Multi-output regression using a locally regularised
orthogonal least-squares algorithm

S. Chen

Abstract: The paper considers data modelling using multi-output regression models. A locally
regularised orthogonal least-squares (LROLS) algorithm is proposed for constructing sparse
multi-output regression models that generalise well. By associating each regressor in the
regression model with an individual regularisation parameter, the ability of the multi-output
orthogonal least-squares (OLS) model selection to produce a parsimonious model with a good

generalisation performance is greatly enhanced.

1 Introduction

Data-modelling practicioners have traditionally relied on the
parsimonious principle to combat over-fitting. Apart from
the obvious computational advantage, small models often
generalisc better. Among various construction algorithms
for producing parsimonious models, e.g. [1-6], the ortho-
gonal least-squarcs (OLS) algorithm [1, 2] has certain
advantages. A key feature of this algorithm is its ability to
show the contribution of an individual selected model
regressor to the modelling accuracy. This ability to provide
quantitative information regarding the significance of an
individual regressor enables the algerithm to select only the
significant regressors and is responsible for producing
parsimonious models. In practical modelling problems,
full data matrices are usually ill-conditioned and often
non-invertible. A simple mechanism is automatically built
into the OLS algorithm to avoid any ill-conditioning of
learning problems, and the algorithm does not require an
inverse of the full data matrix, as many other data modelling
algorithms do. The parsimonious principle alone, however,
is not entirely immune to over-fitting. If the data are highly
noisy, the small models constructed may still fit into the
noise, A useful technique for overcoming over-fitting is
regularisation [7, 8]. A uniformly regularised OLS
(UROLS) algorithm [9] has been proposed for single-
output regression, which employs a single uniform regular-
isation parameter for each weight in the model. From the
Bayesian learning viewpoint, a regularisation parameter is
equivalent to the ratio of the related hyperparameter to a
noise parameter [10].

The Bayesian lecarning framework is perhaps the most
general and powerful learning technique for data model-
ling. Various Bayesian learning methods can be cate-
gorised into three specific classes: the type-1I maximum
likelihood or ¢vidence procedure, the Markov chain Monte
Carlo sampling approach and the variational learning
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method. For a recent review of these Bayesian learning
methods see, for example, {11]. All the Bayesian learning
algorithms are conceptually complicated and computation-
ally expensive. The evidence procedure, which iteratively
optimises model parameters and assoctated hyperpara-
meters [10], is relatively simple. Applying the evidence
procedure to single-output kernel regression models leads
to the relevance vector machine (RVM) method [12]. A key
feature of the RVM is the introduction of an individual
hyperparameter for each weight in the regression model.
During the optimisation process, many of these hyperpara-
meters are driven to large values, so that the corresponding
model weights are effectively forced to be zero. A draw-
back of the RVM method is that the iterative optimisation
process involved is inherently ilf-conditioned, and numeri-
cally robust methods, such as the singular value decom-
position or other pseudo-inverse algorithms, often have to
be used to solve for the corresponding optimisation
problem. Recent work [13] has combined the idea of
OLS subset model selection with an individually regu-
larised approach to derive a single-output LROLS algo-
rithm, which does not suffer from this disadvantage.

For multi-output regression, the choice of construction
algorithms is far less than for the single-output case. One
approach is to fit multiple singlc-output models as, for
example, in [14]. An alternative is to construct a single
multi-output regression model as, for example, in [15].
The latter approach has some advantages: a selected
regressor must be significant in explaining all the outputs,
and this can result in a smaller number of regressors
overall than the former approach to achieve the same
modelling accuracy. This paper proposes combining the
local regularisation approach with the multi-output OLS
regression. For an effective updating of regularisation
parameters, the single-output evidence procedure of [10]
1s extended to the multi-output case. In this proposed
multi-output LROLS algorithm, regularisation is intro-
duced in the orthogonal weight space, and the Hessian
matrix needed for updating the regularisation parameters
is diagonal. This offers considerable numerical advan-
tages: the algorithm retains the ability to select significant
regressors and local regularisation further enforces spar-
sity. The end result is therefore a very efficient yet simple
algorithm for constructing sparse multi-output regression
models that generalise well, especially under highly noisy
learning conditions.
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2 The multi-output regression model

