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This paper reviews the model structures and learning rules of four commonly used artijkial neural networks: the cerebellar model 
articulation controller (CMAC),  B-splines, radial basis functions (RBF) and multi-layered perceptron ( M L P )  networks. Their dynamic 
modelling abilities are compared using a two-dimensional non-linear noisy time series. The network performances are evaluated based 
on their network surface plots, phaseltime history plots, learning curves, prediction error autocorrelation functions and finally their 
short-range prediction error variances. The modelling results suggest that all four networks were able to capture the underlying 
dynamics of the time series. Also, spec@ prior knowledge about the time series was incorporated into the B-splines model, and is used 
to highlight an important trade-off between the model Jlexibility and high-dimensional modelling ability in the B-splines and CMAC 
networks. In  general, when the network model is well conditioned and linear with respect to its adaptable parameters, simpler on-line 
learning rules often provide adequate convergence properties. Alternatively, when the model is highly non-linear, complicated learning 
rules which utilize high-order gradient information are generally required at the expense of increased computational complexity. 

1 INTRODUCTION 

In traditional modelling and control applications, a 
linear adaptive model* has often been used to model an 
unknown process or to form an inverse mapping of the 
controlled process. Being characterized by its transient 
convergence behaviour and steady-state mismatch, the 
modelling performance relies greatly on the character- 
istic of the process, and is optimal when the process is 
linear and time invariant. However, when the process 
is highly non-linear, its behaviour in different operating 
regions can vary significantly. This means that a well- 
learned linear model in some region might have a 
catastrophic effect in other untrained regions unless 
adequate relearning has taken place. Because the model 
is linear, the relearning procedure often destroys the 
previously stored knowledge about the process. In order 
to ensure stable transition, the drift of the process’s 
operating region must be slow compared with the 
model adaptation, which imposes a stringent condition 
on the process dynamics. 

Unlike the linear model, artificial neural networkst 
can generally approximate any continuous multi- 
dimensional non-linear function (1, 2), and have been 
widely explored in the area of modelling and control 
applications (3-8). While the learning capabilities of 
these networks can vary significantly depending on the 
non-linearity incorporated in their model structures, 
these networks share an important characteristic: they 
internally transform$ every training input into a higher 
dimensional space so that the desired output can be 
made approximately linear to the transformed input. 

This paper was presented at an Ordinary Meeting held in London on 16 March 
1993. The MS was received on 23 March 1993 and was accepted for publication 
on 25 August 1993. 
* With respect to the process input. 
t This usage should be understood as algorithms which approximate mathe- 
matical functions, rather than as biological models which account for electro- 
chemical activities among neurons. 

This transformation can either be fixed or adaptive. 
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There are many ways to describe the non-linearities 
defined in these networks. One useful way of describing 
them is based on the type of generalization by which the 
network transforms the input. In general, neural net- 
works can be classified as either globally generalizing or 
locally generalizing. The generalization is considered 
local if only few adaptable parameters can potentially 
affect the network output for each input. Examples are 
lattice associative networks (LANs), such as the cerebel- 
lar model articulation controller (CMAC) and B-splines 
(9, 10). On the other hand, the generalization is con- 
sidered global if each adaptable parameter can poten- 
tially affect the network output at every point in the 
input space. Examples are multi-layered perceptron 
(MLP) and radial basis functions (RBF) networks 

Another useful way of describing the non-linearity is 
based on the relationship of the network output to its 
adaptable parameters. This relationship is linear in the 
lattice associative network, and linear optimization 
techniques can readily be applied. However, the same 
relationship in the MLP network is highly non-linear 
and the cost function is highly irregular, containing 
plateaus and local sub-optimal solutions. 

With this specific description of non-linearities, the 
RBF network can be considered as an intermediate 
model which lies between the MLP and lattice associa- 
tive networks. While the RBF network has global 
support (similar to the MLP), the energy of the Gauss- 
ian basis function is mostly local, similar to the LAN. 
Also, the inner structure of the model can be either 
fixed, similar to the LAN, or can be made adaptive, as 
with the MLP network. Based on these descriptions, a 
wide variety of existing neural networks can be rep- 
resented by the MLP, RBF and associative networks. 

In this paper, the model structures and learning rules 
of the CMAC, B-splines, RBF and the MLP are 
described. The modelling abilities of these networks are 
evaluated using a two-dimensional non-linear time 

(11-13). 
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series. This time series has sufficiently rich dynamic 
properties such that useful insights can be gained about 
the low-dimensional modelling abilities of these net- 
works. The evaluation measures for the time series 
modelling are based on their network surfaces' recon- 
structions, phase/time history plots, error autocorrela- 
tion functions and variance characteristics, and also 
their learning curves. These measures can generally 
provide an accurate indication of the dynamic model- 
ling performance. The rest of this paper is organized as 
follows. In Section 2, the model structures and the 
learning rules of the LANs are reviewed. Sections 3 and 
4 present the model structures and learning rules for the 
RBF and MLP networks. Section 5 describes the time 
series experiment and the four network model condi- 
tions. Section 6 discusses the time series modelling 
results and, finally, Section 7 presents comments on the 
general modelling abilities of these networks. 

2 LATTICE ASSOCIATIVE NETWORK (LAN) 

The output of a LAN is formed of a linear combination 
of overlapping basis functions which are evenly distrib- 
uted in an n-dimensional sub-space of R". Each of the 
basis functions is defined on a hyper-rectangular region 
which is a compact region in R", and this is known as 
its receptive jield. Therefore the output of each basis 
function is non-zero only when the input lies in its 
receptive field. This feature endows the LANs with an 
ability to generalize locally: similar inputs are mapped 
onto nearby hyper-rectangular receptive fields, which 
produce similar outputs, while dissimilar inputs are 
mapped onto distant hyper-rectangles, and this pro- 
duces independent outputs. A general associative 
memory network in which the input is non-linearly 
transformed is shown in Fig. 1. Notice that the function 
approximation is only valid for a bounded input space 
because of the finite number of localized basis functions, 
although the function may be assumed to remain con- 
stant outside the bounded input space. 

