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Some Previous Works

MBER equalization almost as old as adaptive equalizer

e Yao, IEEE Trans. Information Theory 1972

e Shamash & Yao, ICC’74

o Chen et al., ICC’96, IEE Proc. Communications 1998

e Yeh & Barry, ICC’97, ICC’98*, IEEE Trans. Communications 2000
e Chen & Mulgrew, IEE Proc. Communications 1999*

e Mulgrew & Chen, IEEE Symp. ASSPCC 2000, Signal Processing 2001

*: for multi-level PAM schemes
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Motivations

Equalization topic is well researched, and a variety of solutions exists. BUT

e For high-level modulation, MAP/MLSE sequence detector too complex

Even MAP or Bayesian symbol-detector too complex

e Affordable: linear equalizer and decision feedback equalizer
Classically, MMSE solution is regarded as optimum
MMSE would be optimum only if equalizer soft output were Gaussian

Generally, equalizer soft output has a non-Gaussian distribution

* Adopting to non-Gaussian nature leads to optimal MSER solution for
linear equalizer and DFE
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A Toy Example

Two-tap channel 1.0 + 0.5z7!
with 4-PAM and SNR= 35 dB 9190

Two-tap m = 2 linear equaliser
with decision delay d =0

Normalized MMSE:
wl\T/IMSE =10.9285 — 0.3713]
with log;((SER) = —2.7593

MSER (o > 0):
whopn = a[0.8957 — 0.4447)
with log,o(SER) = —7.1566

e MSER solutions form a half line, origin is singular point
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PAM Channel Model

e Channel of length n,

np—1

r(k) = 3 his(k — i) + n(k)
i=0
s(k)eSE{sy=20—L—-1,1<1< L)}
e Linear equaliser of order m
y(k) = w'r(k)
r(k) =[r(k)---r(k—m+ 1)]T, w = [wg--- wm,l]T, and decision delay d
r(k) =T(k) + n(k) = Hs(k) + n(k)
Ass(k) € {s4,1 < ¢ < N,} where N, = L™ 1,

t(k) € R 2 {F, = Hs,, 1 < ¢ < N,}

" University
i
|/ ! Electronics ar!d of Southampton
i Computer Science

Communication Group S Chen

Two Useful Properties
o Shifting: yl+1 =Y+ 2¢q4

e Symmetry: distribution of ) is symmetric around cgs;.

* For linear equaliser to work, YV;, 1 <[ < L, must be linearly separable
This is not guaranteed

* In DFE, linear separability is guaranteed
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e Express equaliser output
y(k) = w" (F(k) + n(k)) = g(k) + e(k)

x e(k): Gaussian with zero mean and variance wlwo?

x (k) € Y 2 {5, = w'F,, 1 < ¢ < N}, which can be divided into L subsets

V(g eV|s(k—d)=s},1<I<L

e Let combined impulse response cI'=wlH = [cocy--- C7”+”}f2]' Then

y(k) = cas(k — d) + > cis(k — i) + e(k)
i#d

e Optimal decision making

s1, f y(k) < (51 + 1)cd7

s, if (s —1)ca < y(k) < (si+ 1)cq
fortl=2,---L—1,

s, if y(k) > (sp —1)cq.

3k —d) =
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SER Expression

PDF of y(k)
2
FESEESERE v Mo}
Py\x) = -~ exp | —
Y Vero,VwTw Ns — 202wTw

where Ng, = N;/L is number of points in ) and QZ@ e V.

Utilizing shifting and symmetric properties, SER of equaliser w is:

Nagp
Pp(w) = leb Z Q(g1,i(w))

where @ is usual Q-function, v =2(L —1)/L, and

ggl) — cd(sl — 1)

91,i\W) =
(W) onVWIw
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MSER Solution
MSER solution is defined as:

WnsER = arg min Pg(w)
w

Gradient of Pg(w)

Ngp (1) 2
2l 1 Z (y;” — ca(si — 1))
VPE W) —m— exp — v X
) V2ro,Vwiw Ny, = < 202wlw

0 _
((yi C(;(Sl Dy - £+ (s — 1)hd>
W-W

e Computation is on single subset ), and further simplification by using ), with s, = 1

e Use simplified conjugated gradient algorithm with reseting search direction to negative
gradient every I iterations

e As SER is invariant to a positive scaling of w, it is computationally advantageous to
normalize weight vector to w”w = 1.
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Sample-by-Sample Adaptation: LSER

Single-sample estimate of p,(x)

ﬁy(mv k) =

L (_@c - y(k»?)
V21 pVWwTw 2p2wTw

With a re-scaling after each update to ensure w’

gradient, — LSER:

w = 1, and using instantaneous stochastic

w(k + 1) = w(k) + p—m—exp (—(y(k) — Calok —d) - 1))2> <

V21 pn 2p7,

(r(k) = (y(k) = cak)(s(k — d) = 1))w(k) = (s(k — d) — 1)ha(k))

w(k + 1)
VWI(k+ Dw(k +1)

w(k+1) =

Adaptive gain p and width p,, need to be set appropriately
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Block Adaptation

e Identify channel — Pg(w) — optimisation

e Alternatively, kernel density or Parzen window estimate approach
An estimated PDF of p,(x)

by(z) = ;iiexp _w
! V2T pnV wlw K k=1 2p12LWTW
K sample length, and p,,: radius parameter. From p,(x), estimated SER
S
Pp(w) ==Y Q(ar(w))
K=

where

y(k) — ca(s(k —d) — 1)

pnVwWIw

gr(w) =

Cq = WTfld, and fld an estimate for the d-th column h, of H
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Sample-by-Sample Adaptation: ALSER

