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Abstract—We investigate the power allocation problem of a
dynamic time division duplexing based heterogeneous network
comprising downlink (DL) macro base stations (MBSs) and uplink
(UL) small base stations (SBSs). In such networks, beyond intra-
cell interference, the asynchronous DL transmission of MBSs
and UL transmission of SBSs introduce additional interference
known as cross-link interference. This interference occurs not
only between MBSs and SBSs, but also between macro-cell user
equipment and small-cell user equipment (SUE). To maximize the
sum rate of UL and DL, we formulate a non-convex distributed
optimization problem where power allocation variables of both
DL and UL are to be optimized. We propose a power allocation
algorithm relying on the Lagrange method with logarithmic bar-
rier. Simulation results demonstrate that our proposed algorithm
outperforms the representative benchmark schemes.

Index Terms—Power allocation, cross-link interference, dy-
namic TDD, interference mitigation.

I. INTRODUCTION

DYNAMIC Time Division Duplexing (D-TDD) enhances
spectral efficiency in future mobile networks by dy-

namically reallocating time slots between uplink (UL) and
downlink (DL) transmissions. This adaptability accommodates
the coexistence of macro and small base stations (MBSs and
SBSs) and balances asymmetric UL and DL traffic in dense
heterogeneous networks. However, it can result in cross-link
interference (CLI) as adjacent cells may operate in differ-
ent transmission directions simultaneously, posing a challenge
for interference management. According to [1], various CLI
mitigation schemes for D-TDD systems can be categorized
into the following approaches: 1) clustering; 2) scheduling
and resource allocation; 3) power control; 4) beamforming;
5) UL/DL configuration; 6) joint optimization of coordination-
based schemes. Our research focuses on the power control,
which adjusts transmission power to increase the desired signal
power or reduce the interference power. This approach is crucial
as it directly impacts the performance of both the UL and DL.
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A. Related Works

In the existing literature, power control schemes for D-TDD
systems can be categorized based on the directions of signal
transmission, namely, UL, DL, or bidirectional UL-DL.

UL power control is mainly to resist BS interference. BS can
adjust the power of UEs on UL to reduce UE interference to
adjacent cells [2], or improve UL performance when there is BS
interference from adjacent cells [3]. The work [4] proposed an
UL power control algorithm based on interference contribution
rate (ICR) to mitigate interference problems in heterogeneous
networks.

The DL power control is also vital. The work [5] reviewed
a variety of CLI mitigation options, including adjusting DL
transmission power through a simple reinforcement learning
(RL) algorithm. The study [6] explored reducing interference
in local 5G networks to enhance the viability of micro oper-
ator deployments. The work [7] discussed the CLI mitigation
technology in 5G new radio TDD system, focusing on the DL
power control scheme.

Additionally, some studies have focused on mitigating CLI in
D-TDD systems by controlling simultaneously the transmission
power on both UL and DL. The multi-agent deep reinforcement
learning (MADRL) method is used to adjust power allocation
in [8], so as to effectively manage CLI between cells.

In the landscape of research aimed at mitigating CLI through
power control, two fundamental mechanisms have emerged:
1) diminishing the DL transmission power of base stations
(BSs), and 2) amplifying the UL transmission power of user
equipments (UEs). The former strategy effectively reduces CLI
in adjacent cells, while the latter bolsters the reception of
essential UL signals amidst interference from neighboring cells.
However, these approaches are not operational without trade-
offs. Diminishing transmission power can attenuate the signal
strength of the desired signal on the DL, and increasing it
can exacerbate CLI. The existing power control paradigms
have yet to reconcile this delicate balance between interference
mitigation and system performance optimization. The challenge
of judiciously distributing UL and DL transmission power
to mitigate CLI while enhancing overall system performance
remains an open question in the field.

