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Outline

[1 Motivations and existing approaches for parsimonious
kernel data modelling

[1 The proposed unified data modelling approach for
[1 regression (supervised learning)
[ (supervised learning)

[1 density estimation (unsupervised learning)

[1 Experimental investigation of the proposed approach
and comparison with some existing techniques
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Motivations

[1 In kernel data modelling, training data are all one has to build a model

[1 Yet objective of modelling from data is not that model simply fits
training data well

[1 Rather, goodness of a model is characterised by its generalisation

capability, and ease of knowledge extraction

[1 All depend crucially on ability to construct models that

capture underlying data generating mechanism

[1 How to measure goodness of modelling process

[1 Generalisation performance
[] level or model size

[1 Computational efficiency of modelling process
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Data Modelling Classes

[1 Supervised learning
[1 Regression: infer model f : R™ — R that captures data generating
machanism f : R™ — R based on training data Dy = {xx, Yk},
generated from y = f(x) + e, e being observation noise
0 Classification (two-class): infer classifier f : R™ — {—1,+1} that
models data generating machanism f : R™ — {—1,+1} based on

training data Dy = {xx, Yk }o_,, Yx being class label for xj

[] learning

[1 Probability density function estimation: infer estimate f R™ —
R, based on training data Dy = {x;}+_, drawn from unknown true
density f: R™ — R4

[1 Desired response for x; is unavailable, and this is constrained learn-
ing, as [ fu)du=1
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Overview of Existing Methods

L techniques, e.g. support vector machines

[1 From full kernel model, try to obtain sparse representation by making

many kernel weights to (near) zeros

[1 Robust and optimal; in practice, not as sparse as OLS approach, and

a few hyperparameters to tune

[1 Orthogonal-least-squares algorithm for forward selection,

[J Use computationally efficient OLS to choose a small subset of signifi-
cant kernels one by one

[1 Suboptimal; in practice, much sparser models with equally good gen-

eralisation performance, and fewer hyperparameters to tune

[1 This work adopts OLS for forward selection based on leave-one-out test

criterion and
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Unified Data Modelling

[1 Placing a kernel on each training data x; and combining all

model bases
N
J(x) =) Bek,(x,xx)
k=1

[1 Adavantage is linear least squares solution readily available for weights

[, but it is critically important to obtain sparse representation

[1 Gaussian kernel

( Ix—cp II”
e 20 for regression and classification,
K,(x,c) = 4 lix—cll2

1)m e 2% for density estimation,

(27'rp2

[1 Kernel width p is usually not provided by modelling algorithm itself and

must be determined via cross validation
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Regression Modelling

[1 At a training point (Xx,yx) € Dy, kernel model can be expressed as
N
Yk = Uk + €x = ZﬁiKp(Xk,xi) +er=¢ (k)B+ e
1=1

where €, = yr — Ui 1S at x, B = [B1 B2+ Bn]! and
d(k) = [Kk1 Kro- - K n]!' with Ki; = K, (Xg, X;)

[1 By defining regression matrix
P =[p; ¢y Py

with ¢, = [K1 s Kog- - Kng|t for 1<k <N,y =[y1 y2---yn]’ and

€ = [e1 ea---en]?, regression model over Dy can be expressed as
y=®0+e€

0 Note ¢, is k-th column of ®, while ¢* (k) denotes k-th of ®
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Orthogonal Decomposition

[1 Orthogonal decomposition of . & = WA, where
I 1 a2 --- ai,N |
0 1
A —
aN—-1,N
0 - 0 1

W = [w; wy---wy| with orthogonal columns: w!w; =0, if i # j

[1 Regression model can alternatively be expressed as y = W g + €,
where new weight vector g = [g1 g2 - - - gn|’ satisfies AB =g

[ Space spanned by ¢, 1s identical to space spanned by
orthogonal bases wy, and model is equivalently expressed by g =
wl(k)g, where w! (k) = [wg1 wk,2 - wk n] is k-th row of W
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Local Regularisation

[1 Regularised LS solution for g is obtained by minimising

N
Jr(g, ) =€ €+ Z Ngi =€ e+ g’ Ag
1 =1
[1 Hyperparameters )\; specify of g, and initially
A; are set to same small value (same flat distribution for each prior of g;)

[1 Evidence procedure is used to update regularisation parameters

old T

new Vi € € .
)‘i _N—fyOld 92,1§Z§N

where ¢g; for 1 <17 < N denote current estimated parameter values, and

— wlw,
v = Z% with ; = e
i=1

Ni +wlw;

[0 A few iterations (typically < 10) are sufficient to find (near) optimal A
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Leave-One-Out Cross Validation

