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A new recursive prediction error routine is compared with the backpropagation method 
of training neural networks. Results based on simulated systems, the prediction of Canadian 
lynx data, and the modelling of an automotive diesel engine indicate that the recursive 
prediction error algorithm is far superior to backpropagation. 

1. INTRODUCTION 

A neural network is a highly parallel dynamical system with the topology of a directed 
graph that can carry out information processing by means of its state response. Neural 
networks have been the subject of intense study by researchers from many diverse 
disciplines. Neurobiologists, psychobiologists and those who study the brain and memory 
are working to establish the ground rules of how the central nervous system actually 
works. Computer scientists and researchers in the cognitive sciences are pursuing the 
study of intelligence and the massively parallel distributed information processing done 
by biological systems. The engineering community are more involved in image processing, 
signal processing, optimisation and control problems. The most important factors in 
employing neural networks for any application include the choice of architecture for the 
network and appropriate learning algorithms. Various neural network models and learning 
algorithms have been reviewed by Lippmann [l]. 

The present study investigates the use of neural networks to model non-linear systems. 
Non-linear systems can be modelled using the functional series description of Volterra 
and Wiener [2]. Alternatively, a more concise representation for a wide class of non-linear 
systems can be achieved by using Non-linear AutoRegressive Moving Average models 
with exogeneous inputs or NARMAX models [3]. More recently neural networks have 
been considered as an alternative functional representation [4,3]. The use of neural 
networks in this context is supported by the results of Cybenko [6] and Funahashi [7] 
who have proved that any continuous function can be uniformly approximated by a 
neural network with only one internal layer. 

The most popular and successful learning algorithm used to train multilayer neural 
networks in areas such as speech, natural language processing, pattern recognition and 
system modelling is currently the backpropagation routine [4,8-lo]. Backpropagation 
however is based on the steepest descent algorithm which is known to be an inefficient 
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optimisation procedure and Brady et al. [ll] and Sutton [ 121 have recently reported 
additional problems with this method of training neural networks. In the present study 
a new recursive prediction error routine which was introduced by Chen et al. [5] and 
extended to work in parallel by Chen et al. [ 131 is extensively tested and compared with 
the backpropagation routine. The influence of the momentum and the learning rate 
constants on the convergence of the backpropagation algorithm are studied and model 
validation methods are introduced as a measure of network performance. Convergence 
analysis of the recursive prediction error algorithm is discussed and the method is shown 
to produce an improved convergence rate and prediction accuracy compared with the 
backpropagation routine. Simulated examples, the prediction of Canadian lynx data and 
the identification of a model relating fuel rack position to engine speed of an automotive 
diesel engine are used to compare the two algorithms. 

2. NON-LINEAR SYSTEM REPRESENTATION 

Multilayered neural networks considered in the present study are feed-forward 
networks. A multilayered neural network is made up of one or more hidden layers between 
the input and output layers. Each layer consists of computing units called nodes or 
neurons connected together in the structure of a layered network as illustrated in Fig. 1. 
The functionality of the network is determined by specifying the strength of the connection 
paths called weights and the threshold parameter of each neuron. 

The input layer usually acts as an input data holder and it distributes inputs to the first 
hidden layer. The inputs then propagate forward through the network and each neuron 
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no-, units 
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layers 

1 il nl units 

Input 
layer 

na inputs 

Figure 1. A multilayered neural network. 
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computes its output according to 

“k-1 
x;=g C w$c-‘+b: 

j=l 

for i=l,. ..,nk and k=l,..., I, where x: is the output of the ith neuron in the kth layer, 
wi is the weight connection between the jth neuron of the (k - 1)th layer and the ith 
neuron of the kth layer, and bf is the threshold of the ith neuron in the kth layer. As 
shown in Fig. 1, the Ith layer is the output layer and the input layer may be labelled as 
layer zero. Thus n, and nl refer to the numbers of network inputs and outputs respectively. 
XT and x: will also be denoted as Xi and ji. The function g( .) is called the node activation 
function. The argument 

“k-l 
(2) 

is therefore the activation for the ith neuron in the kth layer. The function g( .) is assumed 
to be differentiable and to have a strictly positive first derivative. 