B. Our Contributions

This paper confronts the aforementioned challenge of power
allocation in D-TDD heterogeneous networks. Our focus is on



reconciling the competing demands of interference mitigation
and system performance optimization, specifically by reducing
interference between BSs and UEs while maximizing the total
sum rate. To this end, we propose an innovative optimization
framework that aims to maximize the sum rate of both UL
and DL by strategically allocating transmission power across
the multi-antennas of MBSs and the single-antenna of UEs—a
novel approach not explored in prior studies.

The optimization problem we formulate is inherently non-
convex and distributed in nature, posing significant mathe-
matical challenges. Such problems lack universal solutions
and are typically addressed using heuristic algorithms, such
as simulated annealing (SA) and particle swarm optimization
(PSO). These heuristic methods come with their limitations
– they are prone to converging on local optima rather than
the global optimum due to their incremental nature, and their
efficacy is heavily dependent on the selection of parameters
and initial conditions, which often requires empirical tuning. To
surmount these obstacles, we introduce an iterative, nonconvex
distributed optimization methodology. Our key contributions
are outlined as follows.

• In order to mitigate CLI while optimizing the total sum
rate, we formulate the UL-DL power allocation problem
as an optimization problem that maximizes the sum rate
of UL and DL.

• For solving this challenging nonconvex distributed opti-
mization problem, we propose a mathematical optimiza-
tion method based on the Lagrange method with logarith-
mic barrier (LMLB). We further discuss the computational
complexity and the convergence behavior of the proposed
algorithm and the impact of initial values.

• We assess the proposed algorithm’s performance in terms
of the system’s total sum rate, power allocation and
interference management. Simulation results demonstrate
the superiority and effectiveness of our algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a D-TDD based wireless network consisting of
multiple BSs and their respective UEs. Here the BS is a generic
term, which can represent an MBS, an SBS, or a Wi-Fi access
point (AP). Without loss of generality, our exposition will be
based on a two-BS system model, as shown in Fig. 1. We
assume that the transmission direction in the macro cell is DL,
i.e., the signal is transmitted from the MBS to the macro cell
UEs (MUEs), and the transmission direction in the small cell
is UL, i.e., the signal is transmitted to the SBS from the small
cell UEs (SUEs). The numbers of active UEs in the macro cell
and the small cell are K and L, respectively. The MBS has M
antennas, the SBS has N antennas, and each UE is equipped
with a single antenna. The received signal at the kth MUE can
be expressed as

yDL
k =

(
hDL
k

)T
wDL

k sDL
k +

(
hDL
k

)T ∑
i∈Φk\k

wDL
i sDL

i

+
∑
l∈Ψk

hl,k

√
pUL
l sUL

l + nk, (1)

Fig. 1. System model.

where hDL
k ∈CM×1 is the DL channel state information (CSI)

vector linking the MBS to the kth MUE, sDL
k ∈C with |sDL

k |2=
1 is the symbol transmitted from the MBS to the kth MUE,
sUL
l ∈C with |sUL

l |2=1 is the symbol transmitted from the lth
SUE to the SBS, and hl,k∈C is the CSI coefficient linking the
lth SUE to the kth MUE, while pUL

l ∈R is the power allocated
by the SBS to the lth SUE, and wDL

i ∈RM×1 is the DL power
allocation vector given by

wDL
i =

[√
pDL
1,i, · · · ,

√
pDL
m,i, · · · ,

√
pDL
M,i

]T
, i ∈ Φk, (2)

in which pDL
m,i is the power allocated to the symbol sDL

i on
the mth antenna of the MBS. Additionally, Φk denotes the set
of MUEs occupying the same time-frequency resource blocks
(RBs) as the kth MUE, hence |Φk| = K, and Ψk is the set
of SUEs occupying the same RBs as the kth MUE, hence
|Ψk| = L. Finally, nk ∼ CN (0, σ2) represents the additive
white Gaussian noise (AWGN) at the kth MUE.

