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Abstract

A novel technique is presented to construct sparse regression models based on the orthogonal least square
method with boosting. This technique tunes the mean vector and diagonal covariance matrix of individual re-
gressor by incrementally minimizing the training mean square error. An efficient weighted optimization method
is developed based on boosting to append regressors one by one in an orthogonal forward selection procedure.
Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to
the existing state-of-art kernel modeling methods for constructing parsimonious regression models.

I. INTRODUCTION

The orthogonal least square (OLS) algorithm [1]–[4] is popular for nonlinear data mod-
eling practicians, for the reason that the algorithm is simple and efficient, and is capable
of producing parsimonious linear-in-the-weights nonlinear models. Recently, the state-
of-art sparse kernel modeling techniques, such as the support vector machine and relevant
vector machine [5]–[8], have widely been adopted in data modeling applications. In most
of these sparse regression modeling techniques, a fixed common variance is used for all
the regressor kernels and the kernel centers are placed at the training input data.

We present a flexible construction method that can tune the mean vector and diago-
nal covariance matrix of individual regressor by incrementally minimizing the training
mean square error in an orthogonal forward selection procedure. To incrementally ap-
pend regressor one by one, a weighted optimization search algorithm is developed, which
is based on the idea from boosting [9]–[11]. Because kernel means are not restricted to
the training input data and each regressor has an individually tuned diagonal covariance
matrix, our method can produce very sparse models that generalize well.

II. ORTHOGONAL LEAST SQUARE REGRESSION MODELING

Consider the modeling problem of approximating the � pairs of training data �����	��
���
�������
with the regression model
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where � is the + -dimensional input variable, 
,�'��� is the target or desired output, �
,�'���
is the model output, and �*�'��� denotes the modeling error at � ; $

#
, -/.102.43 , denote

the model weights, 3 is the number of regressors, and

%*#
��5�� , -6.708.93 , denote

the regressors. We allow the regressor to be chosen as the general Gaussian function
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where the diagonal covariance matrix has the form of � #
� diag �����#�� � ������� �����#��  
 . We will

adopt an orthogonal forward selection to build up the regression model (1) by appending
regressors one by one. By defining ! �#" 
 � 
 � ����� 
 �%$ � ,& �'" (��)( � ������( ! $ with (+* �," % **�'��� � % * �'� � ������� % * �'� � � $ � (3)- �." $ � $ � ����� $ ! $ � and //�." �*�'��� � �*�'� � �+����� �*�'� � � $ � , the regression model (1) over
the training data set can be written in the matrix form! � & - �0/ (4)

Let an orthogonal decomposition of the regression matrix
&

be& �
132 (5)

where
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and 1 �>" ? �@? � �����A? ! $ with orthogonal columns that satisfy ? �# ?CB � 9
, if 0ED�8F . The

regression model (4) can alternatively be expressed as! �G1IH �0/ (7)

where the orthogonal weight vector H �J" K �%K � ������K ! $ � satisfies the triangular system2 - �8H . For the orthogonal regression model (7), the least square cost L �
/ � /NM � can
be expressed as L � -� / � / � -� ! � ! � -�

!" #
��� ? �# ? # K �# (8)

Thus the least square cost for the O -term subset model can be expressed recursively asL�*2�'LP* � � � -� ? � * ?Q*�K �* (9)

where LSR �T! � !UM � . At the O th stage of regression, the O th term is selected to maximize
the error reduction criterion ER * �
? �* ?Q*�KV�* M � . However, unlike the original OLS algo-
rithm [1]–[4], the maximization is with respect to the weight KV* , the mean vector � * and
the diagonal covariance matrix �W* of the O th regressor. The forward selection procedure
is terminated at the O th stage if L *YX[Z (10)

is satisfied, where the small positive scalar Z is a chosen tolerance. This produces a
parsimonious model containing O significant regressors. The termination of the model
construction process can alternatively be decided using cross validation.
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III. ORTHOGONAL LEAST SQUARE WITH BOOSTING

At the O th stage of regression, the task is to maximize � ���(� � ER * ��� � over ����� ,
where the vector � contains the regressor mean vector � and diagonal covariance matrix� . We use the following weighted search method to perform this optimization. Given� points of � , � � �	� � ������� �	��
 , let ����
�
�� ����������� ����� ��� # � � - . 0 . � 
 and ����� �!
�� ��"�	���$#&% ��� ��� # � � - . 0 . � 
 . A � � � -�� th value is generated by a weighted combination
of � # , - . 0 . � . A � � � � � th value is then generated as the mirror image of �'
�(�� , with
respect to �)��
�
�� , along the direction defined by ����
�
�� � ��
�(�� . The best of ��
�(�� and �)
�( �
then replaces � ��� �!
�� . The process is repeated until it converges. With the weightings
updated by boosting [9]–[11], this leads to the following OLSwB algorithm.