[] cross validation
[0 Remove k-th data from Dy and use resultant D, \ (xx, yx) to identify
a n-term model, denoting as f (n,—k)
[0 Test error for this n-term model calculated on (xg,yx) not used in
tralning is
e M =y — FTP i) = g — gy

] for 1 < k < N to obtain leave-one-out test mean square error

1 N o

_ (?’L,—k’)

Jn = N kz (e’f )
=1

which is a measure of n-term model’s generalisation performance

[1 No need to repeatedly remove a data point and identify corresponding

model
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Leave-One-Out Model Selection

(n,—k) _ )/ (1)

[1 It can be shown that leave-one-out test error is € = €

(1)

[l n-term modelling error €, can be expressed as

e,gn) — egc n—1) — Wk.nGn

where wy, 5, is k-th element of w,

[0 Leave-one-out error weighting n,g”)

2
(n) _ , (n—1) Wk n
Te = T Wi W, + A,

[1 At n-th stage of OLS selection procedure, n-th model term is selected

to minimise leave-one-out test mean square error .J,

[ Selection procedure is automatically terminated when Jy 11 > Jn_,

where Ny, < N, yielding Ns-term sparse model
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Engine Data Set

[1 Modelling relationship between fuel rack position (input ux) and

(output yi) for a diesel engine operated at low engine speed

e Data set contained 410 samples with first 210 points for training and last 200
points for test

e This data set can be represented as yr = f(xx) + er where e, denotes system
noise and Xx = [yYr_1 Uk_1 Uk_2]|"

e Optimal Gaussian kernel variance p* = 1.69 was found empirically
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Engine Data Set (continue)

e Modelling accuracy for

the engine data set us-
. OLS

ing proposed OLS and

SVM algorithms SVM

algorithm | model size | training MSE | test MSE
22 0.000453 0.000490
92 0.000447 0.000498

e Modelling for engine data set using OLS: (a) prediction g (dashed) superim-

posed on system output yi (solid), and (b) prediction error €, = yr — Uk
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Boston Housing Data Set

e Boston housing data set: a regression benchmark comprised 506 data

points with 14 variables
— Predict median house value from remaining 13 attributes

— 456 data points were randomly selected for training and remaining 50
data points were used to form test set

— Average results were given over 100 repetitions
— Optimal Gaussian kernel width was found via cross validation

e Modelling accuracy for Boston housing data set: Results were averaged
over 100 realizations and quoted as mean+tstandard deviation

algorithm | model size training MSE test MSE
58.6 £ 11.3 | 12.9690 + 2.6628 | 17.4157 + 4.6670
SVM 243.2 £5.3 | 6.7986 4+ 0.4444 | 23.1750 4+ 9.0459
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Kernel Classification

0 Given training set Dy = {Xy, Yk}, where x;, € R™ is
and y, € {—1,+1} is class label for x; = construct kernel classifier

Ui = sgn (Yx) with g5 = Z Bi K Xk, X;)

Uk is estimated class label for xj, sgn(y) = —1 if y < 0 and sgn(y) = +1
ity >0
[J Define modelling error ¢, = y, — Y = classification model over Dy

can be expressed as: y=® 3+ €

[1 Or equivalently in orthogonal regression model form: y = W g+,

where all relevant notations are as defined for regression modelling

[] has same regression modelling form, but

how good a classifier is is judged by its misclassification rate
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Leave-One-Out Misclassification Rate

Define leave-one-out signed decision variable: s,(gn’_k) = g,i” _k),

o(n—k)

where 7, of n-term model evaluated at k-th data

sample not used in training

Leave-one-out misclassification rate can be computed as

In NZI ( 5 _k))

indicator function Zy(y) =1 if y <0 and Zy(y) =0ify > 0

From leave-one-out n-term modelling error, it can be shown that leave-

one-out n-term signed decision variable is: sl(cn’_k) (n) /M (n)

(1)

Leave-one-out error weighting 1, ’ can be computed recursively and
similarly
2

(n) _ wk:,n
k

(n—1) .
=Yy + Yk gn Wk n wiw. £
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Breast Cancer Data Set

Average classification test error rate in % over 100 realizations

method test error rate | model size

RBF-Network 27.64 £4.71 5
AdaBoost with RBF-Network | 30.36 +4.73 5
LP-Reg-AdaBoost (-”-) 26.79 +6.08 3
QP-Reg-AdaBoost (-7-) 25.91 +4.61 5
AdaBoost-Reg (-”-) 26.51 4+ 4.47 5

SVM with RBF-Kernel 26.04 +4.74 | not available

Kernel Fisher Discriminant 24.77 £4.63 200
OLS 25.74 +£5.00 6.0 + 2.0

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm
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Diabetis Data Set

