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Communi
ation Group Chen, Ahmad, HanzoMotivations

� Spatial pro
essing with adaptive antenna arrays has shown real promisefor substantial 
apa
ity enhan
ement.� Adaptive beamforming is 
apable of separating signals transmitted on thesame 
arrier frequen
y but are separated in the spatial domain.� Classi
al beamforming te
hnique is based on minimizing the system meansquare error.� For a 
ommuni
ation system, it the bit error rate, not the mean squareerror, that really matters.� This motivates our derivation of a novel beamforming te
hnique baseddire
tly on minimizing the system bit error rate.

2Communi
ation Group Chen, Ahmad, HanzoSystem Model� The system has M users (sour
es), and ea
h transmits a binary phaseshift keying (BPSK) signal on the same 
arrier frequen
y ! = 2�f .� The baseband signal of user i with signal power A2i ismi(k) = Aibi(k); bi(k) 2 f�1g; 1 � i �MSour
e 1 is the desired user and the rest are interfering users.� The signals at the antenna array of L uniformly spa
ed elements are

xl(k) = MXi=1mi(k) exp (j!tl(�i)) + nl(k) = �xl(k) + nl(k); 1 � l � L

tl(�i): the relative time delay at element l for sour
e i,�i: the dire
tion of arrival for sour
e i, andnl(k): a 
omplex-valued white Gaussian noise with E[jnl(k)j2℄ = 2�2n. 3

Communi
ation Group Chen, Ahmad, HanzoMatrix Form of System Model� De�ne the steering ve
tor for sour
e isi = [exp(j!t1(�i)) � � � exp(j!tL(�i))℄Tthe system matrix P = [A1s1 � � �AMsM ℄the bit ve
tor b(k) = [b1(k) � � � bM(k)℄Tand the noise ve
tor n(k) = [n1(k) � � � bL(k)℄T� Then, the array input ve
tor x(k) = [x1(k) � � �xL(k)℄T is expressed asx(k) = �x(k) + n(k) = Pb(k) + n(k)
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Communi
ation Group Chen, Ahmad, HanzoBeamformer� The beamformer output isy(k) = wHx(k) = wH�x(k) +wHn(k) = �y(k) + e(k)where w = [w1 � � �wL℄T is the 
omplex-valued beamformer weight ve
torand e(k) is Gaussian with zero mean and E[je(k)j2℄ = 2�2nwHw.� The estimate of the transmitted bit b1(k) is^b1(k) = � +1; yR(k) = <[y(k)℄ > 0;�1; yR(k) = <[y(k)℄ � 0;� The 
lassi
al MMSE beamforming solution is given bywMMSE = �PPH + 2�2nIL��1p1with p1 being the �rst 
olumn of P
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Communi
ation Group Chen, Ahmad, HanzoSignal States� Denote the Nb = 2M possible sequen
es of b(k) as bq, 1 � q � Nb. Letthe �rst element of bq, 
orresponding to the desired user, be bq;1.� Then, �x(k) only takes values from the signal state set de�ned asX 4= f�xq = Pbq; 1 � q � Nbg� Therefore, �y(k) 2 Y 4= f�yq = wH�xq; 1 � q � Nbg.� Thus, �yR(k) = <[�y(k)℄ 
an only take values from the setYR 4= f�yR;q = <[�yq℄; 1 � q � Nbgwhi
h 
an be divided into the two subsets 
onditioned on b1(k)Y(�)R 4= f�y(�)R;q 2 YR : b1(k) = �1g

6Communi
ation Group Chen, Ahmad, HanzoBit Error Rate� The 
onditional probability density fun
tion of yR(k) given b1(k) = +1 is

p(yRj+ 1) = 1Nsb NsbXq=1 1p2��2nwHw exp0B���yR � �y(+)R;q�22�2nwHw 1CA

where �y(+)R;q 2 Y(+)R and Nsb = Nb=2 is the number of the points in Y(+)R .� Thus the BER is given by
PE(w) = 1Nsb NsbXq=1Q (gq;+(w))

where
Q(u) = 1p2� Z 1u exp��v22 � dv and gq;+(w) = sgn(bq;1)�y(+)R;q�npwHw 7

Communi
ation Group Chen, Ahmad, HanzoMinimum Bit Error Rate Beamformer

� The MBER beamforming solution is then de�ned aswMBER = argminw PE(w)

� There exists no 
losed-form solution, but with the gradient

rPE(w) = 12Nsbp2��2nwHw NsbXq=1 exp0B�� ��y(+)R;q�22�2nwHw1CA sgn(bq;1)0��y(+)R;qwwHw � �x(+)q 1A

a MBER solution 
an be obtained iteratively using a simpli�ed 
onjugatedgradient algorithm.� BER is invariant to the size of w. Thus, if wMBER is a MBER solution,�wMBER is also a MBER solution for � > 0.
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Communi
ation Group Chen, Ahmad, HanzoExampleLo
ations of the desired sour
e and the interfering sour
es with respe
tto the two-element linear array with �=2 element spa
ing, � being thewavelength.
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De�nitions: SNR= A21=2�2n, SIRi = A21=A2i for i = 2; � � � ;M .
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ation Group Chen, Ahmad, HanzoBit Error Rate Comparison
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(a): SIRi = 0 dB, i = 2; 3; 4; 5;(b): SIR2 = �6 dB and SIRi = 0 dB, i = 3; 4; 5;(
): SIRi = �6 dB, i = 2; 3; 4; 5;