Initialization: Give the training data ���
#
� 

#

��
#
��� and LP* � � , and the � randomly chosen

initial values for � , � � �	� � ������� ���)
 . Set iteration index * � 9
and +-, �/.# � �
 for - . 0 . � .

1. For - . 0 . � , generate (0,
# .* from � # , the � candidates for the O th model column, and

orthogonalize them1 ,
# .B � * � ? �B (0,

# .*? �B ?CB � - . F X O�� ?2,
# .* �8(0,

# .* � * � �"B���� 1 ,
# .B � * ?CB

2. For - . 0�. � , calculate the loss of each point, namely

K3, # .* �
4 ?2,

# .*65 � !4 ? ,
# .*75 � ? ,

# .* � L),
# .* � LP* � � � -�

4 ?8,
# .* 5 � ?2,

# .* 4 K9, # .* 5 �
Step 1: Boosting
1. Find� ��
�
�� �:�������;#&% �SL , # .* ��- . 0�. � 
 �<� �����!
�� �:�"�	�'��� ���SL , # .* � - . 0�. � 

2. Normalize the loss =L),

# .* � L),
# .*> 
� ��� L), �?.* ��- . 0�. �

3. Compute a weighting factor @A� according toB � � 
" #
��� +C, �/.# =L),

# .* �<@D� � B �- � B �
4. Update the weighting vector

+ , �/(�� .#
�<EF G + , �/.# @IHJCKML&NO� for @ � . -&�+C, �/.# @ � � HJCKML&NO� for @P�8Q -&� - . 0 . �

5. Normalize the weighting vector

+C, �/(�� .#
� +C, �/((��.#

> 
� ��� + , �/((��.� � - .�0 . �
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Step 2: Parameter updating
1. Construct the � � � -�� th point using the formula

��
�((� � 
" #
��� +C, �/(�� .# � #

2. Construct the � � � � � th point using the formula��
�( � �:�)��
�
�� � ������
�
�� � �)
�(�� �
3. Orthogonalize these two candidate model columns and compute their losses.
4. Choose a better point from ��
�(�� and �)
�( � to replace �������!
�� (which inherits the

weighting + value from � �����	
�� ).
Repeat from Step 1 until the � � �6- � th value changes very little compared with the last

round, or a preset maximum number of iterations has been reached.
From the converged population of � points, find 0�* � �"�	�'�;#?%,�VL),

# .* � -8. 0 . � 
 and

select 1 B � * � 1 ,
# O .B � * , - . F X O ,

? * �T? ,
# O .* �G( , # O .* � * � �"B���� 1 B � * ? B

with L * � L , # O .* , and K * � K , # O .* . This also determines the O th regressor’s mean vector
and diagonal covariance matrix.

IV. EXPERIMENTAL RESULTS

Example 1. The 500 points of training data were generated from


,� � � � 9�� - � � � #?% �� � � #?% 9�� � � � B (11)

with � � " � - 9 � - 9 $ , where B was a Gaussian white noise with zero mean and variance
0.01. The population size used in OLSwB was � ��� . With the modeling accuracy
set to Z � 9�� 9 - � , the model construction procedure produced 	 Gaussian regressors,
as summarized in Table I. Fig. 1 (a) depicts the model output �
,� � � generated from the
constructed 6-term model, in comparison with the noisy training data 
�� � � , and Fig. 1 (b)
shows the corresponding modeling error �*� � � � 
,� � � � �
,� � � .

