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The identification results obtained from a study on a Leyland TL11 turbocharged, direct 
injection diesel engine are presented. Two sets of data corresponding to low and high 
engine speed tests, which were recorded from experimental trials on the engine, are 
analysed. The identification of both linear and non-linear difference equation models are 
described to represent the relationship between the fuel rack position (input) and the 
engine speed (output). 

1. INTRODUCTION 

This paper  describes the identification of  both linear and non-linear models of  a Leyland 
T L l l  6 cylinder 11.1 litre diesel engine with Holset VH2C turbocharger. The data was 
collected from an engine at Bath University by Richard Backhouse (UMIST) and models 
were subsequently identified using the identification techniques developed in the Depart-  
ment of  Control Engineering, University of  Sheffield. Two sets of  data are used in the 
identification and in both cases the input is fuel rack position and the output is engine 
speed. The first data set was obtained from a low engine speed test at a sample rate of  
80 msec while the second data set was recorded from a high engine speed test with a 
sample rate of  100 msec. The disparity in the sampling rate meant that two different 
models were necessary one for each experimental condition. The analysis of  the first data 
set required the estimation of a non-linear model whereas the second data set could be 
adequately described by a linear model. 

The paper  begins with a brief description of the identification technique which was 
used in the analysis. The technique can determine the structure or which terms to include 
in the model and can provide optimal final parameter  estimates in an efficient manner.  
This is followed by a description of the two data sets. Finally, the identification of linear 
and non-linear models to describe the engine are presented. 

2. AN EFFICIENT IDENTIFICATION TECHNIQUE FOR NON-LINEAR SYSTEMS 

2.1. A CLASS OF NA R MAX MODELS 

An input-output  model is a means for representing the input-output  relationship of a 
system and therefore choosing a suitable model set is an important step in system 
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identification. The NARMAX (non-linear ARMAX) model [7, 13] provides a unified 
representation for a wide class of discrete-time non-linear stochastiic control systems. A 
general NARMAX model takes the following form 

y ( t ) = f ( y ( t - 1 ) , . . . , y ( t - n y ) , u ( t - 1 ) , . . . , u ( t - n , ) , e ( t - 1 ) , . . . , e ( t - n , ) ) + e ( t )  (1) 

where y-(t), u(t) and e(t) are the system output, input and noise respectively; ny, n, and 
ne are the orders of the output, input and noise; {e(t)} is assumed to be a white sequence; 
and f ( . )  is some non-linear function. 

In order to use model (1) as a basis for identification, a means of  parametrisation is 
required and a polynomial expansion o f f ( .  ) is a convenient but by no means the only 
choice. Expanding f ( .  ) as a polynomial of  degree L gives the representation 

y ( t ) =  ~. O~x,(t)+e(t) (2) 
i = 1  

where 

and 

L 

n= Y. n ~ ; n o = l , n ~ = n ~ _ l ( n y + n u + n e + i - 1 ) / i , i = l , . . . , L  
i = 0  

(3) 

x d t )  = 1 

P q 

xi( t )= [I y ( t - n y : ) .  [I U(t--n.k)" (I e( t -n~m) 
j=~ k=~ r,,=, ( 4 )  

i = 2  . . . .  , n ,  p,q,r>~O, l<~p+q+r<~L, 

1 ~ nyj ~ ny. 1 ~ nuk ~ n . ,  1 ~ n,m ~ n, 

By convention, p = 0 indicates that x~(t) contains no y( .  ) terms. Similarly, q = 0 indicates 
that x~(t) contains no u ( . )  terms and r = 0  indicates that x~(t) contains no e ( . )  terms. 
Regrouping terms in equation (2) yields 

y(t)  = f P ( y ( t  - 1) . . . .  , y ( t  - ny), u ( t -  1 ) , . . . ,  u(t  - nu)) 

+ f " ( y ( t -  1), . . .  , y ( t  - ny), u ( t -  1) , . . . ,  u(t  - nu), e ( t -  1) , . . . ,  e ( t -  he))+ e(t) 
(5) 

where fP( .  ) contains all terms O~x~(t) with r = 0 and f " ( .  ) contains all terms O~x~(t) with 
r ¢ 0. f f  ( . )  is referred to as the process model and f "  ( . )  as the noise model. An important 
ease of model (5) is 

n e 

y ( t ) = f P ( y ( t - 1 )  . . . . .  y ( t - n y ) ,  u( t - -1)  . . . .  , u ( t - n u ) ) +  ~.. q e ( t - i ) + e ( t )  (6) 
i = 1  

where the noise model f "  ( . )  is linear. The identification of  several industrial systems has 
shown that many can be modelled in the form of equation (6). Some examples are a 
6996 bhp industrial diesel generator [5], a liquid level system [2] and a heat exchanger 
[4, 17]. It is obvious that the linear ARMAX model 

ny n u n e 

y ( t ) =  E a~y( t - i )+  Y. b , u ( t - i ) +  • q e ( t - i ) + e ( t )  (7) 
i = l  i = l  i = 1  

is a simple case of  equation (6). 
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2.2. THE IDENTIFICATION TECHNIQUE 