2.1 Model structure 

The network output at time t ,  j{x(t)}, is computed by 
first transforming the input vector, x(t) (E R"), into a 
higher dimensional space (RP), which is generated by the 

Basis Desired 
output 

L' 
Normalized input 

Fig. 1 
space functions 

An associative memory network 
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outputs of the p basis functions. The inner product of 
the transformed input vector, $ { x ( t ) )  (containing the 
outputs of the individual basis functions), with a p -  
dimensional adjustable weight vector, w(t - l), is then 
calculated, so the network output is given by 

9{x(t)} = d W t ) l  * w(t - 1) (1) 

Because of the compact receptive fields, c#{x(t)} has only 
a few non-zero components, and if a simple algorithm is 
available for determining which basis functions are non- 
zero the computational cost of forming the output can 
be significantly reduced. The implicit dependency of 
and w on time will be subsequently dropped in order to 
simplify the notation. Each &(x) (the kth element of 4) 
is uniquely determined by the type of basis function 
used in the LAN, in particular the width and the centre 
of the receptive field relative to x. In general, the n- 
dimensional multi-variate basis function (bk(x) is defined 
by its n univariate basis functions and the operator 
which combines univariate basis functions to produce a 
single value. Two common composition operators that 
have also been used in fuzzy systems to represent con- 
junctions (14) are the minimum operator and the 
product operator. The minimum operator sets &(x) to 
be the minimum univariate function value, that is 

the ith element of x and + k , i ( X i )  is the ith univariate 
basis function corresponding to the kth multi-variate 
basis function, and both are defined on the ith input 
axis. The product operator computes q5k(x) by simply 
multiplying together n univariate function values, that is 

4dX) = min{6k, l(xl), 4 k , Z ( x 2 ) ,  . . . ?  4 k , n ( x n ) } ?  where x i  is 

n 

# k ( x )  = 4 k .  l(xl) * 4 k , 2 ( X Z )  *. . . * 4 k , n ( x n )  = n $ k , i ( X i )  
i =  1 

The individual univariate basis functions generate the 
n-dimensional multi-variate basis functions, therefore 
only the former need to be described. The ith input axis 
is partitioned into S i  neighbouring, non-overlapping 
intervals by a set of (Si  + 1) knots, Ai.  The first and last 
knots are termed exterior knots as they are positioned 
at the minimum and maximum values of xi  respectively. 
The remaining S i  - 1 values are called interior knots, 
and these represent the position of the end of one inter- 
val and the beginning of the next. Each univariate basis 
function is non-zero only over a small number of adja- 
cent intervals, therefore the position of the knots defines 
the size of the univariate receptive fields. With respect 
to the quantized input space, each univariate basis func- 
tion has a receptive field which is pi intervals wide. 

The quantization of each input axis generates an n- 
dimensional lattice on which the multi-variate basis 
functions are defined. Each (n - 1) dimensional hyper- 
plane which divides the input space passes through one 
of the univariate knots and is parallel to the remaining 
(n - 1) axes, therefore the lattice is generated by the 
knot matrix A( = (A, I, . . . I,)} which contains the 
knot vectors for each input axis. The multi-variate basis 
functions are also defined on receptive fields of size 
p {  = (el p ,  . . . p, ) }  relative to the lattice. This is illus- 
trated in Fig. 2 for a two-dimensional input space with 
p 1  = 4, p 2  = 3. It is important to notice that the knots 
do not always specify the centres of the basis functions 
as generally, when pi is odd, they occur midway 
between two knots. 
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Fig. 2 A two-dimensional input lattice with univariate knots. 
The grid points are formed at the intersection of the 
hyperplanes, and the dot represents the centre of the 
shaded receptive field 

A 

A2.0 
4 , o  A l , 3  A1.6 

Fig. 2 A two-dimensional input lattice with univariate knots. 
The grid points are formed at the intersection of the 
hyperplanes, and the dot represents the centre of the 
shaded receptive field 

In general, the knot density is chosen to be uniform 
in order to preserve a uniform resolution of the network 
response in R". If any prior knowledge is available, the 
knot density can be arranged so that more knots are 
placed in some part of the input space where the func- 
tion varies significantly, and fewer knots in other area 
where the function is approximately constant. p is an 
important parameter vector (fixed prior to learning) 
which significantly affects the approximation capability 
and the rate of convergence of the network. When p is 
chosen too large, the network is slow to learn a function 
containing high spatial Fourier components. On the 
other hand, when p is chosen too small, the network is 
unable to generalize between neighbouring training 
samples. 

The evenly distributed set of the basis functions can 
be geometrically decomposed into K sets of overlays. An 
overlay is defined as a union of basis functions with 
non-overlapping hyper-rectangular receptive fields 
which exactly covers the input lattice. These overlays 
have different partitioning of the receptive fields so that 
the same input maps to different basins of the basis 
functions in different overlays. An example of the 
overlay structure for a two-dimensional input is given in 
Fig. 3. This overlay arrangement thus forces the input 
to lie in one and only one active receptive field and, in 
turn, K non-zero basis functions in the entire network. 
Notice that the number of available basis functions in 
each overlay varies, depending on a displacement 
matrix, D, which defines the partitioning configuration. 
The displacement matrix contains the offset values di ,  
and is defined as 

A 2 3 7  Overlay 4 

/ / 

/ 
Xi 

Fig. 3 CMAC overlay structure: p = K = 4 

When di , j  is k, the partitioning in the jth overlay starts 
on the kth interior knot along the ith axis. Thus, A 
determines not only the actual size of the receptive 
fields, but also the physical offset distance among the 
overlays. Notice that the displacement matrix for 
the first overlay has zero offset values, indicating that 
the partitioning starts on the individual axes. Based on 
the lattice defined by A and the basis function distribu- 
tion defined by D, the number of basis functions p can 
be calculated from 

2.1.1 CMAC 
The CMAC network was originally proposed (15) as a 
model of the neurophysiological functioning of the 
mammalian cerebellum. This network has a unique 
method for defining receptive fields as they are n- 
dimensional hypercubes of width p ,  and this is the same 
as the number of overlays in the network K. Therefore 
the number of active receptive fields does not explicitly 
depend on n, and is equal to the receptive field width. 
While this relationship forces the basis functions to be 
sparsely distributed on the lattice, the numerical com- 
putation for any training input is linearly dependent on 
the input dimension, which is an important character- 
istic of this network. 

The displacement matrix D associated with the 
CMAC has the size p x n, and is defined as in equation 
(4). Based on this matrix, the centres of the basis func- 
tions are defined on the diagonal and sub-diagonals on 
the lattice. An example of the overlay structure is shown 
in Fig. 3, where n is 2 and p is 4. Given that the knot 
density is uniform in each axis, the diagonal placement 
provides a uniform projection of receptive fields onto 
each axis: the displaced input by one interval parallel to 
any input axis always shares p - 1 receptive fields with 
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the undisplaced one. 