Consider the multi-output regression model of the form
yi{k) = pilk) + ek)
M
= 0 +ell) 1<k<N (1
J=1

for 1 <i<n,, where y,(k) is the ith target or desired output,
ei{k) 1s the error between y{k) and the ith model output
¥i(k), 6, are the model weights, ¢;(k) are the regressors, M
is the total number of candidate regressors, n, the number
of outputs and N the number of training samples. Define

e I e ] I
hi = ,: e=| " i~ :J @)
V) edN) O,
for | <i<n, and
P=[d, b, - bl (3)

with

¢j = [¢_}(1) (ibj(z)

The multi-output regression model (1) becomes

p" 1=j=M (4

yi=®8 +e 1<i<n, %)
Further define
Y= » - nl @=(6, 6, --- 0,]
E=le, e -+ ¢] (6)

The regression model (1) can be rewritten in the matrix
form as

Y=00O +E (7

Let an orthogenal decomposition of the regression
matrix ¢ be

b =WA (8)
where
I ay, aLm
a=(% ©)
oGy
0 0 1
and
W={w w2 - wyl (19)

with orthogonal columns that satisfy wiw,=0, if j#/
The regression model (7) can alternatively be expressed as

Y=WG+E (an
where the orthogonal weight matrix
G=[g & - &l (12)
with
g=lg &u gyl 1<i<nm, (13)
and & satisfies the triangular system ‘
AO =G (14)

Knowing 4 and G, O can readily be solved from (14).
186

3 Multi-output locally regularised OLS algorithm

With local regularisation, each orthogonal regressor w; has
an associated regularisation parameter ;. Denote the
regularisation parameter vector as A=[i; A, --- 3,7 and
a diagonal matrix A =diag{i;, 43,..., Zy}. The multi-
output LROLS algorithm is based on the following regu-
larised error criterion:

Jo(G, A) = trace(ETE + GTAG)

= 2 (eje+glAg)

i=1

n, M /n,
=Y ele+ (Z gj;,i) A (15)
i=1 J i=1

The original multi-output OLS algorithm [15] can be
viewed as a special case of this LROLS algorithm with
=0, ¥j. It is also possible to derive a multi-output
UROLS algorithm by setting 1,=2, Vj, just as in the
single-output case [3].

After some simplification {see the Appendix,
Section 7.1), the criterion (15) can be expressed as

trace(ETE + GTAG) = trace(¥Y'Y — GT{WTW + A)G)

(16)
or
trace(E'E + G'AG) = iyfy, - i(nz] gﬁ,-) (w/w; + 7))
i= AN\E
(17}

Normalising (16) by trace(¥'¥) yields

2 T 1y
trace(ETE + GTAG) ] M (2 8;',;) (wj "t A’r)

trace(YTY) B = trace(Y7 ¥)

(18)

Define the regularised error reduction ratio due to the
regressor w; as

(Z; gizj) (wiwy + 4p)

trace(¥ T Y)

(19)

[rerr]; =

Based on this ratio, significant regressors can be selected in
a forward-regression procedure, exactly as in the case of
the multi-output OLS algorithm [15]. The selection is
terminated at the M,th stage when

M\'
- ; [rers]; < & (20

is satisfied, where 0 <& <1 is a chosen tolerance. This
produces a sparse model containing M, (< M) significant
regressors. The detailed algorithm-selection procedure is
given in the Appendix (Section 7.2)}. Notice that, in the
selection procedure, if wjw; is too small (near zero), this
term will not be selected. Thus, any ill-conditioning or
singular situations can automatically be avoided.

The Bayesian evidence procedure [10] can readily
be extended to the multi-output case and thus used
to ‘optimise’ the regularisation parameters. From the
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Bayesian viewpoint, the following error criterion is equiva-
lent to the criterion (15):

Jo(G. h. B) = %trace(,’}ETE +G'HG)
,8 n, r 1 M L )
:igei ei+5,§(g=zg&'i)hf 2L
where fi is a noise parameter, A=[h; hy--- hy)" is the
hyperparameter vector and H=diag{/,, h,,..., hy}. The

relationship between a regularisation parameter and its
corresponding hyperparameter is obviously given by

li=
= (22)

Following MacKay [10], it can be shown that the log
evidence for o and [ is (see the Appendix, Section 7.3)

log(evidence) = ~%trace([fET E+G'HG)
i n, M
— S log(det(B)) + " log(h;)
2 2 5 '