Then, the SINR at the kth MUE receiver is given by

SINRDL
k =

∥∥hDL
k wDL

k

∥∥2
φk + ψk + σ2

, (3)

where the inter-user interference (IUI) inside the serving macro
cell and the CLI from the neighbouring small cell are given by

φk =
∑

i∈Φk\k

∥∥hDL
k wDL

i

∥∥2 , (4)

ψk =
∑
l∈Ψk

∣∣hl,k∣∣2 pUL
l , (5)

respectively. Upon assuming that idealized transceivers operat-
ing at the Shannon capacity are employed, the DL sum rate of
the macro cell is given by

RDL =

K∑
k=1

RDL
k =

K∑
k=1

Bk log2

(
1 +

∥∥hDL
k wDL
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)
, (6)

where Bk is the bandwidth allocated to the kth MUE.
On the other hand, the signal received by the SBS with the

lth SUE as the target UE is expressed as
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where hUL
l ∈ CN×1 is the CSI vector from the lth SUE to

the SBS, HBS ∈ CN×M is the CSI matrix from the MBS to
the SBS, WDL = [wDL

1 ,wDL
2 , · · · ,wDL

K ] ∈ RM×K , and sDL =
[sDL

1 , sDL
2 , · · · , sDL

K ]T ∈CK×1, while n ∈CN×1 is the AWGN
vector, whose entries obey CN (0, σ2).

Hence, when the lth SUE is the target UE, the SINR at the
SBS is given by

SINRUL
l =

∥∥hUL
l

∥∥2 pUL
l

φl + ψl + σ2
, (8)

where the IUI inside the serving small cell and the CLI from
the neighbouring macro cell are given by

φl =
∑

i∈Ψl\l

∥∥hUL
i

∥∥2 pUL
i , (9)

ψl =
∥∥HBSWDLsDL

∥∥2 , (10)

respectively. Then the capacity-achieving UL sum rate of the
small cell is given by

RUL =

L∑
l=1

RUL
l =

L∑
l=1

Bl log2

(
1 +

∥∥hUL
l

∥∥2 pUL
l

ψl + φl + σ2

)
, (11)

where Bl is the bandwidth allocated to the lth SUE.
Our goal is to maximize the sum rate of DL and UL by prop-

erly allocating power. This involves the DL transmission power
on each antenna of the MBS and the UL transmission power
of each SUE. This optimization problem can be formulated as

max{
pUL
l

}L

l=1
,
{
wDL

k

}K

k=1

RDL +RUL, (12a)

s.t.
K∑

k=1

Tr
[
wDL

k (wDL
k )T

]
≤ PDL

max, (12b)

pUL
l ≤ PUL

l,max, l = 1, 2, · · · , L, (12c)

RDL
k ≥ RDL

k,min, k = 1, 2, · · · ,K, (12d)

RUL
l ≥ RUL

l,min, l = 1, 2, · · · , L. (12e)

Constraint (12b) imposes the maximum transmission power on
the MBS, and (12c) sets the maximum transmission power to
each SUE by the SBS, while (12d) and (12e) impose the min-
imum achievable rates for each MUE and SUE, respectively.

We have the following observations for the above optimiza-
tion problem. 1) To increase RDL, intuitively we increase the
values of

{
wDL

k

}
. This action improves the DL rate for the

MUEs. However, it also strengthens the CLI imposed on the UL
transmission of the neighbouring small cell. Similar observation
can also be made for the UL. 2) The objective function (12a) is
non-concave, so (12) is a challenging nonconvex optimization
problem that needs to be solved in a distributed manner
involving different types of network nodes.

III. PROPOSED POWER ALLOCATION ALGORITHM

In order to solve the challenging nonconvex distributed
optimization problem (12), we propose a mathematical op-
timization algorithm designed to tackle common challenges
encountered by traditional heuristic algorithms, and we analyze
the convergence and complexity of the algorithm.