(4) 

The total number of receptive fields which lies in the 
input lattice is given in equation (5),  which can be 
further simplified if the receptive field width is much 
smaller than the number of intervals on each axis, that 
is 0 4 p < S :  

S + k  " S" k z p -  1 

k = O  

Thus for a larger p, there will be fewer receptive fields 
available in the network. This also forces the placement 
to be less uniform within the hypercube of side p. A less 
uniform placement is likely to deteriorate the approx- 
imation capability if the basis functions are input 
dependent. While a theoretical analysis for an optimal 
placement scheme with an arbitrary p is not available, 
alternative schemes of improving the uniformity of the 
receptive field placement have been proposed (16, 17). 

A traditional univariate basis function is a binary 
function which gives rise to piecewise constant approx- 
imation of the desired output. The multi-variate basis 
function can be formed using either the minimum oper- 
ator or the product operator (Fig. 4a). Higher order 
piecewise polynomial univariate basis functions which 
generate a smoother network output have also been 
investigated (16, 18, 19). These univariate basis functions 
have a maximum value at the centre of the receptive 
field which diminishes as the input moves towards the 
edge of the receptive field. For these multi-variate basis 
functions the operator can be either the minimum 
operator or the product operator. Based on the binary 
basis function, the modelling capability of the multi- 
dimensional CMAC network for a certain class of train- 
ing functions has been investigated (20). 

(a) Binary 

(b) Second-order B-splines 

2.1.2 B-splines 
B-splines were originally proposed for use in geometri- 
cal modelling and in graphical applications. Unlike the 
CMAC network, the orders (or smoothness) of the B- 
splines (or basis functions) and the knots' locations can 
be chosen arbitrarily along each input axis, which 
allows the network to incorporate useful prior knowl- 
edge about the training function. In addition, there are 
as many overlays as there are grid points on the lattice. 
This means that the number of active receptive fields is 
exponentially dependent on n (or K is p"). The displace- 
ment matrix of size (p" x n) is given as in equation (6), 
and p can be determined as in equation (3). A set of 
overlays for K = 4 and n = 2 is shown in Fig. 5. 

0 0 
0 1 

0 ... 
0 . . .  

(j .:. (j p L  1 
1 0 
1 1 

0 . . .  
0 . . .  

p - 1 . . .  p - 1  p - 1  

Also, unlike the CMAC network, the order of the B- 
splines plays a unique role in determining the widths of 
the basis functions. A simple and stable recurrence 
relationship is commonly used to define the univariate 
B-spline functions {g5i,p,j(xi)} (21), and is given as 

1 if x i  E I j - l  
0 otherwise 4i , l , j (x i )  = (7) 

where I j  is the j th interval ( 2 i , j ,  , l i , j+ l )  with the last 
interval being closed at both ends. The multi-variate 

(c) Gaussian 

(d) Sigmoid 

Fig. 4 Various basis function types 
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Fig. 5 B-splines overlay structure: p = 2, K = 4 
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B-splines are then formed using the product operator. 
This basis function structure has two important proper- 
ties. First, the basis functions are normalized so that the 
sum of p" multi-variate basis function values is indepen- 
dent of the location of the training input. This ensures 
that the network is not biased toward any region in R". 
Second, as the order (or width) of the B-splines 
increases, the basis functions become smoother and 
neighbouring basis functions have a larger area of 
overlap on their receptive fields (see Fig. 6). For 
example, a first-order B-spline is a binary function, 
while a second-order B-spline is a piecewise linear func- 

1.00 - 

'\ m\ \, \\ 

A more flexible set of B-splines (dilated B-splines) 
which allows the width and the order of the B-splines to 
be decoupled has also been investigated (19). The 
dilated B-splines can be interpreted as a union of 
coarsely resolved (large physical interval) low-order B- 
splines networks, each defined in the input space with 
an appropriate relative offset. When the training func- 
tion is strongly correlated in some sub-dimensional 
input space, several variants of the B-splines networks 
with adaptable model structures have been proposed 
(22,23). These networks are constructed from a union of 
sub-models, each defined in a sub-dimensional input 
space. Iterative refinement procedures are then used to 
develop more complex sub-models when the inputs are 
found to be correlated in a higher dimensional space. 
While these networks maintain adequate modelling 
capabilities using a minimum number of adaptable 
parameters, the refinement procedure is often restricted 
to be carried out ofl-line. 

2.2 Instantaneous gradient descent learning 
The weight adjustment procedure for the LAN utilizes 
on-line optimization techniques, such as the least-mean- 
square (LMS) and the normalized LMS (NLMS) 
method. Both methods utilize an instantaneous gradient 
estimate to adjust the weight vector (24, 25). In general 
when these methods are used, the weight vector will 
converge to an optimal or near an optimal solution 
( w * ) t  if the cost performance surface in the weight space 
( w p )  has only one global minimum. 

From equation (l), these networks share an identical 
structure when the model output is linear with respect 
to its weight vector. The cost performance surface of 
these networks is therefore quadratic, which partially 
justifies the use of these methods. It is also required that 
the set of transformed input vectors be minimally corre- 
lated, which in turn depends on the training inputs and 

tion (Fig. 4b). t This optimal solution is often referred to as Wiener-Hopf solution. 

n 
0.75 1 

I 

0.50 - 1  
0.251 I I  

0- 
0 1 2 3 4  5 

Input knots 

Piecewise constant basis splines 

Input knots 

Piecewise linear basis splines 
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the basis function shapes. The cost performance index is 
typically based on an instantaneous mean square 
output error [ E ~ { x ( ~ ) } ] ,  and is given as follows: 

where c{x ( t ) }  = y{x ( t ) }  - j { x ( t ) } ,  y {x ( t ) }  is the desired 
output and j { x ( t ) }  is the network output for an input 
x(t). The instantaneous gradient estimate is given by 

J { x ( t ) }  = 3 & 2 ( X ( t ) )  (8) 

aJ{xt t ) }  = - E { X ( t ) } 4 { X ( t ) }  
aw(t - 1) (9) 

The LMS method then adjusts the weight vector in 
the direction of the transformed input vector 

where p is the learning rate. Because the transformed 
input vector is sparse, the computational complexity in 
each adjustment cycle is O(K).  Assuming that the desired 
model is linear {or y is a linear combination of $,(x)} 
and the sequence of the transformed input vectors is 
statistically independent, the LMS method ensures that 
the weight vector converges to w* in the mean if the 
following condition is satisfied: 

Aw(t - 1) = w(t)  - w(t - 1) = /%{~( t ) )4{~( t ) }  (10) 

(11) 
2 

Omax 
0 < p < -  

where umax is defined as the largest eigenvalue of the 
ensemble-averaged transformed input correlation 
matrix R. 
R = E { 4 ( 4 4 T ( X ) I  (12) 

In practice, the entire set of training samples is not 
available. Thus, R and in turn its eigenvalues cannot be 
determined prior to learning. On the other hand, if the 
training inputs are stationary and sufficiently rich, good 
performance can usually be achieved with a small learn- 
ing rate. 