For the neurons in the hidden layers, the activation function is often chosen to be 

g(r)=-&F. (3) 

Since in system modelling applications the dynamic range of the output data may be 
greater than 1, the activation function of the output nodes is chosen to be linear. Thus 
the ith output node performs a weighted sum of its inputs as follows 

ji = 1 &+;- . (4) 
j=l 

Only networks with one hidden layer are considered in the present study because the 
results of Cybenko [6] and Funahashi [7] show that this is sufficient to approximate all 
continuous functions. Let 0 = [ 8, .** &,I represent all the unknown weights and thresh- 
olds of the network where n, denotes the dimension of the parameter vector 8 and is 
defined as n, = CiL’, nj( hi-1 + 1) + nl_, x n,. A network with a single layer of hidden units 
can then be defined by the model 

jQr,O)= ; w;,;(t)= ; w;g ; w;kx,Jr)+b; > , IsiGn 2 
j=l j=l k=l 

(5) 

where x(t)=[x,(t) . * . x%(t)]’ is the input vector to the network. 

3. LEARNING ALGORITHMS 

Two learning algorithms are considered. The backpropagation algorithm is a gradient 
algorithm designed to minimise the mean square error between the actual output of the 
network and the desired output. The recursive vesion of this algorithm is discussed in 
the present study. The recursive prediction error or RPE algorithm is based on the class 
of unified recursive parameter estimation methods which minimise the prediction error 
over the model set using an approximation of the Gauss-Newton search direction. Both 
approaches require differentiable non-linearities, and the backpropagation algorithm can 
be viewed as a simplified version of the RPE algorithm. 
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3.1. BACKPROPAGATION ALGORlTHM 

The backpropagation algorithm has been described in Rumelhart and McClelland [lo]. 
Define the energy function as 

J=$C (Yi(t)-$i(f))’ (6) 
I 

where y,(t) is the ith desired output. This energy function is to be minimised with respect 
to all the unknown parameters. In the steepest descent approach the parameter vector 0 
is adjusted using the increment vector [A& A& . . . At&jT defined along the negative 
gradient direction of J 

Although the one-hidden-layer model is used in the present application it is useful to 
derive the gradient of J for the general case and the result for the one-hidden-layer model 
can readily be obtained as a special case. 

Starting from the top of the network, the application of the chain rule gives rise to 

aJ aJ aA 
I=-x- aw,, aA a$’ 

. 
From equation (6) 

$=-(y,-+6: t 
where Si is called the error signal of the ith neuron in the Ith layer. From equation (4) 

Thus 

a3 ----l_x I-1 

aw!.- j ’ (10) 
'J 

-f$= -sfx;-‘. 
II 

(11) 

Next consider the (I - 1)th layer. Using the chain rule yields 

(12) 

It is easy to see that 

aFk , 
dxj-‘= wki 

ax!-* 
A= g’(z;-‘) 
a$' 
az!-* 

1-2 ---=x_ 
aw!,-’ J 

(13) 

(14) 

(IS) 

where 

g’(r)=2$l. (16) 



TRAINING NEURAL NETWORKS 237 

By defining the error signal for the ith neuron of the (I - 1)th layer as 

g’(Zf-‘) 1 SkWLf 
k k \ 

equation (12) can be rewritten 

Similarly it can be shown that 

(17) 

(18) 

(19) 

By carrying on this procedure the following general results are obtained for m = 
&Z-l,...,2 

k 

aJ 
aby-’ 

= -&-‘. 

Equation (20a) indicates how the error signals propagate down the network, hence, 
“backpropagation”. 

The steepest-descent minimisation of the energy function defined in equation (6) 
produces the following increments for updating 0 

Awk,( t) = Q;(t)x;-‘( r) (214 

Ab:( t) = q&(t) W) 

where 

and c 
s:(t)=g’(z;(t))CSk,+‘(t)W:‘(t-l), k=Z-l,..., 2,l. (22b) 

m 

The constants T),,, and qb represent the learning rates for the weights and thresholds 
respectively. In practice, a large value of the learning rate would be preferable because 
this would result in rapid learning. Unfortunately a large value of learning rate can also 
lead to oscillation or even divergence. To overcome this problem, a momentum term is 
usually included so that equations (21a) and (21b) become 

Awk,(t)=~,S:(f)x;-‘(r)+aJw~(t--1) (234 

Ab:( t) = q&(f) + a,Ab:(t - 1) (23b) 

where (Y, and (Yb are momentum constants which determine the effect of past changes 
of Awi(t - 1) and Abf(t - 1) on the current updating direction in the weight and the 
threshold space respectively. This effectively filters out high frequency variations in the 
error surface. 
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To summarise, the backpropagation algorithm updates the weights and thresholds of 
the network according to 

w,:(t)= w;(t-l)+Aw@) (24a) 

b;(t)=b;(t-I)+Ab;(t) (24b) 
with the increments AwfJ(t) and Abf(t) given in equations (23a) and (23b). 