TABLE I

OLSwB MODELING PROCEDURE FOR THE SIMPLE FUNCTION EXAMPLE.

regression step 
 mean �
� variance ���� weight ��� MSE ���
0 – – – 0.8431
1 2.6911 4.2480 2.3527 0.3703
2 -4.0652 2.1710 -2.5197 0.0339
3 3.0314 2.0059 -1.0609 0.0172
4 -4.1771 1.0909 0.8982 0.0151
5 -1.9783 64.0000 0.1190 0.0129
6 6.6853 0.3894 0.1548 0.0118
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Fig. 1. The simple function approximation: (a) noisy training data ������� (rough light curve) and model output�������� (smooth dark curve), and (b) modeling error 	
�������
��������� �������� .

Example 2. This example constructed a model representing the relationship between the
fuel rack position (input � �/* � ) and the engine speed (output 
���* � ) for a Leyland TL11 tur-
bocharged, direct injection diesel engine operated at low engine speed. Detailed system
description and experimental setup can be found in [12]. The input-output data set con-
tained 410 samples. The first 210 data points were used in training and the last 200 points
in model validation. The previous study [4] has shown that this data set can be modeled
adequately as 


#
� �"
 �'� # � � B # , with 


#
� 
���0 � , �

#
�#" 
,��0 � - ��� �'0 � -���� �'0 � � � $ � , where�"
 � 5&� describes the unknown underlying system to be identified and B # � B �'0 � denotes the

system noise.

With a population size � ���
� and a preset modeling accuracy of Z � 9�� 9S9V9 � �
, the

OLSwB modeling procedure produced 6 Gaussian regressors, as listed in Table II. The
MSE value of the constructed 6-term model over the testing set was

9�� 9S9V9 � ��� . Fig. 2
(a) depicts the model prediction �
���* � superimposed on the system output 
,�/* � and Fig. 2
(b) shows the model prediction error �*�/* � � 
,�/* � � �
,�/* � for this 6-term model. It is
worth pointing out that to achieve a same modeling accuracy for this data set the existing
state-of-art kernel regression techniques required at least 22 regressors [4],[13].

V. CONCLUSIONS

A novel construction algorithm has been proposed for parsimonious regression model-
ing based on the OLS algorithm with boosting. The proposed algorithm has the ability to
tune the mean vector and diagonal covariance matrix of individual regressor to incremen-

TABLE II

OLSwB MODELING PROCEDURE FOR THE ENGINE DATA SET.

step 
 mean vector � � diagonal covariance � � weight � � MSE �����������
0 – – – 1558.9
1 5.2219 5.5839 5.6416 7.3532 21.0894 22.4661 6.0396 0.3866
2 4.2542 5.2741 4.1028 1.8680 10.0863 49.8826 -1.2845 0.1311
3 3.8826 5.1707 6.3200 0.1600 0.1600 64.0000 -0.1539 0.0996
4 2.3154 3.2544 5.4897 0.9447 0.3329 11.7564 -0.1433 0.0913
5 4.0673 4.4276 3.5963 0.1608 18.3731 0.2207 0.1945 0.0740
6 2.3663 3.2377 5.1376 0.1754 0.9317 0.1600 0.9658 0.0547
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tally minimize the training mean square error. A weighted optimization search method
has been developed based on boosting to append regressors one by one in an orthogo-
nal forward regression procedure. Experimental results presented have demonstrated the
effectiveness of the proposed technique.
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[11] R. Meir and G. Rätsch, “An introduction to boosting and leveraging,” in: S. Mendelson and A. Smola,

eds., Advanced Lectures in Machine Learning. Springer Verlag, 2003, pp.119–184.
[12] S.A. Billings, S. Chen and R.J. Backhouse, “The identification of linear and non-linear models of a tur-

bocharged automotive diesel engine,” Mechanical Systems and Signal Processing, Vol.3, No.2, pp.123–
142, 1989.

[13] S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modelling using orthogonal forward regression
with PRESS statistic and regularization,” IEEE Trans. Systems, Man and Cybernetics, Part B, to appear,
2004.

 2.5

 3

 3.5

 4

 4.5

 5

 0  50  100  150  200  250  300  350  400

S
ys

te
m

 o
ut

pu
t/M

od
el

 p
re

di
ct

io
n

sample

-0.1

-0.05

 0

 0.05

 0.1

 0  50  100  150  200  250  300  350  400

M
od

el
 p

re
di

ct
io

n 
er

ro
r

sample

(a) (b)

Fig. 2. The engine data set: (a) model prediction
������ � (dashed) superimposed on system output ����� � (solid),

and (b) model prediction error 	
��� ��� ����� ��� ������ � .