It can be seen that the LMS method adjusts w 
according to the magnitude of the transformed input 
vector equation (lo), which is often undesirable. The 
NLMS method provides an improved weight adjust- 
ment technique which eliminates this dependency con- 
dition when setting B. The weight vector is then 
updated as follows: 

where I/ . 11 is the common Euclidean norm. It should be 
noticed that the normalization factor in equation (13) 
for the binary CMAC is constant, which further sim- 
plifies the numerical computation. Both the NLMS and 
LMS learning rules are very similar in that three obser- 
vations can be made. First, if the instantaneous mean 
square error is normalized by 11 4(x) [ I 2  in equation (8), 
the LMS method then becomes equivalent to the 
NLMS method. Second, if a new learning rate, defined 
as /?/I\ 4 1 1 2 ,  is made to vary according to the magnitude 
of the transformed input vector, the NLMS method is 
then reduced to the standard LMS method. Finally, the 
expression in equation (13) is also equivalent to the 
LMS method if 9 and 4(x) are each normalized by 
II 4(x) I /  in equations (8) and (9) (26). 

It is well known that the sum of the p eigenvalues of 
any matrix is identical to the trace of the matrix. It can 
easily be seen that the sum for the normalized input 

correlation matrix R is always equal to 1. Thus, the 
largest eigenvalue of R must be less than or equal to 1. 
Based on the condition, equation (1 l), the modified con- 
vergence condition is now given as in equation (14) for 
the NLMS method. In addition to the established con- 
vergence properties using these learning rules, the rate 
of convergence is another important element which 
determines the effectiveness of the learning process. The 
convergence rate is primarily limited to the smallest 
positive eigenvalue of R, and is generally slow if the 
inputs are highly correlated (or R is ill-conditioned) (14, 
24, 25). 

o < p < 2  (14) 
Both the LMS and the NLMS methods inherit an 

important convergence characteristic: their weight 
updates follow a ‘minimum disturbance principle’ (26). 
Geometrically each training sample forms a R P -  
hyperplane in the weight space, and the normal of 
the hyperplane is parallel to the associated transformed 
input vector. Given a sequence of training samples, 
the weights move along the normal of one hyperplane 
defined by one transformed input vector towards 
another one defined by a different transformed input 
vector, resulting in minimum changes in the weight 
magnitude approaching the hyperplanes (Fig. 7a). These 
methods are often referred to as orthogonal projection 
algorithms because the weight change is parallel to the 
normal of the hyperplane. Using the NLMS method 
and setting p to 1, the weight vector will drop onto the 
hyperplane in one step. If 0 d p < 1, the weight vector 
will approach the hyperplane incrementally; if 
1 d p 6 2, the weight vector will move past the hyper- 
plane. A geometrical interpretation of slow convergence 
due to highly correlated inputs is depicted in Fig. 7b. If 
the desired model is linear and the set of training 
samples are noiseless and sufficiently exciting, the 
weight vector will eventually converge toward w*. 
However, when the desired model is noisy or nonlinear, 
the weight vector will converge to a capture zone 
around w*,  of size depending on the modelling error 
and measurement noise (27,28). 

Given that the weight vector converges to a zone 
near w*, the minimum mean square output error might 
still be large when the modelling error and measure- 
ment noise are present. The misadjustment can often be 
reduced using a stochastic approximation technique in 
which the learning rate for wi is made to vary as in 
equation (15) based on the frequency of its update. This 
allows the network to be plastic during the transient 
stage, but robust enough to filter out the measurement 
noise and the modelling error in the steady-state condi- 
tion. However, this technique requires that the training 
data be stationary unless the learning rate is continually 
reset to a large value. The convergence properties of the 
binary CMAC network for various training rules have 
been established (29). 

m 

1 P i = m  
i = O  

2 p ; < m  
i = O  

During the transient learning, if the training inputs 
are separately distributed and most w;s are unin- 
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w2 
(a) \:'ell-conditioned case (b) Ill-conditioned case 

Fig. 7 Weight convergence trajectories based on NLMS learning rule with B = 1 

itialized, the network response can sometimes be weak 
even for a large K. A heuristic scheme which increases 
the strength of the network response has been proposed 
for the CMAC network (30). In this scheme, a vector of 
size p is required to register the update status for each 
w i  . Using this information, the normalization factor is 
then redefined as the number of active wi(lz) which has 
been updated. The network response can thus be 
increased depending on lz, which is generally less than K .  
In a similar manner, this scheme can be generalized to 
the B-splines network. 

3 RADIAL BASIS FUNCTIONS 

The radial basis function network was originally 
employed as a numerical interpolation technique in a 
multi-dimensional space (31), and was later adopted as 
a one-hidden-layer feedforward network (32). An excel- 
lent review on this topic is given in (12). While the RBF 
network exhibits an associative memory characteristic 
similar to the LAN, they are different in their centre 
placements, the shape of their receptive fields and basis 
functions. 

3.1 Model structure 
The topology of the RBF network can be summarized 
as no - n, - n,, where no is the network input dimen- 
sion, n1 is the number of basis functions (or hidden 
nodes) and n2 is the network output dimension. Each 
node in the hidden layer of an RBF network has a radi- 
ally symmetric response around a node parameter 
vector called its centre. Similar to the LAN, the output 
node of the RBF network is formed from a linear com- 
bination of these basis functions. 

Given a network input vector x = [xl . . .  x,,,,]~, the 
outputs of hidden nodes are specified by 

where I /  . 11 denotes the Euclidean norm, pj  are positive 
scalars known as the widths of the basis functions 
(notice that these are defined differently from those in 
the LAN), cj = [ c ~ , ~  . . cj,JT are the RBF centres and 
f(.) is a non-linear function from R' to R, which is 
@ IMechE 1993 

referred to as the non-linearity of hidden nodes. The 
output nodes are defined by 

ni  

ji =f;,&) = C wi,j6j,  1 < i < n2 (17) 
j =  1 

where wi , j  are the weights connecting the ith output 
node to the jth hidden node. The overall response of the 
RBF network realizes a mappingf; : Rn0 + Rn2. 