+%log(ﬁ) te- 3)

where ¢ is a constant that does not depend on / and f, and
the (#,M) x (n,M) diagonal matrix

B, 0 - 0
g=| ® B (24)
: . .0
0 .- 0 B

with the M x M diagonal matrix B, given by
By = H + pW™W = diag(h, + Bw]w,.
hy + ﬂwzrwz, ey + ,BwLwM} (25)

Setting the derivatives of log(evidence) with respect to &
and f to zeros vields the updating formulas for & and §,
respectively, as given in Section 7.3. Substituting these
updating formulas into (22) results in the updating formu-
las for the regularisation parameters:

#,
T
oid D EiE
siew 'yj i=1

b “N_Yofd' n,
Zgjzj

=

1 <j<M {26)

where
i
3=t 27)
}.j + Wi
and
M
7= Z] ¥ (28)
j=

The iterative regression-model selection procedure can
now be summarised:

Initialisation: Set A;, 1 <j <M to the same small positive
value, e.g. 0.001.

Step 1. Given the current A, use the procedure described in
Section 7.2 to select a subset model with M, terms.

Step 2. Update A using (26)-(28) with M=AM,. If A
remains sufficiently unchanged in two successive iterations
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or a pre-set maximum iteration number is reached, stop;
otherwise go to step 1.

At the beginning of the iterative loop, the value of & for
terminating the subset model selection can deliberately be
chosen to be smaller than really needed, so that step 1
produces a M,-term model which is larger than is really
needed. This ensures that no significant terms are lost when
A is far from its optimal value. When A has converged
(typically after 10 to 30 iterations), an appropriate value of
¢ should then be used to produce a parsimenious final
model.

The ideal value of £ can usually be learnt by interacting
with the selection procedure [1, 16], or a cross-validation
using a separate testing data set can be used to learn an
appropriate value for £ Alternatively, the selection can be
terminated when the Akaike information criterion

AIC(y) = N log(det(N ' ETEY) + M,y (29)
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Fig. 1 Two-dimensional representations of the noisy time series
observations

Initial conditions were 3,(0)=y,{(—1)=1,(0) = 12(—1) = 0.0, and the
covariance of the noise was 0.04/5

a Phase plot of noisy time series v, (k)

b Phase plot of noisy time series ya{k)
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Table 1: Comparison of the OLS and LROLS algorithms for the simulated two-output

nonlinear time series modelling example

Algorithm Training set CoviE) Testing set CovlE}

oLs 3.404865 x 1072 4.109623 x 10~* 5.330108 x 1072 3.248144 x 1073
4109623 % 107! 3.359714 x 1072 3.248144 x 107°  4.879024 x 1072
log(det{Covi{B))) =—6.7734% logldet{Cov(E)})) = —5.95610

LROLS 3.550233x 1072 5.748453 x 107° 5070231 x 10~? 2.858339 x 103

5746453 x 107° 3.481578 x 1072
log(det(Cav{E))) = —6.69587

2.858339 % 107° 4.560991x 1077
logldet(Cov(E))=—6.07293

Covi(E) = one-step prediction error covariance

reaches its minimum [17], where y is the critical value of
the chi-squared distribution with one degree of freedom for
a given level of significance. It should be pointed out,
however, that the choice of ¢ is less critical than the
original OLS algorithm. In the original OLS selection
procedure, when data is very noisy, it is possible that the
normalised error measure 1 — > [err]; continuously
decreases as more terms are added. This may lead to
over-fitting unless the value of & is chosen carefully. As
is demonstrated in the single-output case [13], multiple
regularisers enforce sparsity, and 1 — 3 [rerr]; will not
continuously decrease as more terms arc added. This is
because those unnecessarily added terms will have a very
large /; associated with them, effectively forcing their
weights to be zero. This also helps to determine how
many regressors to include in the final model.

4 Nonlinear system modelling examples

Three examples are used to illustrate the multi-output
LROLS algorithm and to compare it with the original OLS
algorithm. The regression model employed is the multi-
output radial basis function (RBF) network of the form:

M
Plk) = Z] 0; i, (k)
=

M
= Zlfi,-‘,-qb(nx(k) —ql) 1=i=n, {30
j:

with the thin-plate-spline function
o) = r*log(r) (3D
where the input vector to the RBF network is
x(k) = [y (k) xy(k) n,®F G2

and ¢;, of dimension n,, are the RBF centres.