When the system is non-linear, direct estimation based on equation (2) may involve 
an excessive number of terms. Simply increasing the orders ny, n, and he, and the degree 
L of the polynomial expansion to achieve the desired accuracy will in general result in 
an excessively complex model and possibly numerical ill-conditioning. The determination 
of the structure or which terms to include in the model is therefore essential if a 
parsimonious model is to be determined from the large number of candidate terms 
equation (3). An orthogonal regression estimator [6, 12] has been developed which can 
select a subset of significant terms very efficiently. The basic idea is to transfer equation 
(2) into an equivalent orthogonal equation. Because of the orthogonal property, significant 
terms can be determined in a particularly simple forward regression procedure [6]. The 
criterion of selecting terms is according to how large a proportion of the output variance 
that a term can explain. The estimated values of the parameters selected are also provided. 
Details of this method have been given in the two references mentioned above and will 
not be repeated here. 

An advantage of the orthogonal estimator is that significant parameters can be deter- 
mined recursively and quite independently of the other terms already selected. Further- 
more, the estimation of the process and noise model parameters can be decoupled [12]. 
This is particularly useful for the identification of model (5). A parsimonious process 
model is first determined. This model will not be affected by whatever noise model is 
produced later. The initial residuals are computed based on this process model and a 
noise model can be selected. Then a revised residual sequence is calculated and an 
improved noise model is determined. A few iterations are often enough to find a final 
parsimonious noise model. At this stage, a prediction-error estimator [3, 16] can be used 
to produce the final optimal parameter estimates. Alternative methods of structure detec- 
tion are available [9, 11, 14] and these can either be used instead of the orthogonal 
estimator or in conjuction with it to investigate reducing the number of parameters further. 

For model (6), a simplified procedure can be applied. After a parsimonious process 
model has been determined using the orthogonal estimator, a value of ne is chosen and 
the prediction-error estimator is called to provide optimal parameter estimates. In the 
case of a linear model equation (7), the determination of the orders r/y and n, becomes 
a very simple matter using the orthogonal estimator as will be shown later. 

2.3. MODEL VALIDITY TESTS 

Let f ( .  ) be an estimate o f f ( .  ). Then the one-step ahead prediction of y(t) is defined 
as  

~(t)=f(y(t-1),...,y(t-n>,), u ( t - 1 ) , . . . ,  u(t-n,), e ( t - 1 ) , . . . ,  e(t-ne)) (8) 

where e(t) is the residual or prediction error and is given by 

e(t) = y ( t )  - )3(t). (9) 

The model predicted output is defined as 
A , ~  A ~d(t)=f(ya(t--1),...,ya(t--ny),u(t--1),...,u(t--n,),O,...,O) (10) 

and the deterministic prediction error is given by 

ea(t) =y(t ) - -~d( t ) .  (11) 

A display of y(t), ~(t), e(t),  ed(t) often gives some preliminary information regarding 
the goodness of fit of the estimated model. 
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If the identified model is adequate, the prediction errors should satisfy the following 
conditions [3, 8] 

@~(k) = 3(k)  an impulse function 

@.~(k) = 0 Vk 

@~(~.)(k) = 0 k~>O 

@~:,~(k) = 0 Vk 

@.Gffk)=O Vk 

(12) 

1 ~ Z(t)__e(t) (14) 
P ' = N  Or t = l  

o -2 = E[e2( t ) [x  '] (15) [y'-'] 
x'  = / e ' - '  = ( y ( t - 1 ) , . . . , y ( 1 ) , e ( t - 1 )  . . . . .  e (1 ) , u ( t )  . . . .  , u(1))" (16) 

[u '  