There are a variety of choices for the node non- 
linearity f (  . ). Typical examples are the Gaussian func- 
tion (Fig. 4c) 

and the thin-plate-spline function 

f(z) = 2 ,  log(z) (19) 
An alternative 'Gaussian bar' basis function which 

responds to a more localized input region than the 
sigmoid function, but responds to a less localized region 
than the Gaussian function, has recently been proposed 
(33). The multi-dimensional basis function is formed 
using a weighted summation operator, and can gener- 
ally provide better approximation than the Gaussian 
function when the training set is small and the inputs 
are highly redundant. 

The widths of the basis functions can be treated as 
free parameters, and each width can be assigned to a 
different value. Alternatively, all the widths can be fixed 
to a same value p, although some choices off( .) such as 
equation (19) do not require such a parameter. 

In general, there are many ways to distribute the 
hidden node centres in Rn0. Traditionally, one centre is 
placed at every training sample provided that the data 
set contains a small number of noiseless training exam- 
ples. Interpolation can thus be carried out using stan- 
dard least-square techniques.* When the data set is 
large and the training data are noisy, the number of 
basis functions is often chosen to be less than the size of 
the data set and the centres are placed at selected train- 
ing inputs in order to minimize the overfitting due to 
noise. Other methods, such as distributing the centres 

* Or singular valued decomposition techniques when the training data are 
inconsistent. 
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on a lattice (34) or at random locations in Rn0, have also 
been adopted. When the initial centre placement is not 
optimal, the centre placement can be adapted using 
on-line gradient descent or K-means clustering algo- 
rithms (12,35). 

The RBF network is a general function approx- 
imator, and its performance does not depend critically 
on the choice of f ( . ) .  Moreover, even when all the 
widths are fixed to a same value, the RBF network with 
a sufficient number of hidden nodes is still capable of 
uniformly approximating any continuous function. 
Theoretical investigation on the approximation capabil- 
ities of the RBF network can be found in (2,36). 

3.2 Recursive learning 
By adopting ideas from non-linear system identification 
(37-7-39), the following recursive prediction error (RPE) 
algorithm is a general non-linear learning method 
which can readily be applied to the RBF network (40, 
41). For the general single-output case with p adaptable 
parameters, the RPE algorithm takes the form 

4 t )  = Y ( t )  - 9(t) 

0(t) = 0(t - 1 )  + P(t)$(t)E(t) (20) 
where O(t) is a p-dimensional parameter vector and $(t) 
is the gradient vector of j ( t )  with respect to O(t). P(t) can 
be interpreted as the time-average inverse-input corre- 
lation matrix, and A is the forgetting factor. The RPE 
algorithm has a similar form to the recursive least- 
squares (RLS) algorithm and degenerates into the latter 
when the network model is linear. The computational 
complexity of the RPE algorithm is O(p2). The multi- 
output version of the RPE algorithm can be found in 
(42). The total number of adaptable parameters in the 
RBF network is 

p = (n, + l )n ,  + n,  n, (21) 
If the size of 0 is large, on-line numerical computation 

can still be achieved by using a local learning version of 
the RPE algorithm which is known as the parallel RPE 
(PRPE) algorithm (40, 41). In this distributed learning 
procedure, each node performs its own RPE algorithm 
simultaneously. For the generic ith node in the kth 
layer, local learning is achieved using 

Ok,i(t) = Ok.i(t - l) + Pk,i(t)$k,i(t)E(t) (22) 
where 8 k . i  is the parameter vector of the ith node in the 
kth layer. The computational complexity of the PRPE 
Part I :  Journal of Systems and Control Engineering 

algorithm for the RBF network is O(p'), where p' 
(p' < p2) is 

p' = (n, + q2n,  + .:a2 (23) 
The PRPE algorithm for training the RBF network 

has the same form as equation (22) with k = 1, 2 and 
1 < i < n, . Specifically, for the single-output node 

d2,, = w = [w, . . . w , , y  (24) 

Notice that the learning rule is identical to the RLS 
algorithm when the network model is linear. For the ith 
hidden node, 1 < i < n,  

O1.i  = C P i c i . 1  . . ci,noIT (26) 

and, if the non-linearity is chosen to be equation (18), 

1 < j < n o  (29) 

In order to avoid pi becoming too small or too large, 
the widths are generally constrained to be pmin < pi < 
pmax during learning. 

An alternative learning scheme can also be employed 
by which the RBF centres are adjusted using a recursive 
clustering algorithm and the weight vector w is adjusted 
using the RLS algorithm (35, 42). Instead of adjusting 
the centres using the output error, this clustering algo- 
rithm first finds a centre that is nearest to the network 
input vector x(t )  and then moves the centre closer to 
x(t). The algorithm can be described as follows. Let 

(30) 

(3 1) 

di(t) = [ I  x(t )  - Ci(t - 1) / /  

dk(t) = min{d,(t), .. . 2 d n ~ ( ~ ) }  

1 < i < n ,  
and 

then 

Ck(t) = c k ( t  - 1) + a{X(t )  - Ck(t - I)}, 

ci(t) = c,(t - 1) 1 < i < n ,  and i # k (32) 
where the learning rate c1 lies in the interval (0, 1) and is 
slowly decreasing. This learning rule for adjusting 
centres has its root in the K-means clustering method 
(43), and is similar to the Kohonen's projection scheme 
(44). Since the distances di(t) are needed in computing 
the network response in equation (17), this clustering 
algorithm thus requires a minimal computational over- 
head. The recursive clustering algorithm and the RLS 
algorithm are linear learning rules, which can often lead 
to faster convergence. On the other hand, parameter 
adaptation based only on the output error requires 
non-linear optimization, and often leads to sub-optimal 
modelling performances. Nevertheless, it is important to 
notice that the clustering technique is effective only if 
the density of the training data is correlated with the 
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steepness of the training function: more samples are 
gathered where the function varies significantly, and 
fewer samples are gathered where the function is 
smooth. 

Besides the adaptable centres, the basis function 
widths can also be adjusted based on gradient methods 
or nearest-neighbour heuristics (35). In addition to the 
network output error, a higher order network derivative 
can also be incorporated in the cost function to adjust 
the parameters so that the approximation is constrained 
to be smooth (12,45). 