3.1.1. Zmplementation 
The implementation of the backpropagation algorithm involves two phases. Weights 

and thresholds are usually initialised with small random values. In the first phase, inputs 
are presented to the first hidden layer and these signals then propagated through the 
network to the output layer. The actual network outputs obtained from the output neurons 
are compared with the desired outputs to produce the prediction errors or residuals. The 
second stage involves propagating error signals backwards from the output layer to the 
first layer. Weights and thresholds are updated based on these error signals. This process 
is repeated until weights and thresholds converge. 

For the activation function defined in equation (3) it can be shown that 

g’(zk) = Xk( 1 - x”,. (25) 

The implementation for the one-hidden-layer model equation (5) can be summarised as 
follows: 

i. 

ii. 

. . . 
111. 

iv. 

Initialise weights and thresholds for the network with small random values and 
select values for the learning rates 7, and T]~ and the momentum constants cy, and 
Qb. 

Present the input data to the network and compute the outputs of the network 
according to 

;i(t)= ; w;(t-1)g $ wj,Jf-l)xk(t)+b;(t-1) . 

j=1 k=l > 

Compare the outputs of the network with the desired outputs to produce the 
prediction errors &i(t) which are equal to the error signals s:(t) for the output 
neurons 

Ei( t) = s:(t) = (Yi( t) -Fi( t)). 

Compute the error signals for the hidden neurons. As an example consider hidden 
neuron j whose output is transmitted to two output neurons as illustrated in Fig. 
2. The error signal for this hidden neuron is then given by 

S~(t)=x~(t)(l-xj(t))(SZ,(t)w~j(t-1)+Gf(t)w~(t-1)). 

kth ith 
Output 
layer 

jth 

Figure 2. Hidden neuron j connected to output neurons k and i. 
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v. Update the weight connections between the hidden layer and the output layer 

Aw;( t) = T&( t)xf( t) + a,Jw;( t - 1) 

w;(t)= w;(t-l)+Aw;(t). 

vi. Update the weights and thresholds for the hidden neurons according to 

A~t(t)=rlwsf(t)Xj(t)+a~w2(t-l) 

w;(t)= w;(t-l)+Aw;(t) 

Ab:(t)=~8:(t)+cu,Ab:(t-1) 

bf(t)=bf(t-l)+Abf(t). 

Steps (ii) to (vi) are repeated until convergence. 

3.1.2. Convergence 

It is well-known, from standard non-linear optimisation theory, that the block-data 
version of the backpropagation algorithm will converge to a local minimum of the mean 
square error surface. The backpropagation algorithm discussed in the present study is a 
recursive version. Notice that this algorithm is known as the smoothed stochastic algorithm 
in system identification. If the learning rates n,,, and nb are made f-dependent and tend 
to zero as t + +oo, a unified method developed by Ljung [143 for convergence analysis 
of recursive algorithms can readily be applied. Under the above assumption on learning 
rates, it can be shown that the recursive version of the backpropagation algorithm has 
the samt convergence properties as its off-line counterpart. This means that the parameter 
vector Q(t) will converge to a local minimum of the mean square error surface as the 
sample points t --, 00. Furthermore convergence of the backpropagation algorithm can be 
discussed within the same framework for the RPE algorithm. However it is generally true 
that the convergence of the backpropagation algorithm is fairly slow compared with the 
RPE algorithm. It is reasonable to believe that these results will have relevance for the 
case of smaller constant learning rates. 

If all the neurons have a linear activation function, the network will degenerate to a 
linear one. In this extreme case, the convergence results for the adaptive linear combiner 
[15] are valid. 

