Locally Regularised Orthogonal Least Squares Algorithm for the Construction of Sparse Kernel Regression Models

Sheng Chen

Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, U.K.
E-mail: sqc@ecs.soton.ac.uk

Presented at 6th International Conference on Signal Processing Beijing, China, August 26-30, 2002

Communication Group S Chen

Regression Model

$$y(k) = \hat{y}(k) + e(k) = \sum_{i=1}^{n_M} \theta_i \phi_i(k) + e(k), \ 1 \le k \le N$$

y(k): target or desired output, $e(k)=y(k)-\hat{y}(k)$, $\hat{y}(k)$: model output, θ_i : model weights, $\phi_i(k)$: regressors, n_M : number of candidate regressors, N: number of training samples.

Defining

$$\mathbf{y} = [y(1) \cdots y(N)]^T$$
, $\mathbf{e} = [e(1) \cdots e(N)]^T$, $\boldsymbol{\theta} = [\theta_1 \cdots \theta_{n_M}]^T$

$$\mathbf{\Phi} = [\boldsymbol{\phi}_1 \cdots \boldsymbol{\phi}_{n_M}]$$
 with $\boldsymbol{\phi}_i = [\phi_i(1) \cdots \phi_i(N)]^T$

leads to matrix form

$$y = \Phi\theta + e$$

Electronics and Computer Science University of Southampton

Motivation

Modelling from data: generalisation, interpretability, knowledge extraction \implies all depend on ability to construct appropriate sparse models

- O Parsimonious principle: subset model selection
 - * OLS: significance of individual selected terms
- O Bayesian learning: hyperparameters/regularisation to enforce sparsity
- Bayesian framework, maximum a posteriori (MAP)
 - * Evidence procedure
- * Markov chain Monte Carlo sampling
- * variational learning method
- Kernel-based data modelling
 - * support vector machines (structural risk minimisation)
 - * relevance vector machines (individual hyperparameters)
- OLS with individual regularisation.

S Chen

2

Communication Group

Orthogonalisation

Orthogonal decomposition: $oldsymbol{\Phi} = \mathbf{W} \mathbf{A}$, where

$$\mathbf{A} = \left[egin{array}{ccccc} 1 & a_{1,2} & \cdots & a_{1,n_M} \ 0 & 1 & \ddots & dots \ dots & \ddots & \ddots & a_{n_M-1,n_M} \ 0 & \cdots & 0 & 1 \end{array}
ight]$$

and $\mathbf{W} = [\mathbf{w}_1 \cdots \mathbf{w}_{n_M}]$ with orthogonal columns: $\mathbf{w}_i^T \mathbf{w}_i = 0$, if $i \neq j$.

Regression model becomes

$$y = Wg + e$$

with orthogonal weight vector $\mathbf{g} = [g_1 \cdots g_{n_M}]^T$ satisfying

$$\mathbf{A}\mathbf{ heta}=\mathbf{g}$$

4

Locally Regularised OLS Regression

Given regularisation parameter vector $\mathbf{\lambda} = [\lambda_1 \cdots \lambda_{n_M}]^T$ and denoting $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \cdots, \lambda_{n_M}\}$, locally regularised error criterion:

$$J_R(\mathbf{g}, oldsymbol{\lambda}) = \mathbf{e}^T \mathbf{e} + \mathbf{g}^T oldsymbol{\Lambda} \mathbf{g} = \mathbf{y}^T \mathbf{y} - \sum_{i=1}^{n_M} \left(\mathbf{w}_i^T \mathbf{w}_i + \lambda_i
ight) g_i^2$$

• Forward-regression procedure selects significant regressors according to regularised error reduction ratio due to each regressor \mathbf{w}_i

$$[\mathsf{rerr}]_i = \left(\mathbf{w}_i^T \mathbf{w}_i + \lambda_i\right) g_i^2 / \mathbf{y}^T \mathbf{y}$$

Selection terminated with n_s -term sub-model at the n_s -th stage when

$$1 - \sum_{l=1}^{n_s} [\mathsf{rerr}]_l < \xi$$

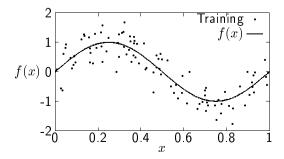
University of Southamptor

Communication Group S Chen

A Simple Example

Modelling f(x) given $y=f(x)+\epsilon$ and x. 100 x uniform distribution in $(0,\ 1)$ and ϵ zero mean Gaussian with variance 0.16.

The RBF Gaussian kernel function with variance of 0.04. Each training data was considered as a candidate RBF center and $n_M=100$.



Regularisation Parameter Update

Bayesian evidence procedure for updating regularisation parameters:

$$\lambda_i^{ ext{new}} = rac{\gamma_i^{ ext{old}}}{N - \gamma^{ ext{old}}} rac{\mathbf{e}^T \mathbf{e}}{g_i^2}, \quad 1 \leq i \leq n_M$$

where

$$\gamma_i = rac{\mathbf{w}_i^T \mathbf{w}_i}{\lambda_i + \mathbf{w}_i^T \mathbf{w}_i}$$
 and $\gamma = \sum_{i=1}^{n_M} \gamma_i$

Special cases of this LROLS — original OLS: $\lambda_i = 0$, $\forall i$

Initialization. Set all λ_i to same small positive value (e.g. 0.001)

Step 1. Given current λ , orthogonal forward procedure selects n_s -term subset model.