4 MULTI-LAYERED PERCEPTRON 

In a MLP, all the nodes in one layer are fully connected 
to the nodes in its adjacent layers, but there is no con- 
nection between the nodes within the same layer and no 
bridging layer connections. By partitioning the input 
space using a set of hyperplanes, the MLP is particu- 
larly well suited to high-dimensional classification tasks 
(4). 

4.1 Model structure 
The topological structure of the MLP is depicted in Fig. 
8. Inputs to the network are passed to each node in the 
first layer. The outputs of the first-layer nodes then 
become inputs to the second layer and so on. The last 
layer acts as the network output layer and all the pre- 
ceding layers are called hidden layers. The architecture 
of an MLP can be summarized as no - n1 - . - n,, 
where no is the network input dimension, 1 is the 
number of layers and ni(l Q i < I) is the numbers of 
nodes in the ith layer. 

The input-output relationship of the ith node in the 
kth layer is defined by 

w k , i , j x k - l , j  + pk,i 
j =  1 

(33) 

where wk,i*j are the node connection weights, pksi is the 
node threshold, f (  .) is the node activation function and 
x , , ~  denote the network inputs. Based on this relation- 
ship, each hidden node partitions the input space with 
its hyperplane along which its activation function has a 

Hidden 
layer 

I 

Fig. 8 Multi-layered perceptron network with one hidden 
layer 
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constant output value. Two typical activation functions 
are the sigmoid function (10) (Fig. 4d) and the hyper- 
bolic tangent function (34). 

1 - exp( - 2x) 
1 + exp(-2x) 

f(x) = tanh(x) = 

(34) 

(35) 

For the purpose of system modelling, the output 
nodes usually do not contain a threshold parameter and 
the associated activation functions are linear, that is 

nr- i  

j =  1 
x1,i = 1 W , * i , j X l - l * j  1 < i < n, (36) 

The overall response of the network realizes a mapping 
f,: R"O -+ R"'. 

The MLP is a general function approximator, and a 
one-hidden-layer network is sufficient to represent any 
arbitrary continuous function provided that there are a 
sufficient number of hidden nodes in the network. For 
many practical problems, networks with two or more 
hidden layers may be more efficient in terms of the total 
hidden nodes required. The theoretical modelling capa- 
bilities of the MLP have extensively been investigated, 
for example (1,47,48). 

4.2 Recursive learning 
Recursive learning algorithms for the MLP are gener- 
ally based on gradient-type techniques (13, 40, 41). For 
notational simplicity, the single-output case (n, = 1) is 
again described. However, the method is readily applic- 
able to the general multi-output case. Introducing the 
network input vector at sample t as 

x(t) = C X ~ ,  l(t) . . . > xo.n&t)IT (37) 
and collecting all the weights and thresholds of the 
MLP into a p-dimensional vector 8, where 

1 - 2  

p = -2 (ni + l)ni+l + n l - l n ,  
i = O  

Then the overall network output can concisely be 
written as 

9(t, e) = XI, l(t) =fm{x(t), e> (39) 
The well-known backpropagation (BP) algorithm (13) 

can be considered as a special case of equation (20) by 
replacing P(t) with the identity matrix and by using a 
smoothed version of $(t). The BP algorithm thus takes 
the form 

4 t )  = Y(t) - 9(d 

e(t) = e(t - 1) + $(t) 
= P$(t - 1) + aW)&(t) 

(40) 
where B and u are the momentum and adaptive gain 
respectively. It is straightforward to rewrite equation 
(40) into the usual form of the BP algorithm given in 
(13). The computational complexity of the BP algorithm 
is O(p), where p is defined in equation (38). Alternatively, 
the PRPE algorithm can be used. Let $k,i be the gra- 
dient of j ( t )  with respect to & ,  where 6k.i is defined as 

(41) T 
ek,i  = b k . i  wk , i , l  * ' '  W k , i , n k - i l  
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The PRPE algorithm for this node has the same form 
as in equation (22). The computational complexity of 
the PRPE algorithm for the MLP is O(p'), where p' is 

1-2  

p' = c (ni + 1)2ni+l + 
i = O  

Although the PRPE algorithm is more complex than 
the BP algorithm (p < p'), the former method generally 
provides much better convergence properties. The gra- 
dients $k,i for an no - n,  - n2 - (n3 = 1) MLP are 
given in the Appendix. 

5 TWO-DIMENSIONAL NON-LINEAR 
TIME SERIES MODELLING 

A simulated non-linear time series was employed to test 
the comparative modelling capabilities of the previously 
described networks. The time series is described by the 
following second-order non-linear difference equation: 

y(t) = C0.8 - 0.5 exp{ -y2(t - l)}]y(t - 1) 

-[0.3 + 0.9 exp{ -y2(t - l)}]y(t - 2) 

+ 0.1 sin{ny(t - 1)) + e(t) (43) 
where e(t) is an additive Gaussian white noise sequence 
with zero mean and variance 0.01. If the function which 
defines the system non-linearity of the time series equa- 
tion (43) is denoted as A( .  ), the difference equation can 
be expressed concisely as 

Y W  =f,{y(t - 11, Y O  - 2)) + 4) (44) 
A three-dimensional plot off,(. ) is given in Fig. 9. Note 
that f , ( . )  is smooth and is linear with respect to the 

In order to train the four network models, 1000 iter- 
ated noisy time series samples were generated from an 
initial condition y( - 1) = y(0) = 0, and were used as an 
identification set. A two-dimensional phase plot of the 
identification set is shown in Fig. 10a, in which y(t) is 
plotted against y(t - 1). In order to test the fitness of 
these network models, another 1000 iterated noiseless 
time series samples {ykt ) }  were generated from an 
initial condition yd( - 1) = yd(0) = 0.1, and were used as 
a validation set. Figure 10b shows a two-dimensional 
phase plot of the validation set. Note that the time 

Y( t  - 2). 

2.0 

1.5 

1 .o 

0.5 

h k 

x o  
-0.5 

-1 .0 

-1.5 

-2.0 -1 .0 0 1.0 2.0 

c [ -1 .5,  1.51 
Y O  - 2) 

Fig. 9 Deterministic time series surface. Input region: [ - 1.5, 
1.51 x [ - 1.5, 1.51. Surface height range: [ - 1.872, 
1.8721 

series sequence was bounded within the input region 
[ - 1.5, 1.51 x [ - 1.5, 1.51. This forms a necessary input 
domain on which the LAN can be employed to model 
the time series dynamics. 