Example 1. This was a simulated two-output time-scrics
process. The data set contained 1000 noisy observations
generated using the model

yi{k} = 0.1sin(my,(k — 1))

+(0.8—0.5exp—3(k — D)y, (k = 1)

— (03409 exp(—y ik — DDy (k —2) + ¢, (k)
Yalk) = 0.6y,(k — 1)+ 0.2y, (k — Dy, (k — 2)

+ 1.2 tanh(y;(k — 2)) + ¢, (#) (33}
given the initial conditions y((0)=y(—1)=y(0)=
y{—1)=0, where the zero-mean Gaussian noise e(k)=

[€,(k) €:(k)]" had a covariance 0.04I, with I, being the
2 x 2 identity matrix. The first 500 data samples were used
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for training and the other 500 samples for validating the
obtained model. The noisy training data set is depicted in
Fig. 1. A two-output RBF network was used to model this
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Fig. 2 Two-dimensional representations of the noise-free time
series observations

Initial conditions were y () =y, (—1)=3p(0) =yp{—1)=0.1

a Phase plot of noise-free time series vn(k)

& Phase plot of noise-free time series y,a(k)
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time series, with the input vector to the RBF netwark
given by

xhy=Dntk—1) pk=2) pnk=1) wnk-21
(34)

Asg each training input was used as a candidate RBF centre,
the number of candidate regressors M in (30) was 500,

In the previous study [15], the OLS algorithm identified
a RBF network of 50 centres for this limes series, where
the noise covariance was 0.017;. In the current example,
the noise level was much higher. Both the OLS and
LROLS algorithm were used to construct RBF networks
of 50 centres. The covariances of the resulting network
prediction errors between the noisy observations y,{k) and
the one-step network predictions j'{k), i=1, 2, over both
the training and testing sets are listed in Table 1. It can be
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Fig. 3 Two-dimensional representations of the irerative model
outputs

Initial conditions were ¥y{0) =14 (— 1) = 30(0) =¥ n(—1)=0.1, and
the model was constructed by the OLS algorithm using very noisy data
o Phase plot of the iterative model output 34 (K}

b Phase plot of the iterative model output 3,0(k)
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scen that the generalisation performance of the LROLS
algorithm is better than that of the OLS algorithm. The
underlying dynamics of the simulated time series was
governed by

P lk) = 0.1 sin(my,(k -~ 1))

+ (0.8 — 0.5 exp{—y (k — D)y (k— 1)

~ (0.3 + 0.9 exp(—15 (k — 1)y (k - 2)
Yaa(k) = 0.6y55(k — 1) 4 0.2p5(k — Dygolk —2)

+ 1.2 tanh(yy, (k — 2)) (35)
Given the initial conditions yg(0) =y (~1)=yn(0)=
ya2(—1)=0.1, the response of this noise-free time scries
is depicted in Fig. 2. The generalisation capability of an

identified model can best be tested by examining the
iterative model output. If the iterative model output can
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Fig. 4 Two-dimensional representations of the iterative model
outputs

Initial conditions were y,(0)=Yn(—1) = Vau(0) =5(—1)=0.1, and
the model was constructed by the LROLS algorithm using very noisy
data

« Phase plot of the iterative model output §,, (%)

b Phase plot of the iterative model output §,,(k)
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Fig. 5 System input data for the turbo-alternator example

a In-phase current deviation u (%)
b Qut-of-phase current deviation u(%)

closely realise the behaviour shown in Fig. 2, the identified
model truly captures the underlying dynamics of the
system and does not simply fit the noise contained in the
training data. Given the same initial conditions, the two
RBF models identified by the OLS and LROLS algorithms
were used to iteratively generate the network outputs 34,(k),
i=1, 2, with the input

x,(0) = Pk — 1) 50— 2) Japlk — 1) Gtk — 21"
(36)

The iterative model outputs so generated are plotted in
Figs. 3 and 4, respectively. It can be seen that the model
constructed by the LROLS algorithm captured the underlying
dynamics of the system better than the OLS algorithm did.