Z ( t ) = Z ( x ' )  (17) 

z(t)z'(t). (18) 
t = l  

A convenient choice of  the vector function Z ( t )  is 

Z ( t )  = (re(t) ,  r e ( t -  1 ) , . . . ,  m ( t - s +  l))" (19) 

where m(t )  is a monomial of x', for instance it could be selected as 

re(t) = y~,,(t - 1)y,2(t - 2)y~'3(t - 3) u',,,(t - 1) u~"2(t - 2 )  

x u~.~(t- 3)e~. ,( t-  1)ei.2(t - 2) e i.3(t - 3 )  (20) 

where iyl, iy2, iy3, i , , ,  i,2, i,3, i~1, i~2, i~3 ~> 0 and iyl-l- iv2 + iy3-t- iul q- iu2"t- iu3 d- iFI q- i~2 q- ie3 > 
0. Under the null hypothesis that the data are generated by the model, the statistic 7? is 
an asymptotically chi-squared distribution with s degrees of freedom. Thus, if the values 
of  7? for several different types of  m (t) are within the acceptance region (95%), that is, 

r /<  k~(s) (21) 

the model can be regarded as an adequate one, where k~(s) is the critical value of  the 
chi-square distribution with s degrees of freedom and a given level of significance a (0.05). 

where N is the data length and 

r I = N p . ' ( F T ) - ~ I z  (13) 

where ~ y ( k )  indicates the cross correlation function between x ( t )  and y(  t),u2'( t) = 
u2 ( t ) - u2 ( t )  and U2(I) represents the time average or mean value of uE(t). Therefore, if 
at least one of  the correlation functions has values well outside the confidence limits, the 
model is certainly inadequate or biased. Experience has shown that if these tests are used 
in conjunction with the estimation algorithm, the experimenter can often infer a great 
deal of  information regarding deficiencies in the fitted model. Indeed the tests equation 
(12) often indicate which terms should be included in the model to improve the fit. 

Alternatively, a statistical test known as the chi-square test [3, 10, 14] can be used to 
validate an estimated model. The value of  the chi-square statistic is calculating using the 
formula 
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3. IDENTIFICATION OF THE DIESEL ENGINE 

3.1. THE DATA SETS 

In this section, the engine details and experimental conditions are briefly described. 

Engine: Leyland TL11, turbocharged, direct injection diesel engine 
Configuration: 6 cylinders in-line, 4-stroke 
Turbocharger: Holset VH2C 
Bore and stroke: 127 x 146.05 mm 
Swept volume: 11.1 litres 
Rating: 190 kW at 2100 rpm 
Dynamometer: Lucas swash-plate hydrostatic pump. 

A hydraulic (position) actuator acts directly onto the fuel rack of the injection pump. 
The actuator (i.e., rack) position is controlled using feedback from a linear position 
transducer. The actuator with feedback and servo valve acts as a pure time delay of  
approximate 23 ms for excitation signals up to l0 Hz. The transducer output range is 0 
to +10 V. The rack has a 3 mm dead band so that fuel injection does not commence until 
the output voltage reaches approximately 1.35 V. The maximum fuel injection rate of 
137 mm3/stroke is reached at 1500 rpm. Above this speed the fuelling falls steadily to 
approximately 125 mma/stroke at maximum speed. 

In the experimental trials, the following engine variables were measured: engine speed, 
boost pressure, exhaust temperature and smoke capacity. All the outputs are in the range 
0 to +10 V or 0 to - 10  V. The hydrostatic pump used as dynamometer has a characteristic 

Lb = K" N~e (22) 

where Lb is the brake torque, NE is the engine speed, K is a constant depending on 
swash-plate angle and hydrostatic oil pressure and a is a constant (~1.6).  

Two tests covering different engine speed ranges were performed. In order to achieve 
a near full load torque in each test it was necessary to vary the dynamometer constant 
K between the two tests. Within each test K remained constant so that the load was 
proportional to N~ 6. In each case the fuel rack was perturbed by a square wave signal 
of large amplitude with a PRBS superimposed. The PRBS was a 31-bit sequence (from 
a 5-bit generator) and approximately coincided with the half period of the square wave. 
Once the engine had reached its stable operating condition the rack demand was switched 
to the square wave plus PRBS signal and the input and output variables were recorded 
on a uv recorder over about ten complete cycles of the input sequence. Notice that the 
design of inputs for non-linear systems is much more complex than the linear case [15]. 
Details of the two experimental tests are summarised in Table 1. 