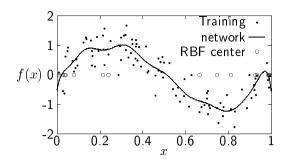
Step 2. Update λ . If λ remains sufficiently unchanged in two successive iterations or a pre-set maximum iteration number is reached, stop; otherwise go to $Step \ 1$.

Communication Group S Chen

stage $\it l$	accuracy $1-\sum [err]_l$	weight $ heta_l$	_	
1	0.6461718264	2.60935e+06	_	
2	0.2840641827	-2.28370e+06		
3	0.2416057207	-1.29831e+08		
4	0.2260673781	-2.21722e+09		
5	0.2189319619	3.63027e+08		
6	0.2179112365	1.66438e + 09		
7	0.2169210404	-3.19282e+09		
8	0.2156145110	1.70011e+09	OLS	
9	0.2135190658	4.06932e+09	Selection	
10	0.2113153903	-1.94658e+09		
11	0.2108713704	-2.72236e+08		
12	0.2095033180	-4.28658e+07		
13	0.2093349973	5.60372e+06		
14	0.2091282455	-1.59224e+06		
15	0.2068241235	3.83400 e + 05		
stop due to no term selected at 16 stage				

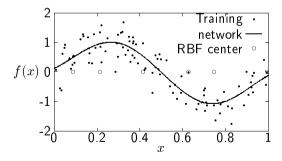
stop due to no term selected at 16 stage MSE over noisy training set: 0.147430

OLS Modelling Result



15-term model mapping (curve) produced by the OLS algorithm for the simple scalar function modelling problem. Dots indicate noisy training data y and circles the RBF centers.

LROLS Modelling Result

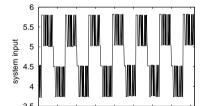


6-term model mapping (curve) produced by the LROLS algorithm for the simple scalar function modelling problem. Dots indicate noisy training data y and circles the RBF centers.

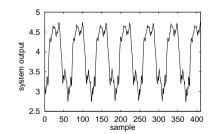
-				
stage l	accuracy $1 - \sum [\text{rerr}]_l$	weight $ heta_l$	regularizer λ_l	
1	0.6485054202	1.87494e+00	2.53227e-01	
2	0.2887313702	-1.70014e+00	1.81540e-01	
3	0.2500895914	-1.00970e+00	2.01490e-01	
4	0.2349327688	5.67310e-01	8.64601e-01	
5	0.2336724743	4.17979e-01	1.36357e+00	
<u>6</u>	0.2332827490	-1.51352e-01	6.93984e-01	LROLS
7	0.2332827490	-9.49873e-10	5.67623e+07	Selection
8	0.2332827490	-2.79967e-10	1.11770e + 08	
9	0.2332827490	7 14157e-11	1.03860e + 07	
10	0.2332827490	-2.05313e-12	1.92708e + 08	
11	0.2332827490	-1.32386e-13	7.85977e+08	
12	0.2332827490	2.29641e-14	4.09979e+08	
13	0.2332827490	-2.53260e-38	1.15132e + 32	

stop due to no term selected at 14 stage MSE over noisy training set: 0.159167

Engine Data Modelling



50 100 150 200 250 300 350 400



First 210 data points for modelling, last 200 points for testing

RBF model:
$$\hat{y}(k) = f_{RBF}(y(k-1), u(k-1), u(k-2))$$

model	MSE for training	MSE for testing
60-term (OLS)	0.000336	0.000872
34-term (LROLS)	0.000435	0.000487

11

Communication Group

10

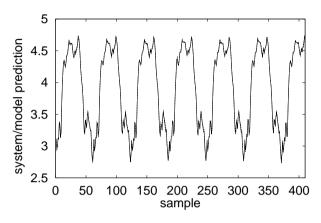
S Chen

Communication Group S Chen

Model one-step prediction with 34-term model by LROLS

$$\hat{y}(k) = f_{RBF}(y(k-1), u(k-1), u(k-2))$$

y(k): solid $\hat{y}(k)$: dashed



Electronics and
Computer Science

Communication Group S Chen

Conclusions

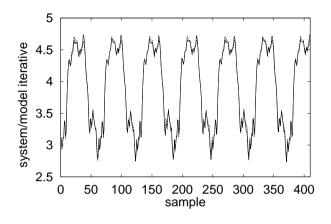
- Parsimonious principle based subset model selection
 - * OLS algorithm selects significant model terms
- Local regularisation re-enforces sparsity of selected model
 - * When to terminate subset model selection becomes obvious
- Combined algorithm is very efficient and capable of producing small-size models that generalize well

Communication Group S Chen

Model iterative output with 34-term model by LROLS

$$\hat{y}_d(k) = f_{RBF}(\hat{y}_d(k-1), u(k-1), u(k-2))$$

y(k): solid $\hat{y}_d(k)$: dashed



Electronics and
Computer Science

13

15

14