3.2. RECURSIVE PREDICTION ERROR (RPE) ALGORITHM 

The off-line prediction error algorithm (PEM) is derived based on the criterion 

J(@)=j$ E Q(E(f), 0) (26) 
I 1 

where Q( . , . ) is the measure of fit and e(t) is the prediction error vector. A good measure 
of fit is a quadratic function of E( t) [ 161 

Q(&(t), 6)=+2(2, o)A-‘&(r, 6) (27) 

where A is some nl x q symmetric positive definite matrix and n, is the number of output 
nodes. If the prediction errors are Gaussian with zero mean, Q(. , .) can be chosen as 
the negative log likelihood function 

Q(&(f), O)=constant+~log(A~+~eT(z, @)A-‘e(t, 0). (28) 

When the covariance matrix A is known (independent of 6), the first two terms in Q(. , .) 
have no effect on the minimisation which then becomes equivalent to equation (27). In 
this case the prediction error estimate is equal to the maximum likelihood estimate with 



240 S. A. BILLINGS ET AL. 

the advantage that the estimation accuracy satisfies the Cramer-Rao bound. In general 
the prediction error will not be Gaussian. However the asymptotic properties of PEM 
with Q(. , .) given in equation (27) are very similar to those of maximum likelihood and 
it can be shown that under weak assumptions the PE estimates are consistent, asymptoti- 
cally normally distributed and asymptotically efficient. 

The minimisation of the criterion (26) can be performed using the Gauss-Newton 
algorithm 

@k’= @(k-l)+SW~(@k-l)) (29) 

where superscript (k) denotes the iteration step, p( 0) is the Gauss-Newton search 
direction defined by 

/L(O)=-[H(O)]-‘VJ(B) (30) 

VJ( @) is the gradient of J( 0) and H( 0) is the second derivative, known as the Hessian 
matrix of J(e). The gradient of J( 6) can be derived by substituting equations (27) into 
the criterion (26) to yield 

VW)=-$ i Y(t, @)/I-‘&(C, e) 
f 1 

where 

(31) 

(32) 

is the first. derivative of the one step ahead prediction with respect to 0. The Hessian of 
J(e) is obtained by differentiating VJ(0) 

x(g)=-&+ f Y(t, @)A-‘Y’(t, @)-i f dyy)A-‘e(t, 0). (33) 
f 1 I 1 

At a minimum point of the criterion (26), the prediction errors form an uncorrelated 
sequence, and it can be shown that the expected value of the last term in equation (33) 
goes to zero so that equation (33) can be approximated as 

In case the matrix 
can be taken 

H(8)=+ i Y(t, @)A-‘Y’(t, 8). (34) 
I 1 

H(O) may be close to singular, the following approximate Hessian 

H(@)=$ i P(t, @)A-‘Y’(t, @)+pI (35) 
t 1 

where I is the identity matrix and /3 is a non-negative small scalar. sck) is obtained by 
minimising J( @(k-‘)+ sp( @(k-1))) over 0 < s < 1 using a linear search technique. 

The off-line prediction error algorithm can be used as a basis to derive a recursive 
algorithm to minimise the criterion (26). The derivation is given by refs. [16,17] and 
yields the standard recursive prediction error algorithm 

s(r)=Y(r)-y”(r) (36) 

R(t)=R(t-l)+y(t)[P(t)A-‘YT(t)+/31-R(t-l)] (37) 

&t)=6(t-l)+y(t)R-‘(t)P(t)A-‘e(t) (38) 
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where d(t) is the estimate of the parameter vector and y(t) is the gain at sample 1. The 
negative gradient of Q( E( t)) is ly(~)A-~s(t) which is a stochastic gradient and 
R-‘(t) T( t)A -I&( 1’) can be regarded as an approximation of the Gauss-Newton search 
direction. 

