or a real summation is considered
as a FLOP. Fig. 9 shows the energy efficiency results of
the proposed detector circuit, the conventional MCA-based
detector circuit and the commercial graphic processing unit
(GPU) NVIDIA QUADRO GV100 [17]. The energy efficiency
of the proposed circuit is almost identical to that of the
conventional MCA-based detector circuit. As the number
of UTs increases, the energy efficiency of the MCA-based
detector circuits also increases, which is several orders of
magnitude higher than that of the GPU NVIDIA QUADRO
GV100.

VI. CONCLUSIONS

In this paper, we have proposed an MCA-based detector
circuit, which can be employed to compute massive MIMO ZF
and MMSE algorithms. In contrast to all existing MCA-based
detector circuits, our proposed detector circuit comprises an

MCA-based matrix computing module, utilized for processing
the SSFC matrix, and OA-based amplifier circuits, utilized
for processing the LSFC matrix, and thereby achieves high
robustness against conductance deviations of the memristive
devices. We have investigated the impacts of the OLG of
OAs, conductance mapping scheme, and conductance devi-
ation level on detection performance of the proposed detec-
tor circuit. The proposed detector circuit exhibits significant
performance superiority compared to the conventional MCA-
based detector circuit, only incurring a negligible additional
cost of power consumption. Moreover, the energy efficiency
of our proposed circuit is several orders of magnitude higher
than that of the commercial GPU NVIDIA QUADRO GV100.
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