Boost pressure, exhaust temperature and smoke opacity are intermediate variables. In 
the present study, only the relationship between the fuel rack position and engine speed 
is investigated. The two raw data sets obtained in the low and high speed tests are supplied 
as files b6shv2.dta and b6shv6.dta respectively, where the input u(t) is fuel rack position 
and the output y(t) is engine speed. These are illustrated on Fig. 1. All the data were 
digitised by hand from the uv recordings; because the sample point was taken to be at 
the end of the relevant bit period, terms in u(t) are likely to appear in the model. This 
is unlike most discrete-time systems where the influence of u(t) on the output appears 
at least one sampling interval later as shown in equation (1). In order to apply the 
identification package written for the model (1) to the data, the input sequence in the 
original data is moved one-step forward, that is, u(t) is replaced by u(t+ 1). To reduce 
the possible effects of the initial conditions, the first six points were discarded from 
b6shv2.dta and the first 14 points were discarded from b6shv6.dta. These choices were 
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TABLE 1 

Details of  the two experimental tests 

Low ~peed test High speed test 

PRBS bit period 
PRBS repeating sequence 
Square wave frequency 
PRBS amplitude 
Square wave amplitude (with bias) 
Engine speed range 
Boost pressure range (absolute) 
Exhaust temperature range 
Sampling interval 

0.100 sec 0'080 sec 
31 bits 31 bits 

0.16 Hz 0.20 Hz 
±0.4 V ±0.4 V 

4.77±0.65 V 4 .5+0.5  V 
680-1180 rpm 1300-1830 rpm 

1.098-1.375 bar 1-26-1.59 bar 
402-535 °C 552-570°C 

80 msec 100 msec 

+ 5 E O  

-SEO 

+6EO 

- 6 E O  

+8 EO 

- S E O  

+6EO 

- 6 E O  

l I I 1 I I I I 1 
Output 

Input 

1 l I I I I l 1 l 

(o) 
417 

I I I I O H  t / u t  I I I I 
- 

Input 

I 1 I I I I I I I 

(b) 

Figure l. Raw data sets. (a) b6shv2.dta; (b) b6shv6.dta. 

4:55 
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made from a visual inspection of the data. The data sets obtained by the above two 
operations were renamed as mob6shv2.dta and mob6shv6.dta respectively. Models were 
fitted to these two modified data sets. Therefore terms containing u ( t -  i), i > 0 obtained 
in the identification study below should be changed to terms containing u(t+ 1 -  i) in 
the real model of  the engine. Notice that because the data were sampled by hand, errors 
are likely to appear  in synchronising the sampling times for u(t) and y( t ) ,  and relatively 
large noise components  might therefore have been introduced into the data. 

3.2 .  L l N E A R  ANALYSIS OF THE LOW E N G I N E  SPEED CASE 

The first step in linear analysis of  the data in mob6shv2.dta involved the application 
of the forward regression orthogonal estimator to determine the correct orders ny and 
n~. This was achieved by setting nu and ny to some large value, nu = ny = 20 in this case, 
and allowing the orthogonal estimator to search through and order the terms by measuring 
the contribution that each term makes to the output variance (e.r.r.). With a tolerance 
(unexplained output variance) of 0.0001, the orthogonal estimator selected ten terms 
from the total of 41 possible terms (Table 2). Inspection of the e.r.r, results in Table 2 
suggests that a model of  the form 

n e 

y ( t ) = c o n s t a n t + a l y ( t - l ) + b t u ( t - l ) + b 2 u ( t - 2 ) +  ~, c i e ( t - i ) + e ( t )  (23) 
i = l  

may provide an adequate representation for this data set. The prediction-error estimator 
was then used to provide optimal parameter  estimates in equation (23). Table 3 gives the 
results for ne = 0 to ne = 5, and the corresponding correlation tests for ne = 0, 3 and 5 are 
shown in Fig. 2. 

T AB L E  2 

Orthogonal estimation of  linear model ( mob6shv2.dta ) 

O.s. Terms Estimates E.r.r.s St.de.s 

1 (2) y(t - 1) 0.7186E +0 0.9989E +0 0-9283E - 2  
2 (23) u ( t - 2 )  0"1678E +0 0-6346E - 3 0.4785E-2 
3 (22) u ( t -  1) 0.1262E +0 0.1570E - 3  0"4045E - 2 
4 (1) constant -0.4666E + 0 0.1460E-3 0.2681E- 1 
5 (14) y ( t -  13) 0.6822E- 1 0.2895E-4 0.1087E- 1 
6 (18) y ( t -  17) -0 .3722E-  1 0.9678E - 5 0.7084E - 2 
7 (8) y ( t - 7 )  -0.1189E +0 0.4320E - 5 0-1804E- 1 
8 (11) y ( t -  10) 0.6241E- 1 0.3735E - 5  0.1341E - 1 
9 (6) y ( t - 5 )  0.4246E - 1 0.2825E- 5 0.1287E- 1 

10 (30) u ( t - 9 )  0.1863E- 1 0.2097E- 5 0.6563E- 2 

O.s., order of  selection in regression procedure; E.r.r.s, error reduction ratios; St.de.s, s tandard 
deviations of  estimates. 