The simplest choice of A is I [17]. In practice the RPE algorithm is not implemented 
with an inversion of R(t) in each step, but the algorithm [ 161 is updated in terms of 

P(t)= y(t)K’(t) (39) 

to give for /3 = 0 

e(r) = y(t) --j(l) (40) 

P(t) = ~[P(t-l)-P(I-l)I(L)[A(L)I+‘Y~(l)P(1-1)Y(t)l-~~~(f)P(t-l)1 (41) 

(42) 

where 

h(C)= p1-r(r)) (43) 

A(t) is called the forgetting factor. When it is required to weight out the old data, it is 
required that h(t) c 1. It is desirable to set A(t) c 1 at the initial stage so that rapid 
adaptation takes place and then to let A(t) + 1 as t + CO [ 171. These objectives can be 
achieved using the scheme 

A(t)=A,A(t-1)+(1-A,) (44) 

where A, and the initial forgetting factor A(0) are design values. 
The gradient !P(t, 8) is an n, x nl matrix. For networks with a single hidden layer 

(n, = nz), the number of parameters to be estimated is given by 

n,=(n~+l)xn,+n,xn, (45) 

The elements of 0 for the one-hidden-layer model can be obtained by differentiating 
equation (5) with respect to 8i to yield 

a_ 
ly, = dei - 

i 

Xl, if 8,=w$,lakSn, 
x:(1 -xi)w$, if 8,=b:,lskSrr, 
XL(l-X:)W$Xm, if 0i=W:,,lSk4?li,lSmSn, (46) 

0, otherwise 

where the activation function g( .) is assumed to be equation (3). If the output layer 
consists of a single neuron, n2 = 1, the index i in equation (46) can then be removed. 
Consider for example the network shown in Fig. 3 where no = 3, n, = 2, nz = 1 and the 
input vector is given by 

x(t)=[x,(t) Xl(f) x&)lT=[u(r-1) u(t-2) y(t-l)]? 

Using equation (45), the number of parameters to be estimated is ten. The parameter 
vector 8 is then 

8 =[e, e2 - a m e,O]T 
If the following equivalences 

&=W:i, e2= WL, %= WL, e4= b:, e5= & 

es= 4, e7=wlg, e8=b:, e,= w:, elo = W: 
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u(t- 1) uct-2) Y(’ 

Hldden 
layer 

b 
Input 

-1) 
layer 

Figure 3. A three-layered neural network with one output neuron, two hidden neurons and three input neurons. 

are introduced, the elements of !Z’ in this case are given by 

I#?, =x:(1-x:)w:x,, $,=x:(l-x;)w:x,, ~,=x:(1-x:,w:x3, 

&=x:(1 -x:>w:, *,=x:(1-x:)w:x,, I+& = x:( 1 - x:, w:x2, 

*, = x:( 1 - x:> w:x, ) i//~=x:(l-x:)w:, *,9=x:, *,0=x:. 
Finally it is worth pointing out that, if P(t) in equation (42) is replaced by the identity 

matrix Z, the RPE algorithm reduces to the backpropagation algorithm written in a vector 
form. This can be verified easily. The matrix P(t) determines the asymptotical accuracy 
of the estimate and therefore is also called the covariance matrix. 

3.2.1. Implementation 
The implementation of the RPE algorithm involves two phases. The first phase is the 

same as that of the backpropagation algorithm, that is to obtain the output j(t). The 
second phase includes computing the covariance matrix P(t) and the negative gradient 
p( t)E( t) and updating the parameter vector. The matrix P(t) in particular requires matrix 
algebra. The RPE algorithm is therefore computationally more demanding than the simple 
backpropagation method. The RPE algorithm for one-hidden-layer model equation (5) 
can be summarised as follows: 

i. Initialise the weights and thresholds with small random values; choose P(0) as a 
diagonal matrix with large diagonal values typically in the range of lO*Z to 104Z; 
assign values to ho and h(0) typically A0 = 0.99 and h(0) = O-95. 

ii. Present inputs to the network and compute the network outputs. 
iii. Compare the network outputs with the desired outputs to give the prediction errors 

E(t); then compute elements of P(t) according to equation (46). Notice this is 
done from the top output layer down to the hidden layer. 

iv. Compute P(t) according to equation (41). 
v. Adjust parameter vector Q according to equation (42). 

Steps (ii) to (v) are repeated until convergence. 
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It has been shown [14] that the RPE algorithm used in linear systems identification 
has the same converg:nce properties as its off-line counterpart. One of these properties 
is that the estimate o(t) converges with probability one either to a local minimum of 
E[ E ‘( t, O)E( f, 0)] or to a boundary point of the set of the parameter vector describing 
the model set as t tends to infinity, where E [ .] is the expectation operator. The proof of 
convergence is based upon the differential equation associated with the RPE algorithm 

(474 

where 

f(d)= E[?P(t, O)e(t, 0)] (484 
G(h)=E[‘P(t, O)?PT(t, O)]. (48b) 

The convergence of the RPE algorithm is connected with the stability of the above 
differential equations. The stability of equations (47a) and (47b) canbe proved by applying 
Lyapunov stability theory. It can also be shown that the estimate O(t) should follow the 
trajectories of the above differential equations asymptotically. These results can be 
extended to non-linear systems [5,18]. 