10Communi
ation Group Chen, Ahmad, HanzoNear-Far E�e
tThe near-far e�e
t to bit error rate performan
e. SNR= 10 dB, SIRi = 24 dB fori = 3; 4; 5, varying SIR2.
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� The MBER solution appears to be robust to the near-far e�e
t. 11

Communi
ation Group Chen, Ahmad, HanzoBeam Pattern ComparisonSNR= 10 dB, SIRi = 0 dB, i = 2; 3; 4; 5.
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� Let F (�) be the normalized DFT of the beamformer weight ve
tor.� Traditionally, the magnitude of F (�) is used to judge the performan
e of a beamformer.� Magnitude response along 
an be misleading, as in this 
ase.� At the four angles for the four interfering sour
es, the phase responses of the MBERsolution are mu
h 
loser to ��2 ) a mu
h better response of yR(k) = <[y(k)℄.
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Communi
ation Group Chen, Ahmad, HanzoProbability Density Fun
tion ComparisonConditional probability density fun
tion of beamformer given b1(k) = +1and subset Y(+)R . SNR= 10 dB, SIRi = 0 dB, i = 2; 3; 4; 5.
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(a) MMSE (b) MBER� The beamformer weight ve
tor is normalized to a unit length, so that the BER is mainlydetermined by the minimum distan
e of the subset Y(+)R to the de
ision thresholdyR = 0.� This minimum distan
e is mu
h larger for the MBER beamformer.
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Communi
ation Group Chen, Ahmad, HanzoProbability Density Fun
tion ComparisonConditional probability density fun
tion of beamformer given b1(k) = +1and subset Y(+)R . SNR= 15 dB, SIRi = �6 dB, i = 2; 3; 4; 5.
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(a) MMSE (b) MBER� The beamformer weight ve
tor is normalized to a unit length.� Note that Y(+)R and Y(�)R are no longer linearly separable for the MMSE beamformer) a high BER 
oor.

14Communi
ation Group Chen, Ahmad, HanzoBlo
k-Data Adaptive MBER Algorithm� Given a blo
k of K training samples fx(k); b1(k)g, a Parzen windowestimate of the beamformer p.d.f. is

^p(yR) = 1Kp2��2nwHw KXk=1 exp��(yR � yR(k))22�2nwHw �

where the kernel width �n is related to the noise standard deviation �n.� From this estimated p.d.f., the estimated BER is given by:^PE(w) = 1K KXk=1Q (^gk(w)) with ^gk(w) = sgn(b1(k))yR(k)�npwHw

� Upon substituting rPE(w) by r ^PE(w) in the 
onjugate gradientupdating me
hanism, a blo
k-data based adaptive algorithm is obtained.
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Communi
ation Group Chen, Ahmad, HanzoConvergen
e of Blo
k Adaptive AlgorithmConvergen
e rate of the blo
k-data based adaptive MBER algorithm for ablo
k size of K = 200. The initial weight ve
tor is set to wMMSE.
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(a) (b)(a): SNR= 10 dB, SIRi = 0 dB for i = 2; 3; 4; 5, adaptive gain � = 1:0 and�2n = 6�2n = 0:3. (b): SNR= 10 dB, SIR3 =SIR4 = 0 dB, SIR2 =SIR5 = �6 dB,adaptive gain � = 0:5 and �2n = 2�2n = 0:1.
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Communi
ation Group Chen, Ahmad, HanzoE�e
t of Blo
k SizeE�e
t of blo
k size on the performan
e of the blo
k-data based adaptiveMBER algorithm for SIR2 = �6 dB and SIRi = 0 dB, i = 3; 4; 5.
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Communi
ation Group Chen, Ahmad, HanzoLeast Bit Error Rate Algorithm� Consider a single-sample p.d.f. estimate of the beamformer output~p(yR; k) = 1p2��n exp��(yR � yR(k))22�2n �

� This leads to a single-sample BER estimate ~PE(w; k).� Using the instantaneous sto
hasti
 gradientr ~PE(w; k) = �sgn(b1(k))2p2��n exp��y2R(k)2�2n �x(k)� leads to the LBER algorithmw(k + 1) = w(k) + �sgn(b1(k))2p2��n exp��y2R(k)2�2n �x(k) 18Communi
ation Group Chen, Ahmad, HanzoLearning Curves of LBER AlgorithmLearning 
urves of the LBER algorithm averaged over 20 runs, the initial weight ve
tor isset to wMMSE, solid 
urve is for training and dashed 
urve for de
ision-dire
ted adaptationwith ^b1(k) substituting b1(k) (two 
urves are indistinguishable).
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(a) (b)(a): SNR= 10 dB, SIRi = 0 dB for i = 2; 3; 4; 5, � = 0:03 and �2n = 8�2n = 0:4.(b): SNR= 10 dB, SIR3 =SIR4 = 0 dB, SIR2 =SIR5 = �6 dB, � = 0:02 and�2n = 4�2n = 0:2.
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