It is seen that when ne is increased to five, the correlation functions ~ (k) and ~c~u~(k) 
have improved slightly and are almost within the confidence limits but ~u2.~2(k) has 
hardly changed. Notice that the dotted lines in Fig. 2 represent the approximate 95% 
confidence limits. In practice the confidence limits will bell out away from the axis for 
increasing k so that the values of ~ , ( k )  and ~ , u ) ( k )  which are slightly outside the 
limits in Fig. 2 may in reality be acceptable. Various linear models with higher orders ny, 
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Figure 2. Correlat ion tests for l inear mode l  (mob6shv2.dta) .  (a) n, = 0; (b) n, = 3; (c) n, = 5. 
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n, and  ne were also fitted to the da ta  but  they d id  not  improve  c l ) , , , , / - (k ) .  Consequen t ly ,  
the model  

y ( t )  = -0 .34262  + 0.74603y( t - 1) + 0 . 1 1 9 1 2 u ( t  - 1 ) + 0 . 1 5 9 2 9 u ( t  - 2 )  + 0-19844e(t  - 1) 

+ 0.017201 e( t  - 2) + 0.34711 e( t  - 3) + 0.26650e( t - 4) + 0.23640e( t - 5) + e ( t )  
( 2 4 )  

can be r ega rded  as the best  l inear  model .  The p red ic t ed  ou tpu t  and  a ch i -square  test for  
mode l  (24) are  shown in Fig. 3. The best  l inear  mode l  o f  the engine for  low engine speed  
cond i t ions  is therefore  

y ( t )  = -0 .34262  + 0-74603y ( t - 1) + 0 .11912u( t )  + 0.15929u ( t - 1). (25) 

It is impor t an t  to emphas i se  that  this mode l  is b iased  ( ~  2 2(k) # 0) and  therefore  even 
though  it p rov ides  wha t  appea r s  to be a good  p red ic t ion  o f  the  t rue system ou tpu t  this 

+SEO 

- 5 E O  

I 1 I I I I i = I 
Measured outputs 

i 2 

+ 5 E O  

- 5 E O  

One-step oheod predictions 

+2 E-I 

-2 E-I 

Residuals 

+3  E - I  

-3  E-I 

Deterministic prediction errors 

; 'IY 'VY 
I I A I I l I I [ 

(a] 

410 

Figure 3. Best linear model for mob6shv2.dta. (a) y ( t ) ,  r ( t ) ,  e ( t )  and ea(t); (b) rid(t) superimposed on y ( t ) .  
, Model predicted outputs; - - - ,  system outputs. (c) a chi-square test: m(t )  -- e ( t  - 1 ) . . - - . ,  95% confidence 

limit. 
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Figure  3 - - c o n t i n u e d .  

is no guarantee that a controller based on this model will perform adequately [2]. The 
bias means that the model is only valid for this particular data set and does not represent 
an adequate description of the underlying process which we seek. Figure 3(c) confirms 
the results of  the correlation validity tests Fig. 2 and indicates that the residual sequence 
is correlated. Any normal linear analysis would terminate at this point because both 
O~(k)  and Ou~(k) are acceptable. However, as Fig. 2 clearly shows, t/,,2,~e(k) is well 
outside the confidence bands indicating that significant non-linear terms have been omitted 
from the model. The effects of introducing non-linearities into the model are therefore 
investigated next. 

3.3. N O N - L I N E A R  A N A L Y S I S  O F  T H E  LOW E N G I N E  S P E E D  C A S E  

Non-linear terms were introduced into the model (23) and the prediction-error estimator 
was applied to the resulting models for different values of ne. It was found that ne = 5 
was appropriate. The prediction-error parameter estimates associated with this model are 
given in Table 4. The correlation tests, and the response of the model together with a 
chi-square test are illustrated in Figs 4 and 5 respectively. 