A. Optimization algorithm with logarithmic barrier

To address the nonconvex distributed optimization problem
formulated, in this subsection we will introduce the proposed
LMLB. The optimization problem (12) can be expressed in the
following form:

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · ,m, (13)

where x represents a vector.
First, we incorporate the inequality constraints into the

objective function by employing the barrier function B(x), and
transform (13) as follows:

min f(x) + µB(x), (14)

where µ represents a positive barrier parameter. Let LB(x, µ) =
f(x) + µB(x), and refer to it as the Lagrangian function with
a barrier term. We define the logarithmic barrier function on
the set of interior points S as follows:

B(x) = −
m∑
i=1

log(−gi(x)). (15)

Furthermore, for the barrier parameter sequence
{
µ(k)

}
, we

obtain the following corresponding unconstrained minimization
problems:

x(k) = argmin
x∈S

LB

(
x, µ(k)

)
= argmin

x∈S

{
f(x)−

m∑
i=1

µ(k) log(−gi(x))

}
. (16)

Now, we present the following theorem concerning the se-
quence

{
x(k)

}
and the optimal solution of (13).

Theorem 3.1: If for all k, 0 < µ(k) < µ(k+1), and µ(k) → 0,
assuming that any feasible point can be arbitrarily approached
by a vector within S, then the limit point of the sequence

{
x(k)

}
is the global optimal solution of (13).

Proof: See [10].
Obviously, x(k) serves as an approximation to the optimal

solution of (13), converging to the optimal solution only when
µ(k) → 0. The following theorem quantifies the degree of
approximation.

Theorem 3.2: The approximate optimal value of the objective
function at the solution of (16) is within an error of mµ(k)

compared to the optimal value of (13).
Proof: See [11].
The above theorems have proven that by solving (16), we

can obtain the suboptimal solution to (13), which approximates
the optimal value of (13) with an error not greater than
mµ(k). Additionally, the approximation accuracy increases as
the µ(k) decreases. The sequential unconstrained minimization
technique (SUMT) in [10] provides a scheme for iteratively
reducing the sequence

{
µ(k)

}
. The specific steps are shown in

Algorithm 1.
The problem now becomes how to solve (16). To ensure

that the iterative sequence remains within S, we employ an



Algorithm 1 SUMT
Require: feasible point x(0), initial value µ > 0, error threshold ϵ >

0, scaling factor 0 < θ < 1.
1: while True do
2: starting from x(0), solve (16) to obtain x(µ)
3: update x(0) := x(µ)
4: if mµ < ϵ then
5: break the loop
6: end if
7: update µ := θµ
8: end while

improved Newton descent method and update the variables
according to the following rule:

x(k+1) = x(k) + α(k)d(k), (17)

where α(k) is the step size determined by the Armijo criterion
for the kth iteration. The search direction d(k) is determined
by the following linear system:(

∇2LB(x
(k)) + ∆(k)

)
d(k) = −∇LB(x

(k)), (18)

where ∆(k) is a diagonal matrix that ensures positive defi-
niteness of ∇2LB(x

(k)) + ∆(k). Since f(x) is a nonconvex
function, its Hessian matrix may not be positive definite, and
thus it requires diagonal modification to make sure d(k) a
direction of descent.

Subsequently, the Cholesky decomposition is used to factor-
ize this positive definite matrix and solve (18) to determine the
search direction:

LL′ = ∇2LB(x
(k)) + ∆(k), (19)

where L is the lower triangular matrix obtained from the
Cholesky decomposition of the corrected Hessian matrix.

Typically, unconstrained minimization methods are termi-
nated when the gradient of the objective function is sufficiently
small rather than strictly equal to zero [11]. We refer to the
following inequality as the stopping criterion for the iteration:∥∥∇LB(x

(k))
∥∥
2∥∥∇LB(x(0))
∥∥
2

≤ ε, (20)

where ε is a small positive scalar.
The LMLB algorithm builds upon SUMT, by first using the

improved Newton descent method to obtain the solution to (16)
corresponding to the initial value µ. This solution then serves
as the starting point for the next unconstrained minimization
problem, and µ is updated to further approximate, continuing
until the error is reduced to an acceptable level. The complete
algorithmic procedure is shown in Algorithm 2.