Under the assumption that the learning rates tend to zero as t + +m, the convergence 
properties of the backpropagation algorithm can be similarly analysed. The differential 
equation associated with the backpropagation algorithm in this case can easily be obtained 
by replacing R(r) in equation (47a) with the identity matrix to yield 

; G.(T) =f( d(T)). 

4. MODEL VALIDITY TESTS 

The main objective in system modelling is to produce an acceptable model which 
accurately represents the system. The identified model will only produce acceptable 
predictions over different data sets if it is unbiased. If the model structure and the estimated 
parameters are correct then the prediction error sequence c(t) should be unpredictable 
from all linear and non-linear combinations of past inputs and outputs. This condition 
will hold if and only if [19] 

&F(T) = 0, 720 

$&J,(r) = 0, for all 7 

C#&(T) =o, 720 (50) 

&zEz( T) = 0, for all 7 

C$,&( 7) = 0, for all 7 

where 4 represents the standard correlation function. If these functions fall within the 
95% confidence intervals (*1096/m), the model can be regarded as adequate. 

5. SIMULATION STUDY 

Five examples of non-linear systems were considered. The first three examples called 
Sl, S2 and S3 represent simulated non-linear systems. The fourth example is the prediction 



244 S. A. BILLINGS ET AL. 

of Canadian lynx data and the fifth example is the identification of an automotive diesel 
engine. The fourth example is a scalar time series and the rest of the examples are all 
single-input single-output systems. Therefore the output layer of neural networks requires 
only one neuron (nZ = 1). 

5.1. SIMULATED SYSTEMS: s1, S2 AND S3 

Neural network models with a single layer of hidden units were used to model these 
systems. The hidden layer consisted of five hidden neurons (n, = 5) and the network input 
vector is defined by 

x(t)=[u(t-1) u(t-2) u(t-3) y(t-I) y(t-2)lT 

giving n, = 5. In each of the three cases, the input u(t) was a zero mean uniformly 
distributed white noise sequence and 500 data points were generated. The backpropagation 
routine and the RPE algorithm were used to train the networks. Comparisons of these 
algorithms were made using the following models: 

Sl:y(t)=O-8y(t-1)+0.4(u(t-l)+u*(t-1)+u3(t-1)) 

S2:y(t)=0*4y2(t-1)+0*2u(t-1)+0.6u2(t-1) 

S3:y(t)=O-8y(t-1)+0~5u*(t-l)y(t-1)+u3(t-1). 

These polynomial models are chosen such that Sl contains power non-linearities in the 
input, S2 contains power non-linearities both in the input and output and S3 contains a 
cross-multiplication term and power non-linearity. 

The measure of closeness between the predicted output and the measured output used 
is the error index defined as the normalised root mean square of the residual given by 

Error index = 
J 

c w)-Yw)* 

CY’W * 

The main result obtained from the simulations was that the RPE algorithm converged 
faster and gave a better prediction than the backpropagation algorithm. This is shown in 
Figs 4,5 and 6 for simulations Sl, S2 and S3 respectively. The error index curves obtained 

No. of iterotions 

Figure 4. Evolution of the error index for the backpropagation (-) and RPE (- - -) algorithms for 
simulation Sl. 
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No. of iterotions 

Figure 5. Evolution of error index for the backpropagation (-) and RPE (- - -) algorithms for simulation 
s2. 

I I I I I 

0 100 200 300 400 5 
No.of iterations 

10 

Figure 6. Evolution of error index for the backpropagation (- ) and RPE (- - -) algorithms for simulation 
s3. 

for the RPE algorithm were smoother than those of the backpropagation algorithm. This 
is easily understood because the covariance matrix P(t) has the effect of smoothing the 
random variations in the gradient vector. 