Single-sample estimate of p,(x)

py(z, k) = ! xp <_M>

(S)
V2T py 2p;,

Using instantaneous stochastic gradient, — ALSER:

w(k +1) =w(k) + Mﬁ%pnexp <_(y(k) — éd(;(pk%— d) — 1)) ) »

(r(k) ~ (s(k —d) — 1)f1d(k))

* No need for normalization to simplify complexity

* Although using p,, rather than p,, v wTw appears to involve more approximation, ALSER
seems to work well — not restrict to unit length makes it easier to converge to a MSER
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Extension to DFE
“Linear-combiner” DFE:
y(k) = wir(k) + b 8,(k)

where §3(k) = [8(k —d —1)---8(k—d—mn)]T andb=1[b;---b
e Choosed =n, —1, m=npandny, =n, — 1

o Define s¢(k) = [s(k) - - - s(k — d)]T and partition H = [H; | Hy)

nb]T

Under assumption 8,(k) = sp(k) = [s(k —d — 1) -+ s(k — d — ny)]7,
r(k) = Hisy(k) + Ha8y (k) + n(k)
Define translated observation space
4 A A ~
r (k) =r(k) — HoSp(k) = T(k) + n(k)
DFE becomes a “linear equaliser”:
7
y(k) = w'r (k) = §(k) + e(k)
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An 8-PAM DFE Example

0 ‘ ‘
MMSE ——
e Lower-Bound SER P MSSR ,,,,,, o
Comparison . 2 S
[0) A
= a\\'\\
© -4 S
Channel: 05: Q;\\\
0.3+ 10271 —0.3272 g \
4 -
DFE: @ 10
— — — o
m—3,d—2,nb—2 3 12 @\
-14 \
-16 "“
20 25 30 35 40 45
SNR (dB)
o e T e .

Communication Group S Chen

* Feedback filter coefficients do not disappear. They have been set to their optimal values.
Assi(k) € {sfq 1 < g < Nf} with Ny = L4

~ 5 A
I'(k) ER:{rq:Hlsfﬂ,l S qS Nf}

>

i(k) €Y = {§, = w'F, 1 < ¢ < Ny} which can be partitioned into L subsets
~ A - ~
Vi={gs €Y|s(k—d) =s},1< 1< L

* Y are always linearly separable. All results of linear equaliser are applicable.

Lower bound SER for DFE w under assumption of correct symbol feedback

~ Nesh
Pp(w) = > Q(G1i(w))
Ny ’
_ ﬂ;l) —ca(s1 — 1)
uiw) = it )
onVwiw

7]51) S 371, and Ny = Ny/L = L% is number of points in )7[
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e Distribution of Subset ) (s5 = 1), 64 points, SNR=34 dB

Weight vector has been normalized to a unit length, a point plotted as a unit impulse.
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e Conditional PDF given s(k —d) = 1, SNR=34 dB
normalized w7\ o = [—0.0578 0.2085 0.9763], whggr = [—0.2365 0.7946 0.5592]
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e Learning Curves of ALSER Averaged Over 100 Runs, SNR=34 dB

Initial weight: (a) wymse, (b) [—0.01 0.01 0.01]7  Weight normalization not applied

le-4 le+0
\‘ MMSE 1e-1
o 1le5 F) o le2 ecision direct
© © = .
T 1es M 5 s |
S le6 ¢ W S le-a 4 .
2 2 . training MMSE
% MM%M 'io-l 1e-5
8 1le7 S
S c le-6
> >
@ 1e-8 @ le7
MSER le-8
le-9 le-9
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000
Sample Sample
(a) (b)

In (a) training and decision directed indistinguishable, in (b) dashed curve: after 200-sample
training, switched to decision-directed with §(k — d) substituting s(k — d)

Compared with LSER, no performance degradation, much simpler
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e Learning Curves of LSER Averaged Over 100 Runs, SNR=34 dB

Initial weight: (a) wyuwmse, (b) [—0.01 0.01 0.01]7  Weight normalization applied
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In (a) training and decision directed indistinguishable, in (b) dashed curve: after 200-sample
training, switched to decision-directed with §(k — d) substituting s(k — d)

Initial value is critical for convergence, MMSE not necessarily good initial choice

) University
Electronics aqd of Southampton
£ Computer Science
H 18

Communication Group S Chen

Conclusions

e Only ZF, equaliser output is Gaussian with noise enhancement

o MMSE generally non-optimal and tries to fit parameters to non-Gaussian
PDF in a way so that it looks as closely as possible to a Gaussian one

e Non-Gaussian approach leads naturally to MSER

e For high-level PAM modulation schemes, MSER equalisation solution has
being derived
Effective sample-by-sample adaptation has been developed
Unlike MSE surface which is quadratic, SER surface is highly complex
Initial equaliser weight values can critically influence convergence speed

ALSER is particular promising: simpler computation
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