Example 2: This example was a two-input two-output data
set collected from a turbo-alternator [18]. The data set
contained 100 samples. The system inputs, the in-phase
current deviation u,(k) and the out-of-phase current devia-
tion u,(k), are plotted in Fig. 5; whereas the system
outputs, the voltage deviation y (k) and the frequency

— ¥al®)
52F — ¥ol®)

J
20 40 60 80 100
Kk
b

Fig. 6 One-step predictions superimposed on turbo-alternaior
QUIpUIs

The 45-term model was constructed by the LROLS algorithm
a Voltage deviation/one-step prediction y,(k)/3,(k)
b Frequency deviation/one-step prediction ya(k)/i()

deviation y,(k) are shown in Fig. 6. The two-output RBF
network with the input vector

x(y =k =1 yk—=2) »k—-3) »mk-1)
ylk—2) ylk—3) wk—1)
k=2 k-1 wE-2y 37

was used to fit this data set. In the previous study [15], the
OLS algorithm constructed a 45-centre RBF model for this
example. As this data set contained very low noise, it was
expected that the LROLS algorithm should produce a
similar model. The modelling accuracies of the two 45-
centre RBF networks constructed by the OLS and LROLS
algorithms, respectively, are compared in Table 2. The
model validation in this case was performed by evaluating
the iterative model outputs p,(k), i=1, 2, with the input

xy(k) = Pk — 1) Ptk =2) By —3) Pk~ 1)

Paalk—2) Pk =3} wyk—1)
ik —2) wk—1 wk—2)1" (38)

Table 2: Comparison of the OLS and LROLS algorithms for the turbo-alternator

modelling example

Algorithm Training set Cov{E) Training set Cov(Ey)

oLS 2.698050 < 107*  —1.011401 x 1075 4980833 x 107* —2.739734 < 1071
—1.011401 x 10~°  2.665515 x 10~ —2.739734 x 107 9.454893 % 107!
log{det{Cov{E)}} = —16.4875 logldet{Cov(E )= —14.7422

LROLS 2.703650 x 10°* —1.521883 x 107° 4.885013 x 107* —2.652641x 107*

—1521883 x 10~°
logidet(Cov(E}}} = —16.5938

2307177 x 107*

—2.652641 x 107* 9.176416 x 107*
log(det{Cov{Ex}) = —14.7886

CoviE) = one-step prediction error covariance, Cov{E) = iterative model error covariance
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e,th)

20 40 60 80 100

Fig. 10 Two system noises of the simulated single-input two-
output nonlinear system example

Fig. 7 fierative model outputs superimposed on turbo-alternator

ouIpLts

The 45-term model was constructed by the LROLS algorithm The results given in Table 2 show that the model constructed
a Voltage deviation/iterative output y,(k)/5 () by the LROLS algorithm is marginally better than the
b Frequency deviation/iterative output ya(k)/9a(k} model constructed by the OLS algorithm. The one-step

model predictions and the iterative model outputs are

Table 3: OLS selection procedure for the simulated
single-input two-output nonlinear system modelling

_ example
=
= Stage / Accuracy 1-3 lerr];

1 0.9266648402
400 500 1000 2 0'7812246356
x 3 0.6857712253
4 0.6712676332
Fig. 8 System input of the simulated single-inpur rwo-output 5 0.6617631403

aonlinear system example . .
53 0.5513383266
il 54 0.5490380984
& : | 55 0.5468145452
- Tl Ll gl & LA ki 1 !;J it 56 0.5444882713
R R Ry T 57 0.5420129044
-1 ARN ‘ ‘ 58 05396682820
-2 59 0.5370542849
-3 ! : a - - ! 60 0.5336903155
69 0.57124715883
70 0.5099673726
< Al 0.5077152658
BN 72 0.5054002839
73 0.5028909486
‘ 74 0.5000084333
0 200 a00 600 500 1060 75 0.4975149006

k 76 0.4948750220

Fig. 8 Two system ouiputs of the simulated single-input fwo-
output nonlinear system example
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Table 4: LROLS selection procedure for the simulated single-input two-output
nonlinear system modeiling example after A has converged

Weights 0,4, 02

Regulariser /,

~1.40107 x 107"
7.41665 x 107"
—5.52066 x 107"
1.15299 x 107"

2.40694 x 102
—3.83076 x 1072
—7.54805 x 1072
—5.63048 x 107°

4.03370 x 1072

2.06592 x 1072

1.09999 x 1072

3.60116x 107°

6.47015 x 1078

9.26853x 1077
—4.94328 1075

1.97632 x 10°°
—1.84595 x 1010
—2.03159 x 10°"?