Average classification test error rate in % over 100 realizations

method test error rate | model size

RBF-Network 24.29 + 1.88 15
AdaBoost with RBF-Network | 26.47 £ 2.29 15
LP-Reg-AdaBoost (-”-) 24.11+1.90 15
QP-Reg-AdaBoost (-7-) 25.39 4+ 2.20 15
AdaBoost-Reg (-”-) 23.79 +1.80 15

SVM with RBF-Kernel 23.53 = 1.73 | not available
Kernel Fisher Discriminant 23.21 £1.63 468

OLS 23.00 £ 1.70 6.0+ 1.0

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm
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Kernel Density Estimation

[0 Parzen window estimate f(x;Bp.;, Prar) can be regarded as “obser-
vation” of true density contaminated by “observation noise”

A

f(%; Bpars pPar) = f(Xx) + €(x)

[ Kernel density estimation can be viewed as constrained regression
with Parzen window estimate as desired response

N
]E(XJ Bpars PPar) = Zﬁka(Xa Xk:) + G(X)

k=1

subject to constraints 8, > 0,1 <k < N, and Bliy =1

[0 Define yr = f(Xk; Bpar, pPrar) and € = €(Xx) = density estimation is
expressed as regression modelling: y = ®3 + €, or alternatively:
y=Wg+e

[1 Subject to nonnegative and unity constraints

IDEAL 2007 ﬂ School of ECS, University of Southampton, UK 19


http://www-mobile.ecs.soton.ac.uk
http://www.cercia.ac.uk/other/2007/ideal

Kernel Density Construction

[ OLS sparse kernel regression modelling algorithm to select sparse
N,-term subset model, where N, < N

e This determines structure of density estimate, containing N, signifi-

cant kernels

[0 Multiplicative nonnegative quadratic programming to calculate
kernel weights

e Formally, task is to find By for regression model
y = (I)NS/BNS T €
e Subject to nonnegative constraint
Bi >0, 1 <i< N

and unity constraint
By 1n, =1
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One-Dimensional Example

e Density to be estimated was mixture of Gaussian and Laplacian

1 _ (z—2)? 0.7 —0.7|z+2|
r) = e 2+ —e 7
p(r) = S 7= 1

— Number of training data points was N = 100, separate test data set
of Niest = 10,000 samples was used to calculate L test error

Li= 57— D, Ip(xx) = (x4 B, )

together with Kullback-Leibler divergence

KLD = / p(x) log (ﬁ(i-(;) p)) dx

— Experiment was repeated N,,, = 100 times, optimal kernel widths

were found to be p = 0.54 and p = 1.1 empirically for Parzen window
estimate and proposed sparse kernel density estimate, respectively
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One-Dimensional Example (continue)

e Performance comparsion

method L4 test error K-L divergence kernel no.
PWE | (1.9963 £0.6179) x 1072 | (8.0003 & 5.1662) x 102 100+ 0
OLS (2.0213 £ 0.6535) x 1072 | (8.1419 £5.0102) x 1072 | 5.141.2
e A Parzen window estimate and a sparse kernel density estimate, in com-
parison with true density
0.25 - 0.25
true PDF - true PDF -
02 | Parzen 02 | SKDE
. 0.15 i = 0.15
= 0.1 / k = 0.1
0.05 / 0.05
-10 -5 0 5 -10 5 0 5
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Six-Dimensional Example

e Density to be estimated was mixture of three Gaussian distributions

l(x—ui)Trfl(x—Hi)
SZ 6/2 det1/2yI‘|€ 2

p, =[1.01.01.0 1.0 1.0 1.0]" Ty = diag{1.0,2.0,1.0,2.0,1.0,2.0}

py=[-1.0-1.0—-1.0 —1.0 —1.0 —1.0]" TI'y = diag{2.0,1.0,2.0,1.0,2.0,1.0}
ps = [0.0 0.0 0.0 0.0 0.0 0.0]" T's = diag{2.0,1.0,2.0,1.0,2.0,1.0}
— N =600, Niest = 10,000 and Ny, = 100

e Performance comparsion

method L1 test error kernel number
Parzen window estimate | (3.5195+0.1616) x 10~° 600 £ 0
proposed SKD estimate | (3.1134 & 0.5335) x 10° 9.44+1.9
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Conclusions

[0 A unified regression framework has been proposed
e applicable to supervised regression and classification problems

e as well as unsupervised probability density function learning

[1 An efficient algorithm has been developed based on
e orthogonal least squares forward selection procedure

e incrementally minimises leave-one-out criterion coupled with local

regularisation
e multiplicative nonnegative quadratic programming for kernel
density weights
[1 Proposed method is computationally efficient

e capable of constructing very sparse kernel models with excellent gen-

eralisation capability
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