A comparison of  Fig. 3 with Fig. 5 shows that this non-linear model produces a better 
fit to the data than the best linear model (24). The variance of the residuals is almost 
one-third of  that of the best linear model. ~ ( k )  and ~(~, ) (k)  are now well within the 
confidence limits, but ~,:',~(k) which has improved slightly is still outside the confidence 
limits. The improvement in the residual sequence can be clearly seen in Fig. 5(c). 

According to previous experience, the situation ~,%2(k) # 0 can be caused by omitting 
some internal noise terms /3uk( .)e~(.)  from the model [8]. This suggests a way of  
improving the fitted model and hi-linear terms y( .  )e( .  ) and u(.  )e( .  ) were introduced 
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Prediction-error es t imat ion o f  a non-l inear mode l  

( m o b 6 s h v 2 . d t a  

Terms  Es t imates  St.de.s 

C o n s t a n t  + 0 . 1 7 9 0 1 E  + 1 0 ,16707E + 0 
y ( t  - 1 ) 0 .34252E + 0 0 .61921E - 1 
u ( t  - 1 ) 0 .43627E + 0 0.29203 E - 1 
u ( t  - 2) 0 .78868E + 0 0 ,29892E - 1 
e ( t -  1) 0 .25641E + 0 0 .52635E - 1 
e(t - 2 )  0 .60216E - 1 0 .53882E - 1 
e ( t - 3 )  0.28169E + 0  0 . 5 1 5 3 1 E -  1 
e(t  - 4) 0 .11699E + 0 0 ,52396E - 1 
e(t - 5) 0 .20811E + 0 0,50473 E - 1 

y 2 ( t -  1) 0 .41950E - 1 0.94943 E - 2  
y( t  - 1)u( t  - 1) 0 .45309E - 1 0 ,63037E - 2  
y ( t - 1 ) u ( t - 2 )  - 0 . 3 5 5 9 3 E -  1 0 . 7 9 2 7 1 E - 2  

u2(t - 1) - 0 . 4 9 8 0 6 E  - 1 0 ,40047E - 2 
u2(t - 2) - 0 . 5 0 1 7 6 E  - 1 0 .48719E - 2 

cr~ = 0'73555E - 3. 
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Figure 4. Correlation tests of the non-linear model given in Table 4. 

i n t o  t h e  m o d e l .  T h e  p r e d i c t i o n - e r r o r  e s t i m a t o r  c o u p l e d  w i t h  a m o d e l  r e d u c t i o n  r o u t i n e  

[11 ,  16] p r o d u c e d  t h e  m o d e l  i n  T a b l e  5. T h e  i m p r o v e m e n t  i n  ~,2,~2(k)  c a n  c l e a r l y  b e  s e e n  

f r o m  F ig ,  6. 

N o n - l i n e a r  m o d e l s  w i t h  h i g h e r  v a l u e s  o f  ny, n ,  a n d  L w e r e  a l s o  i n v e s t i g a t e d  u s i n g  t h e  

c o m b i n e d  p r o c e d u r e  o f  o r t h o g o n a l  a n d  p r e d i c t i o n - e r r o r  e s t i m a t i o n .  I n  a l l  c a s e s  t h e  f i n a l  

m o d e l s  p r o d u c e d  w e r e  m o r e  c o m p l e x  a n d  g a v e  s i m i l a r  m o d e l  v a l i d a t i o n  r e s u l t s .  T h e  

model given in Table 5 was therefore accepted as the best non-linear model even though 
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O,2'~e(k) was still slightly outside the confidence bands. We can only surmise that the 
complexity of  the noise model in Table 5 and the difficulty with ¢',~,2(k) was induced 
by hand sampling the data, which may have introduced errors in the synchronisation of  
the input and output. The noise terms in Table 5 are only included to ensure that the 
estimates of  the process model parameters are unbiased, and the best non-linear model 
for the engine under the experimental conditions considered is chosen as 

y (  t )  = - 1 . 8 6 4 7  + 0 . 2 5 1 2 1 y (  t - 1) + 0 . 4 9 7 8 7 u (  t )  + O .83088u(  t - 1) + 0.055328y2(t - 1) 

+ 0 . 0 5 4 1 2 2 y (  t - 1) u ( t )  - 0 . 0 5 0 1 2 3 y (  t - 1 ) u (  t - 1) 

- 0-058763 u2(t) - 0.04827 u 2( t - -  1). (26) 
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Figure 5---cont inued.  