B. Algorithm complexity

The convergence analysis of LMLB is straightforward. By
employing the improved Newton descent method to solve (16),
when the initial barrier parameter µ(0) has been iteratively
reduced k times, the solution to (16) is a suboptimal solution

Algorithm 2 The Proposed LMLB Algorithm
Require: objective function, constraint functions, feasible point x(0),

initial value µ > 0, error threshold ϵ > 0, stop criterion scalar
ε > 0, scaling factor 0 < θ < 1.

Ensure: Rmax, xbest.
1: while m/µ ≥ ϵ do
2: while True do
3: calculate ∇LB(x

(k)), ∇2LB(x
(k))

4: calculate α(k) by Armijo criterion
5: let ∆(k) = 0
6: while ∇2LB(x

(k)) + ∆(k) is not positive definite do
7: update ∆(k) := max

{
10−6En, 2∆

(k)
}

8: end while
9: Cholesky decomposition according to (19)

10: solve d(k) according to (18)
11: update x(k) according to (17)
12: if (20) holds then
13: update x(0) = x(k)

14: break current loop
15: end if
16: end while
17: update µ := θµ
18: end while

that deviates from the optimal value of (13) by within mθkµ(0).
Consequently, after precisely⌈

log (ϵ/(mµ(0)))

log θ

⌉
(21)

solutions of (16), the algorithm can achieve the desired accuracy
requirement of ϵ. Next, we analyze the complexity required to
solve (16), multiplying this by (21) gives the total complexity.

In each iteration, we need to calculate the iteration step
size α(k) and the search direction d(k), respectively. Here, the
line search step to determine α(k) has a linear complexity. To
determine d(k), numerical methods (such as finite difference
method) are used to calculate ∇LB(x

(k)) and ∇2LB(x
(k)),

with corresponding complexities of O(n) and O(n2), respec-
tively. Directly attempting a Cholesky decomposition of the
Hessian matrix has complexity of O(n3). Incorporating the
above analysis, the overall computational complexity required
for each iteration is O(n3).

In general, the number of iterations required to solve (14)
using the Newton-like method is independent of the problem
dimension n and typically ranges from about 10 to 20 [11].
In practice, the number of iterations is more dependent on the
initial point, denoted as γ(x(0)). This is because the algorithm
exhibits quadratic convergence near the convergence point,
whereas if the initial point is far away, it may require more
iterations to enter the rapidly converging region [11].

Ignoring the impact of initial point selection and parameter
tuning, the computational complexity of solving the general
nonconvex optimization problem (13) using the LMLB algo-
rithm is O(n3 logm), where n is the dimension of the problem
and m represents the number of inequality constraints.

In the power allocation problem (12), if K = L >>
M = N , the computational complexity can be expressed as
O
(
(KM)3 logK

)
, the computational load of the algorithm



grows with the number of users K as K3 logK, and with the
number of base station antennas M as M3.

For heuristic algorithms SA and PSO, let the number of itera-
tions be denoted as γSA and γPSO, respectively. In each iteration,
the objective function and constraints must be evaluated, with
an assumed complexity of O(n+ nm). In SA, let the number
of inner loop iterations per iteration be denoted as γ0, thus
the overall complexity becomes O(γSA · γ0 · nm). For PSO,
let the number of particles be denoted as Q , and the overall
complexity is O(γPSO ·Q · nm).