It can be seen from the phase plot that the underlying 
dynamics of the simulated system, equation (43), has a 
stable limit cycle and an unstable origin. Any slight per- 
turbation near the origin will result in the iterated series 
diverging toward the limit cycle in a form of spiral 
arms. Based on this characteristic, the gathered training 
samples are thus very sparse near the origin, which can 
be used to test the abilities of these networks to gener- 
alize. 

Figure 11 shows the first 60 time history samples in 
the validation set. Similar to an amplitude modulation 
process, the time history has a fast cycle which repeats 
every five samples, and a slow cycle which repeats 
roughly every 30 samples. The fast cycle can also be 
observed in the spiral arms shown in the phase plot of 
the validation set. 

5.1 Modelling evaluation 
The four networks are trained on the identification set 
consisting of iterated noisy time series samples. The 

1 5  

1 0  

0 5  

0 

-0.5 

-1 .0 

-1.5 
-1.5 - 1  0 -0.5 0 0.5 1.0 1 5  

y( r  - 1) Y O  - 1) 

(a) Noisy identification set x (0) = [O, 01 (b) Noiseless validation set x (0) = IO. 1, 0.11 

Fig. 10 Non-linear time series phase plots 
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-1 .5  
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Sample number 

A noiseless time history plot: x(0) = [O.l, 0.11 Fig. 11 

network input vector at sample t is given by 
x(t) = [y(t - 1) y(t - 2)IT, and the corresponding 
desired output is y(t). The fitted network models are 
then subject to the following performance measures 
which can be used to evaluate the transient convergence 
properties as well as the steady-state modelling abilities. 

Surface plot 
If the network model is adequate, the network must be 
able to reconstruct fs( .) accurately within the input 
region of interest. Surface plots are thus generated over 
the region [- 1.5, 1.51 x [- 1.5, 1.51. 

Normalized prediction error autocorrelation 
A normalized autocorrelation function of prediction 
errors E(t + 1 It) can be used to evaluate the approx- 
imation ability (or one-step ahead prediction ability) 
over the identification set, and is computed as follows: 

~ ‘ 0 0 0  
f =  1 + k  {E(t)E(t - k)} C(k) = z:=”y0 {E(t)E(t)} (45) 

where k is the time lag and e(t) is the one-step-ahead 
prediction error at sample t over the identification set. 
Note that the normalization procedure allows the auto- 
correlation analysis to be independent of the magnitude 
of the prediction errors. In general, correlations between 
time-shifted prediction errors are considered insignifi- 
cant if they lie within the confidence limits of _+1.96/ 
,/(N), where N is the number of training samples in the 
identification set (49). The limits in this case are k6.2 
per cent. It should be emphasized that the one-step pre- 
diction errors being uncorrelated is only a necessary 
condition for an adequate network model. Sufficient 
conditions to guarantee the adequateness of the model 
require more complex tests (49). 

Phase plot 
While the error autocorrelation function can generally 
determine the one-step-ahead modelling abilities of 
these networks, the dynamics modelling of the process 
requires additional measures. For example, it is impor- 
@ IMechE 1993 

tant that the network is able to reconstruct the 
dynamics of the origin and the limit cycle. Let j?( .) be 
the fitted network model. J”,( . )  is then used to generate 
the network outputs iteratively as in (46). Notice that 
no time series observation is involved when the network 
outputs are being generated. A phase plot of j(t) against 
j(t - 1) is used to evaluate graphically the dynamics 
of the fitted network models. The initial condition is 
j ( -  1) = j (0) = 0.1. 

9(t) =f”,{jYt - I), f i t  - 2)) (46) 

Time history plot 
In addition to the phase plots, the time history plots are 
also used to evaluate graphically the dynamic modelling 
abilities of these networks. Both the network and the 
deterministic time series are given the same initial con- 
dition of j (  - 1) = 1.0, j (  -2) = 0.5, and are iterated 60 
times independently of each other. In general, the pre- 
diction error increases with the number of iterations 
when the network model is not exact. The time history 
plot can thus be used to determine the prediction 
horizon under which the network can accurately model 
the time series dynamics. 

k-step-ahead prediction error variance 
This provides a numerical evaluation of the multi-step- 
ahead modelling performance. The k-step-ahead predic- 
tion is computed as follows: 

(47) 
where k 2 l  and, if k - j G 0 ,  j ( t + k - j ( t ) = y ( t + k  
- j )  are time series observations. The k-step-ahead pre- 

diction error is defined as 

j( t  + k I t) =j?{j(t + k - 1 I t), j( t  + k - 2 I t )}  

~ ( t  + k I t) = Y(t + k) - j(t + k I t) (48) 
The prediction horizon is chosen to be 1 < k < 20. The 
prediction accuracy is determined by the variance of 
e(t + klt) over the validation set. Apart from a few 
initial transient points, the samples in the validation set 
all lie on the limit cycle. The variance over the limit 
cycle is thus evaluated based on the prediction errors 
using the last 900 samples in the validation set. 

(49) 

Instantaneous learning curve 
While the above measures focus on the steady-state 
modelling abilities, this measure evaluates the transient 
convergence properties of the learning procedures. All 
four networks require some forms of gradient estimate 
procedures in adjusting the network parameters. The 
convergence rate thus depends on the gradient estimate 
and the structure of the network model. A root-mean- 
square (RMS) of the one-step-ahead prediction errors 
over the validation set is thus computed after each 
training sample has been presented to the network. The 
RMS error generally decreases at a rate depending on 
the gradient noise magnitude and the sequence of the 
training samples. A biased training sequence is likely to 
deteriorate the gradient formation. The ordering of the 
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samples in the identification set is thus randomized so 
that the instantaneous learning curve is less sensitive to 
the training sequence. 

5.2 Modelling based on CMAC 
A CMAC network with piecewise linear univariate basis 
functions and the product operator was used to model 
the time series. The bounded input space of interest was 
chosen to be [-1.5, 1.51 x [-1.5, 1.51. Any sample 
lying outside this region was considered an outlier, and 
was excluded from training. Based on this consider- 
ation, there were a total of six outliers in the training 
set. S and p were both chosen to be 17. By equation (5),  
there were a total of 65 adaptable weights in the 
network. A use of such large field widths was based on 
the assumed prior knowledge that the function is 
smooth. The large p results in a small set of adaptable 
parameters, which improves the noise-filtering per- 
formance. Because the centre placement is modular 
(that is, the centre placement in any overlay is 
unchanged when the overlay is displaced p units paral- 
lel to any axis), the chosen displacement matrix can be 
described as 

where % represents the modulus operator, as the 
overlay displacements are calculated using modulo p 
arithmetic. 