3 .4 .  L I N E A R  A N A L Y S I S  O F  T H E  H I G H  E N G I N E  S P E E D  C A S E  

As in the case of mob6shv2.dta, the orthogonal estimator was initially used to determine 
the correct orders of  the linear model. With a tolerance of  0.000009, from the same 41 
terms, the estimator selected the following n ine  terms (Table 6). The correlation tests 
shown in Fig. 7 indicate that this model is adequate. This together with the fact that the 
e.r.r, drops rapidly after the first four terms have been included seems to suggest that a 
linear model of  the form 

y ( t ) = c o n s t a n t + a l y ( t - 1 ) + a 2 y ( t - 2 ) + b l u ( t - 1 ) + b 2 u ( t - 2 ) + e ( t )  (27) 

is enough. Optimising the parameters in this model structure using a prediction-error 
estimator produced the results in Table 7. The correlation test plotted in Fig. 8 indicate 
that the model is unbiased even though the noise model order is zero. The excellent 
response of  the model is illustrated in Fig. 9. Extensive chi-square tests also confirms 
that the model was indeed unbiased. Some of  the chi-square tests are shown in Fig. 10. 

Since the model validity tests clearly shows that in this case no non-linear terms should 
be included it was of  interest to investigate if a model of  the form of  equation (23) could 
be used to describe the data set. The results showed that omitting the terms a2y(t-2)  in 
equation (27) induced bias, and the best model for the engine under the high speed test 
conditions was therefore chosen as 

y(t) = -0 .25152+ 1.0500y(t - 1) -0 .16765y( t  -2)+O.11063u(t)+O.lO73u(t - 1). (28) 
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T A B L E  5 

Prediction.error estimation of final non.linear model 
( mob6shv2.dta ) 

T e r m s  E s t i m a t e s  St .de .s  

C o n s t a n t  - 0 . 1 8 6 4 7 E  + 1 0 . 1 7 1 0 2 E  + 0 
y(t - 1) 0 . 2 5 1 2 1 E  + 0  0 . 6 2 2 1 8 E  - 1 
u ( t -  1) 0 - 4 9 7 8 7 E  + 0  0 . 2 8 1 5 7 E  - 1 
u ( t  - 2) 0 - 8 3 0 8 8 E  + 0 0 . 2 8 6 2 8 E  - 1 
e ( t -  1) 0 . 2 6 1 5 7 E  + 0  0 . 4 8 2 7 2 E  - 1 
e ( t -  2) - 0 . 3 9 2 3 4 E  + 0 0 . 3 2 6 1 8 E  + 0  
e ( t  - 3) 0 . 7 9 5 8 0 E  + 0 0 . 3 2 8 4 4 E  + 0 
e(t - 4 )  0 - 5 8 9 2 6 E  + 0  0 . 3 1 6 2 2 E  + 0  
e ( t  - 5) 0 . 9 7 3 4 6 E  + 0 0 . 3 0 0 3 8 E  + 0 
y2(t - 1) 0 . 5 5 3 2 8 E  - 1 0 . 1 0 3 7 6 E  - 1 

y ( t -  1 ) u ( t -  1) 0 . 5 4 1 2 2 E  - 1 0 . 6 1 2 9 7 E  - 2  
y ( t - 1 ) u ( t - 2 )  - 0 . 5 0 1 2 3 E -  1 0 . 8 1 4 9 9 E - 2  
y ( t - 1 ) e ( t - 2 )  0 . 5 0 4 4 2 E  + 0  0 . 8 5 0 4 1 E -  1 
y ( t - 1 ) e ( t - 3 )  0 . 6 1 2 8 2 E  + 0  0 . 1 1 3 5 7 E + 0  
y ( t - l ) e ( t - 4 )  0 . 6 0 0 1 5 E  + 0  0 . 1 0 9 1 6 E + 0  

t l 2 ( t  - -  1) - 0 . 5 8 7 6 3 E  - 1 0 - 3 6 7 1 3 E  - 2  
u ( t -  1 ) e ( t - 2 )  - 0 . 2 9 5 4 9 E  + 0  0 . 8 1 9 4 2 E  - 1 
u ( t - 1 ) e ( t - 3 )  - 0 . 3 3 0 9 3 E  + 0  0 . 7 9 5 5 0 E -  1 
u ( t - 1 ) e ( t - 4 )  - 0 . 2 1 9 9 4 E  + 0  0 . 9 5 2 1 3 E -  1 
u ( t - 1 ) e ( t - 5 )  - 0 - 1 5 6 0 2 E  + 0 0 . 6 3 9 9 8 E -  1 

u2( t  - 2) - 0 - 4 8 2 7 2 E  - 1 0 . 4 6 9 4 9 E  - 2 
u(t - 2 ) e ( t  - 3) - 0 . 2 5 6 6 5  E + 0  0 . 9 5 0 0 8 E  - 1 
u ( t - 2 ) e ( t - 4 )  - 0 . 3 3 2 2 9 E  + 0  0 . 1 0 0 3 2 E + 0  