3.65183x 1078

2.61706 x 10~'®
—7.07541x 107

1.02075 x 10727

1.78144 < 1070
—2.34416 x 10732

Stage / Accuracy
1-3 lrerr;
1 0.9250445009
2 0.8102458145
3 0.7230708198
4 0.7048683716
5 0.6917827744 —1.10061
51 0.6314173375
52 0.6313490611
53 0.6312695431
54 0.6312211359
55 0.6311776920
56 0.6311154361
57 0.6310975544
58 0.63109708358
58 0.6310970693
60 0.6310970658
81 0.6310970638
62 0.6310970617
63 0.6310970617
64 0.6310970617
65 0.6310970617
66 0.6310970617
&7 0.6310970617
68 0.6310970617
69 0.6310970617
70 0.6310970617
71 0.6310970617

9.08481 x 1074

228733 x 10~
~2.40987 x 107"
2.85684 x 10~
—5.39292 x 1073
—1.79131 % 10"

—1.72133 x 1072
—1.00672 x 1072
—7.26621 x 1072
—2.18898 x 1072
—2.10492 x 1072
—2.15718 x 1972
1.35215 x 107°
—1.53099 » 10~*
9.37922 x 107°
3.56768 x 107°
-1.15381 % 1078
—-1.09804 x 1078
4.03026 x 10-1°
7.91477 x 10~ "2
1.11422 < 10778
1.62022 x 10~
3.91732 x 10728
—7.85205 x 10728
1.60239 x 10~#
—1.12397 x 10732
~1.11975 x 107

9.26011 x 102
171147 x 107
8.01033

8.71645 x 10
434778 x 10

2.20599 x 10
1.14283 % 10
1.38760 x 107
2.57337 % 10
1.94738 % 10
171534 x 10
7.28739 % 10
1.44289 % 10°
1.01024 x 10°
1.46341 » 10°
1.13584 x 10°
3.44474 % 10°
2.84426 x 107
1.22579 x 10"
5.42861 x 108
6.09163 x 10"®
5.30902 x 1072
3.36203 x 10%7
187551 x 10°8
6.75809 x 10"
1.06856 = 10%°

superimposed on the turbo-alternator outputs in Figs. 6
and 7, respectively, which were very similar to those
shown in [157.

+ Example 3: This was 4 simulated single-input two-output
nonlinear system, The data were generated using the model
iy =05y (k — 1)+ u(k — 1) + 0.4 tanh(u(k — 2))
+ 0.1sin(my; (k — 2))y2(k — 1) + € ()
yalk) = 0.3y5(k — 1y + 0. Ly, (k — 2 (k= 1)
+0.4exp(—ui(k — Dk —2) + (k) (39)
where the system input u(k) was uniformly distributed in
(—0.5, 0.5), and the system noises (k) = [¢, (k) €2(k)]" were
Gaussian with zero means and covariance 0.41,. Figs. 8
and 9 show the system inputs and outputs, respectively.
Notice that the system outputs were ‘buried’ in noise. This
can be confirmed by observing the noise realisations used
to generate the data, given in Fig. 10. The first 500 data

points were used for training, and the two-output RBF
network with the input

x(hy=[k~1) »mEk—=2) pEk-1
yalk =2y utk =1 ulk —2)]7 (40)

was employed to fit the training data. The last 500 data
samples were used for model validation. The goodness of a
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fitted model was also cvaluated by computing the iterative
model outputs with the input

X By =Pplk=1) 3pk=2) Pplk—1)
Splk =2) wlk 1) (k-2 @)