It was found that the choice of learning rates and the momentum constants for the 
backpropagation algorithm influenced the evolution of the error indexes and their corre- 
sponding final values. Normally, small values of learning rates, vW and nb are chosen 
and momentum constants, (Y, and ab are chosen to be less than but near to 1. The effect 
of varying one of these parameters whilst keeping the others constant is illustrated in 
Fig. 7. The final values of the error indexes were O-487,0-165,0-312, l-292 and O-243 for 
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No.of iterations 

Figure 7. Effect of user selectable parameters on the evolution of the error index for backpropagation for 
simulation ~1. A, T,, = q,, = 0.4, CK,. = CI,, = 0.8; B, Q = vh = 0.5, (I, = ah = 0.8; C, qX, = oh ~0.3, (Y, = ah ~0.8; 
D, v,, = q6 = 0.4, a,. = ah = 0.9; E, 7, = 7h = 0.4, (I, = a,, = 0.7. 

I I I I 1 

0 100 200 300 400 
No. of Iterations 

K IO 

Figure 8. Effect of initial value of P on the evolution of error index for the RPE algorithm for simulation Sl. 

the cases A, B, C, D and E respectively. This shows the sensitivity of the backpropagation 
algorithm to the user selectable parameters. 

For each example considered, a different combination of these parameters was needed. 
If an inappropriate choice was made, there was a possibility that the model would not 
produce a satisfactory prediction for the same amount of training data. This sensitivity 
can create difficulties whenever backpropagation routine is employed. 
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Figure 9. C&relation tests for simulation Sl using (a) the RPE algorithm and (b) the backpropagation 
algorithm. 

It was also difficult to satisfy the model validity tests of equation (50) using the 
backpropagation routine. Figures 9(b), 10(b) and 1 l(b) illustrate the tests for simulations 
Sl, S2 and S3 respectively using the backpropagation algorithm. Whilst neither RPE nor 
backpropagation satisfy these tests completely the results for the latter algorithm are 
inferior to those for RPE. Larger networks may well have produced improved results but 
a longer training period will be required. The selection of the number of nodes in a 
network is still an open question which will not be addressed in the current study. 



248 S. A. BILLINGS ET AL 

E-7----?--Z--uy -2o- - --- 20 

--_- -- _ 
_2-vzi _,2_ To 

d&(r) 1.01 L(r) I.07 

_J___ --- _- -- 
_20-_-__ _____zo 

I 
_ 2 0 - - _ - -  _--__20 

-1 .o -=-I+-- -1.0 

(b) 
Figure 10. Correlation tests for simulation S2 using (a) the RPE algorithm and (b) the backpropagation 

algorithm. 
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Figure 11. Correlation tests for simulation S3 using (a) the RPE algorithm and (b) the backpropagation 
algorithm. 

For the RPE algorithm, it is known that while the choice of the initial covariance matrix 
P(0) = ~1, p > 0 affects the initial stage of parameter estimation it should not significantly 
influence the final parameter estimates. A larger p will generally produce a more rapid 
change at the initial stages. These expectations were confirmed in the simulation as shown 
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in Fig. 8. The recursive prediction error algorithm produced model validity tests which 
were closer to the 95% confidence limits for the same structure of network and gave better 
predictions compared to the backpropagation algorithm as indicated in Figs 4 to 11. 
These advantages of the RPE algorithm are achieved at the expense of more computations 
at each iteration. Notice that the RPE algorithm described above can be reformulated 
into a parallel algorithm [I31 so that the parallel computing potential of the network is 
exploited whilst maintaining the efficiency of RPE. 

5.2. CANADIAN LYNX DATA 

The fourth example concerns the modelling of a time series which representing Canadian 
lynx data. A neural network model with n,= 7 and n, = 5 was fitted using both the 
backpropagation and the RPE algorithms. The input vector in this case is 

x(t)=[y(t-1) y(t-2) . . . y(t-7)]‘. 

The lynx data consists of the annual record of the numbers of Canadian lynx trapped in 
the Mackenzie River district of North-Western Canada. This data was collected over a 
period of 114 years between 1821-1934 [20]. It has been noticed that the data exhibits 
an apparently regular 10 year cycle. Since the peaks of the data are sharp, while the 
troughs are relatively smooth, Moran [21] recommended that the logarithm to the base 
10 of the data should be used for estimation. 