0 .2 = 0-63225E - 3. 
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Figure 6. Corre la t ion  tests o f  the  n o n - l i n e a r  m o d e l  g iven in Table  5, 
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TABLE 6 

Orthogonal estimation o f  linear model ( mob6shv6.dta ) 

O.s. Terms Estimates E.r.r.s St.de.s 

1 (2) y ( t -  1) 0.9305E + 0  0.9997E + 0  0-4839E - 1 
2 (23) u ( t - 2 )  0 -1221E+0  0 . 2 1 2 1 E - 3  0 . 5 8 7 1 E - 2  
3 (22) u ( t -  1) 0 . 1 1 1 8 E + 0  0.6753E - 4  0 . 2 0 1 7 E - 2  
4 (1) constant -0 .3266E  + 0  0.2567E - 4  0 - 2 1 0 2 E -  1 
5 (3) y ( t - 2 )  -0 .7256E - 1 0-3540E - 5 0.4126E - 1 
6 (12) y ( t -  11) 0 . 9 7 7 5 E - 2  0.4086E - 6 0 . 2 1 1 8 E - 2  
7 (24) u ( t - 3 )  0 . 1 9 3 4 E -  1 0 . 1 1 0 3 E - 6  0 . 6 7 7 6 E - 2  
8 (25) u ( t - 4 )  0.4775E - 2  0.8461E - 7 0 . 2 8 8 8 E -  2 
9 (31) u ( t -  10) - 0 . 3 3 3 9 E - 2  0 . 5 3 7 0 E -  7 0.2202E - 2 
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Figure 7. Correlation tests of the linear model given in Table 6. 

TABLE 7 

Prediction-error estimation o f  best linear model 
( mob6shv6.dta ) 

Terms Estimates St.de.s 

Constant -0 .25152E + 0 0.10968E - 1 
y(t  - l)  0.10500E + 1 0.15689E - 1 
y( t  - 2) -0 .16765E + 0 0.14440E - 1 
u ( t -  1) 0.11063E + 0  0.20673E - 2  
u(t - 2 )  0.10735E + 0  0.31474E - 2  

o" 3 = 0.44407 E - 3. 

3.5. D I S C U S S I O N  O F  R E S U L T S  

A n  a u t o m o t i v e  t u r b o c h a r g e d  d iese l  eng ine ,  o t h e r  t h a n  o n e  wi th  v e r y  l ight  boos t ,  c an  
be  e x p e c t e d  to  b e c o m e  n o n - l i n e a r  in its r e s p o n s e  to fue l l i ng  c h a n g e s  at  t he  l o w e r  e n d  o f  

its n o r m a l  s p e e d  range .  Th i s  is because ,  e v e n  u n d e r  s t e a d y  s ta te  c o n d i t i o n s ,  the  b o o s t  
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Figure 8. Correlation tests of best linear model (mob6shv6.dta). 

pressure provided by the turbocharger gives an air-fuel ratio not much greater than that 
required for good combustion. The variation of torque with fuel injection rate becomes 
non-linear at lower air-fuel ratios and these occur during transients due to the well-known 
lag in response of the turbocharger. At higher engine speeds, the boost pressure provided 
by the turbocharger is sufficient to give a significant higher air-fuel ratio, so that saturation 
of the fuelling is much less likely to occur during transients. These expected characteristics 
are borne out by the identification results. 

Engine speed response is of course dependent on the total load inertia, so that an 
identification of the speed response is only valid for one load condition (e.g. for one gear 
ratio and for one gross vehicle weight). The objective of the present study however was 
to demonstrate that parsimonious non-linear models can be used to predict engine 
response. The response of dynamic engine torque to fuelling is more difficult to determine 
[ 1 ]. The success of the NARMAX approach in the present study would however suggest 
that the latter problem would be a useful area to investigate in a future research study. 

4. CONCLUSIONS 

The identification of a turbocharged diesel engine has presented as an illustration of 
the practical application of an identification methodology for non-linear systems. It has 
been shown that the combined procedure of orthogonal and prediction-error estimation 
coupled with correlation and chi-squared model validity tests provides a powerful interac- 
tive toolkit for fitting parsimonious models to practical systems. 
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