Because this data set was extremely noisy, the normalised
error measure 1 — 3 [err]; continuously decreased as
more terms were added by the OLS model-selection
procedure, as illustrated in Table 3. This would certainly
lead to over-fitting. Thus, the value of ¢ used to terminate
selection was critical in this case for the OLS algorithm.
The LROLS selection procedure, after A had converged, is
listed in Table 4. Two observations can be made here. First,
the modelling accuracy 1 — % [rerr]; did not continuously
decrease as more terms were added by the LROLS selec-
tion procedure. In this particular example, 1 — Y [rerr];
remained unchanged after the /=61 stage. This clearly
indicated that the model should contain no more than the
first 62 selected terms. Secendly, the regularisation para-
meters related to the terms from 58 onwards were very
large and the corresponding weights were effectively zeros.
This clearly indicated that a 57-term model was sufficient.
This desired property of enforcing sparsity by local regu-
larisation is very useful in helping to terminate the model-
selection procedure at an appropriate stage without using
costly cross-validation based on a separate testing data set.
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Table 5: Comparison of the OLS and LROLS algorithms for the simulated single-input
two-output nonlinear system modelling example

57-term model

oLs

LROLS

Training set 3.332288 x 1077
CoviB) 2.184405 x 102
logidet(CoviE) -2.23526
Testing set 5.356972 % 107"
Cov(E) 3.857507 x 1072
logldet(Cov(E})} —1.34560
iterative model 6.011033 x 107"
CoviE,) 7.425149 x 1072
togldet{Cov{E ) —1.00301

2.184405 x 1072
3.224246 x 107"

3.857507 x 1072
4.888409 x 107"

7.425149 x 1072
6.193378 x 107"

3.640266 x 107"

2.307056 x 1072

—2.00385
4977092 x 107"
2.699694 x 1072

—~1.52650
5.803848 x 107"
7540281 x 1072

—1.10471

2.307086 x 1072
3718092 x 107"

2.699694 x 1072
4380525 % 107"

7.540287 x 102
5.806359 x 107"

71-term model

OLS

LROLS

1578568 x 1072
3.041483 x 107"

3.987048 x 1072
4.958190 x 107"

9.950650 x 1072
6.496305 x 1077

3.640265 x 107"
2.307079 x 1072
—-2.00385
4977094 % 107"
2.699648 x 1072
—1.52651
5.803847 x 107"
7.540273 % 1072

2.307079 x 1072
3718081 x 107"

2.699648 x 1077
4380519 x 107"

7.540273 x 1072
£.806359 x 107"

Training set 3.100166 = 107"
CoviE) 1.578568 x 1072
log{det(Cov(E)) —2.36402
Testing set 5.595245 x 10~"
CoviE) 3.987048 x 1072
logl{det{Cov{E})) —1.28796
lterative model 6.337929 % 1077
Cov(E,) 9.950650 x 10~2
log{det{Cov{E) -0.91173

—1.10471

CovlE) = one-step prediction error covariance, CovlEq) = iterative model error covariance

The modelling accuracies of the 57-term and 71 -term RBF
models constructed by the OLS and LROLS algorithms are
compared in Table 5. From Table 5, it can be seen that the
training-error variances of the models identified by the OLS
algorithm were clearly smaller than the system-noise
variances, indicating that the models were fitted into the
noise, and moreover over-fitting of the 71-term model was
more serious than that of the 57-term model. The two
models identified by the LROLS did not appear to suffer
from over-fitting, and they had the same generalisation
accuracy, which was much better than the models
constructed by the OLS algorithm without regularisation.

5 Conclusions

A locally regularised OLS algorithm has been developed for
constructing sparse multi-output regression models. This
multi-output LROLS algorithm combines both the advan-
tages of OLS model selection, which has the ability to select
only those significant regressors to explain training data,
and local regularisation, which enforces the sparsity of the
models. The end result is an efficient construction algorithm
that is capable of producing sparse multi-output regression
models with excellent generalisation performances. As
regularisation is introduced in the orthogonal weight
space, the computational requirements of the iterative
model selection procedure are simple and straightforward.
Any numerical ill-conditioning problems can automatically
be avoided. It has also been shown that the decision on when
to terminate the model selection procedure is greatly
assisted by local regularisation.
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7 Appendixes

7.1 Simplification of criterion (15)

The ‘least squares’ solution for G is obtained by setting
afg/0G =0, that is

WYy =(W'W+A)G (42)
Now
Y'Y —26"AG = (WG+E) (WG + E)~2G"AG
=G WWG+EE4+GWE
+ETWG -26TAG (43)