For the lynx data, the backpropagation routine failed to give a reasonable model using 
the data set consisting of 114 data points although many combinations of learning rates, 
momentum constants and initial weights and thresholds were tried. This failure was 
probably due to the slow convergence of the backpropagation routine. A length of 114 
data points might not be enough for the backpropagation algorithm to train such a 
network of 45 parameters so that significant changes to the initial parameter values were 
obtained. 

Figure 12 shows the logarithmically transformed lynx data, the one step ahead prediction 
and the residuals obtained from the model trained by the RPE algorithm using the data 
set of 114 points. The one step ahead prediction superimposed on the actual data is 
illustrated in Fig. 13, where it is shown that the resulting model was capable of predicting 
the observations reasonably well. Various alternative network structure were trained but 
no significant improvement was achieved. 

Figure 12. Output, one step ahead prediction and residual for the lynx data using the RPE algorithm. 
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F$ufe 13. One step ahead prediction superimposed on observed lynx data using the RPE algorithm. 

5.3. A TURBDCHARGED AUTOMOTIVE DIESEL ENGINE 

The fifth ekampie involves the identification of a model of a turbocharged automotive 
diesel etigin&. 4 &iral network with no = n, = 5 was used to model this system. The input 
vector was defined by 

x(t)=[u(r-1) u(t-2) u(t-3) y(t-1) y(t-2)]r. 

The description of the experimental procedure and data collection are described in [22]. 
The low engine speed data set, b6shv2.dta was-used in the present analysis. The input to 
the system was fuel rack position and the observed output was engine speed. The fuel 
rack was perturbed by a square wave signal of large arhplitude with a superimposed PRBS. 

The input and output data together with the predicted outputs and the residuals of the 
model trained by the RPE algorithm are shown iri Fig. 14. Figure 15 shows the one step 

lnpu1 

Output 

Pre&&ad 

Residual 

-0.2141 I 

Figure 14. Input, output, one-step-ahead prediction and residual for the diesel engine. The model was trained 
using the RPE algorithm. 
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Figure 15. One step ahead prediction superimposed on observed output for the diesel engine using the RPE 
algorithm. 

Figure 16. Correlation tests for the diesel engine using a neural network with five hidden and five input 
neurons using the RPE algorithm. 

ahead predicted output superimposed on the actual output. The correlation validity tests 
shown in Fig. 16 suggest the model is inadequate. Increasing the number of hidden 
neurons from five to seven gave the validity tests shown in Fig. 17 which compared with 
Fig. 16 show no significant improvement. However on increasing the number of input 
nodes from five to seven that is the input vector was now defined by 

x(l)=[u(t-1) u(t-2) u(t-3) u(t-4) y(t-1) y(t-2) y(t-3)]’ 

the correlation tests were improved as shown in Fig. 18. The data set was shown to be 
highly non-linear [22]. Four hundred points of data might not be sufficient for the RPE 
algorithm to obtain a finely tuned parameter estimate so that the model validity tests are 
all within the confidence bands. Presenting the same set of data to the network for a 
second time resulted with more acceptable model validation plots of Fig. 19. It is therefore 
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Figure 17. Correlation tests for the diesel engine using a neural network with seven hidden and five input 
neurons using the RPE algorithm. 

Figure 18. Correlation tests for the diesel engine using a neural network with five hidden and seven input 
neurons using the RPE algorithm. 

not surprising that for this system, despite many attempts, the backpropagation routine 
failed to produce a reasonable estimate. 

A NARMAX polynomial model has been estimated for the diesel engine but a direct 
comparision of these results with the neural network model are not possible because a 
noise model was estimated as part of the NARMAX analysis. 

6. CONCLUSIONS 

A new recursive prediction error estimator (RPE) has been compared with backpropaga- 
tion as a method of training neural network models of non-linear systems. It has been 
demonstrated that the recursive prediction error algorithm often yields better predictions 
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Figure 19. Correlation tests for the diesel engine using a neural network with five hidden and seven input 
neurons using the RPE algorithm after a second presentation of the data. 

and faster convergence than backpropagation. The backpropagation algorithm appears 

to be dependent on the user selectable parameters to the extent that if an inappropriate 
combination of the learning rates and momentum constants are chosen the algorithm 
performs badly. The new RPE algorithm appears to provide an effective method of training 
neural networks at the expense of increased computational load compared with back- 
propagation. 
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