Combining the previous discussion, heuristic algorithms have
linear complexity, which is significantly better than LMLB, but
they require more iterations and involve a larger number of
parameters that need empirical tuning. LMLB is more compu-
tationally efficient for smaller problem dimensions, but heuristic
algorithms are preferable for larger ones due to LMLB’s cubic
complexity increase with dimension.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we verify the effectiveness of our proposed
algorithm through simulation. We set the location of MBS at
(0, 0) with a radius of 500m and SBS at (600, 0) with a
radius of 100m. It is assumed that all users are randomly and
independently distributed in their respective cell. The specific
simulation parameters are shown in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Value

Bk, Bl/MHz 10, 5
σ2/dBm/Hz -174
PUL
l,max/W 3

PDL
max/W 10
M, N 4
K, L 8

Fig. 2 depicts the system sum rate and Lagrangian function
trends with the LMLB algorithm. The right-hand side vertical
axis shows the convergence gap on a logarithmic scale. The
figure also shows that smaller µ requires more iterations for
convergence and results in a smaller gap. However, excessively
small µ increases the gap due to the barrier term’s reduced
weight in LB , causing the iterative sequence to approach S
boundary.

Fig. 3 compares the system sum rate for varying user
numbers with the baseline CLI mitigation scheme from [12],
which uses Lagrange multipliers for power allocation. This
scheme outperforms SA and PSO but falls short of LMLB. At
lower dimensions, algorithmic differences are negligible, yet as
the problem dimensionality rises linearly with the number of
users, heuristic algorithms’ effectiveness diminishes exponen-
tially relative to LMLB due to the expanding solution space.

Fig. 4 shows the variations of two MUEs DL rate and two
SUEs UL rate, as well as the average MUEs DL rate. The
DL rate increases while the UL rate decreases, aligning with

Fig. 2. Sum rate and LB under different values of µ while using LMLB.

Fig. 3. Sum rate comparison for four algorithms under varying user numbers.

Fig. 4. The variations of individual MUEs’ DL rate and individual SUEs’ UL
rate, as well as the average MUEs’ DL rate under different number of iterations
in LMLB.



Fig. 5. The transmission power trends for an MBS antenna and the individual
MUEs on the DL, as well as the average UL transmission power of SUEs
under different number of iterations in LMLB.

Fig. 6. The number of iterations required by the modified Newton descent
method under various initial points configurations and different values of µ.

theoretical expectations. The DL rate significantly exceeds the
UL rate, making it the dominant factor in maximizing the
overall system rate. Enhancing the DL rate requires boosting
MBS transmission power, but this intensifies CLI for SBS,
adversely affecting the UL rate. This effect is reciprocal in the
small cell.

Fig. 5 illustrates the transmission power trends for an MBS
antenna and the individual MUEs on the DL, as well as the
average UL transmission power of SUEs. The figure shows a
gradual decrease of UL power, aligning with theoretical analy-
sis. Despite the DL rate’s significant role in optimization, higher
DL transmission power is not always beneficial due to increased
CLI and its potential to reduce the overall transmission rate of
the system.

Fig. 6 shows the convergence behavior of the modified
Newton descent method with respect to different initial points

and µ. The figure indicates that in general a greater distance to
the convergence point and a smaller µ lead to an increased
number of iterations, with extremely distant starting points
potentially preventing convergence. A smaller µ tightens the
approximation to the optimum, diminishes the barrier term’s
influence in LB , and enables closer approaches to the S
boundary, thus increasing iterations due to smaller steps.

V. CONCLUSIONS

In this paper, we have proposed the LMLB algorithm to ad-
dress power allocation problem in D-TDD based heterogeneous
network comprising MBSs that transmit signals on the DL
and SBSs that receive signals on the UL simultaneously. Our
objective is to maximize the DL-UL total sum rate. The LMLB
algorithm’s convergence, complexity, and performance relative
to SA and PSO are evaluated, with simulations indicating a
significant sum rate improvement. Theoretical analysis reveals
a conflicting relation between system performance and inter-
ference mitigation. Reducing transmission power can alleviate
the CLI while also potentially decreasing the system’s rate.
Simulation results corroborate this finding. Additionally, the
simulation experiments demonstrate that the convergence speed
of LMLB is sensitive to initial conditions: a more appropriate
configuration of initial values contributes to faster convergence.
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