Noting (42),
"TWE-GTAG=G"W(¥ —WG) — GTAG
=G"W'Y —WTWG - AG)
=0 (44}
Similarly
ETWG—G"'AG=0 (45)
Thus,
Y'Y -2GTAG=G"W WG ETE (46)
or
EIE+GTAG=Y"Y-GTAG-G'WWG (4D

7.2 Algaorithm-selection procedure

The modified Gram-Schmidt orthogonalisation procedure
calculates the 4 matrix row by row and orthogonalises ¢
as follows: at the /th stage make the columns dy,
{41 <j=< M, orthogonal to the /th column and repeat the
operatlon for 1=</<M— 1. Specifically. denoting
({)j =4, | £j<M, then

W1:¢([71)

ay=widl jwlw)  I+1<j<M

6" =0¢""—aw I+i<j<M
1=1,2,...,.M—1 (48)

The last stage of the procedure is simply wy, = d)W b,
The elements of G are computed by transforming ¥ )
in a similar way:

-1
g = wi Vwlw, + 4

0 _ (l 1)
— &1

] <l=M l1=izn, (49
Y’ =¥

This orthogonalisation scheme can be used to derive a
simple and efficient algorithm for selecting subset models
in a forward-regression manner. First define

i— -1 i—1
@' 1)=[W1 ceowy T B )] (50)

If some of the columns qu’ DLl in @D have
been interchanged, this will stlll be referred to as Pl for
notational convenience. The /th stage of the selection
procedure is given as follows.,
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Step 1: For/<j<M and 1 <i<n,, compute

gl = (!PT "+ iy

rerr]l = (Z (g?j?)l)((rb}’-”)%;’*” + A4)/trace(YT¥)
Step 2: Find

frerr)y = [rerrl] = max{[rerr‘]?) [<j<M}

Then the jth column of @1 is interchanged with the
fth column of @Y~V the first /— 1 elements of the
Jith column of A are interchanged with those of the /th
column of A, and the jith element of A is interchanged
with the Ith element of A. This effectively selects the
Jith candidate as the Jth regressor in the subset model.
Step 3: Perform the orthogonalisation as indicated in (48)
to derive the /th row of A and to transform @' inwo @Y.
Caleulate g;; and update ¥~ into ¥ in the way shown in
(49).

The selection is terminated at the M, stage when the
criterion (20) is satisfied and this produces a subset model
containing A, significant regressors. The algorithm
described here is in its standard form. A fast implementa-
tion can be adopted, as shown in [19] for the single-output
case, to reduce complexity,

7.3 Model evidence for h and §

The Bayesian cvidence procedure formulated for the
single-output case [10] can easily be extended to the
current multi-output case. According to MacKay [10] and
taking into account that the number of cutputs is #,,, the
model evidence for & and f can be expressed as

AN
P(Y.W|h, ﬁ)—m e
where
M bid /2
Zgth = 1 (h) °
n,Nj2
Zy wf) = (2_;) o
and

Zy(h, p) = e~ @mf™ e 2By (54)

with Mysap being the cost function (21) evaluated at the
maximum @ posteriori probability solution @, and B being
the (n,M) x {n,M) diagonal matrix defined in (24).

Thus the log evidence can be expressed as

i, 1 M ",
log(P(Y, Wih, ) = 7221: ele, — E;hj Z;g’z[
= 1= i=

1 n M
— ~log(det(B)) + =~ 3 log(h))
2 20

(55)
where

C =

(56

2
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Setting
dlog(P(¥, Wik, B))

0 57
7 (57)
yields the re-calculation formula for f
n, M ﬂw.rw,
i el-Te,) =nN—n,y —iF— (58)
f (::Zl ikt [)’ijwj
Setting
dlog(P(Y. Wih. ) _ 55)

oh,

provides the re-calculation formulas for &;, 1 <j =M,

2 n,pwlw,
k. v L R 60
’(Z‘xg"') by + B w; (0
Define
M
=1 (61)
J:
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with

- Sl w wiw,

Y = _{_J_;« = 41"_ (62)
Byt fwiw, (BB +wiw,

Then the re-calculation formulas for # and #; are,

respectively,

p= "—,,(iv_—”) (63)
; ee;
and
b= "?"yj (64)

2&%

i=

Noting the relationship 4; = A;/ff leads to the re-calculation
formulas for 4;, 1 <j <M,

"o
y Zefe,.
b=t (65)
TNy M,
28

=1
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