In every training instance, the network output was 
normalized by a sum of p active basis function outputs, 
A stochastic NLMS (SANLMS) learning rule was used 
to adjust the weights, where the learning rate was 
defined as in equation (51). The initial learning rate (b0) 
was chosen to be 1, the decaying rate constant (&) was 
chosen to be 30 and i is defined as the number of times 
that the parameter has been updated throughout train- 
ing. The training was carried out incrementally in that 
only one sample was used at a time in adjusting the 
network weights. One thousand noisy samples were 
used in each cycle, and altogether 20 training cycles 
were carried out. 

After training, 60 weights were actually used in the 
identification process. The surface plot &. ) is shown in 
Fig. 12. The error autocorrelation and the phase plot 
are shown in Fig. 13a and Fig. 14a respectively. The 
time history plot is given in Fig. 15a. The k-step-ahead 
prediction error variance is shown in Fig. 16, and finally 
the instantaneous learning curve is shown in Fig. 17a. 

5.3 Modelling based on B-splines 
Similar to the CMAC, only those samples within [- 1.5, 
1.51 x [- 1.5, 1.51 were used in the identification 
process. Sy(r-2) was chosen to be 1 and Sy(r-l) was 
chosen to be 6. The univariate basis functions were 
Part 1: Journal of Systems and Control Engineering 

c [-1.5, 1.51 
Y O  - 2) 

Fig. 12 CMAC surface reconstruction. Input region: [- 1.5, 
1.51 x [- 1.5, 1.51. Surface height range: [ - 1.272, 
1.2711 

chosen to be piecewise linear along y(t - 2) and 
piecewise quadratic along y(t - 1). This choice was 
based on the assumed knowledge about the smoothness 
of f,( . )  and the linear relationship of f,(.) with the 
y(t - 2)  axis. It must be stressed clearly that the model- 
ling performance will, of course, be degraded in the 
absence of such knowledge, as shown in (50) using the 
same time series. This particular model merely serves as 
an example to demonstrate the flexibility of the B- 
splines over the CMAC to incorporate prior knowledge. 
By equation (3), there were a total of 16 weights in the 
network. The displacement matrix was defined as in 
equation (6). The learning rule was again based on 
equation (51), in which Do was chosen to be 1 and Bd 
was chosen to be 50. Again, 20 training cycles were 
carried out. 

After training, all 16 weights in the network were 
used in the identification process. The surface plot A(.  ) 
is shown in Fig, 18. The error autocorrelation function 
and the phase plot are shown in Fig. 13b and Fig. 14b 
respectively. The time history plot is given in Fig. 15b. 
The k-step-ahead prediction error variance is shown in 
Fig. 16, and finally the instantaneous learning curve is 
shown in Fig. 17b. 

5.4 Modelling based on RBF 
A RBF network with ten hidden nodes and the Gauss- 
ian non-linearity, equation (18), was chosen to model 
the time series. By equation (21), there were a total of 40 
adaptable parameters in the network. Initial weights 
were set to wk0) = 0.0, initial centres q(0) were random- 
ly chosen from the region [ - 1.0, 1.01 x [ - 1.0, 1.01 and 
initial widths were set to p,(O) = 2.0. The PRPE algo- 
rithm was employed to fit this 2-10-1 RBF network. 
The forgetting factor was computed using the rule, 
equation (52), and initial matrices Pk,,(0) = 10.OIk,i 
where Ik,j are identity matrices of appropriate dimen- 
sions. Four training cycles were carried out. During 
learning, the widths were constrained to be O.oooOO1 d 
p&) d 1000000.0. 

A(t) = /lo q t  - 1) + 1 - /lo 

I, = 0.99 and A(0) = 0.95 (52)  
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Fig. 13 Normalized error autocorrelations (lag from 0 to 20) 

No further improvement in modelling was found after 
four training cycles. The surface plot f,( .) is shown in 
Fig. 19. The error autocorrelation function and the 
phase plot are shown in Fig. 13c and Fig. 14c respec- 
tively. The time history plot is given in Fig. 15c and the 
k-step-ahead prediction error variance is shown in Fig. 
16. The instantaneous learning curve is shown in Fig. 
17c. The centre placement is shown in Fig. 20, and 
finally the distribution of weights/widths is depicted in 
Fig. 21. 

5.5 Modelling based on MLP 
A two-layer perceptron was employed to model the 
time series. The structure of the network was defined by 
2-16-1 and the activation function of hidden nodes was 
chosen to be equation (34). By equation (38), there were 
a total of 64 adaptable parameters in the network. 
Initial weights and thresholds were randomly set to 
values between -0.1 to 0.1. The PRPE algorithm was 
employed as the learning algorithm. The forgetting 
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factor was computed according to equation (52), and 
the matrices Pk,i were initially set to 10.OIk,i. Again, four 
training cycles were carried out. 

After training, the network reached steady-state mod- 
elling condition. The surface plot A( .) is shown in Fig. 
22. The error autocorrelation function and the phase 
plot are shown in Fig. 13d and Fig. 14d respectively. 
The time history plot is given in Fig. 15d and the 
k-step-ahead prediction error variance is shown in Fig. 
16. The instantaneous learning curve is shown in Fig. 
17d, and finally the hyperplane placement in the input 
space is shown in Fig. 23. 

6 DISCUSSION 

The modelling results in the previous section suggest 
that all four networks are able to capture the essential 
time series dynamics accurately. The network surfaces 
were found to be similar within the limit cycle region, 
but were different near the outline of the region [ - 1.5, 
1.51 x [ - 1.5, 1.51. As the training data were sparse, the 
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Fig. 14 Phase plots x(0) = CO.1, 0.11 

extrapolation characteristics near the outline are thus 
strongly determined by the shape and extent of their 
basis functions. This implies that the reconstructed limit 
cycle might go unstable for any network if the initial 
conditions are set near the edge of [- 1.5, 1.51 x [- 1.5, 
1.51. Their error autocorrelation functions are also very 
similar, indicating that these networks have formed ade- 
quate one-step-ahead models for the, time series. Their 
time history plots and k-step-ahead prediction variances 
indicate that these networks also have developed accu- 
rate iterated dynamics over the limit cycle region. Note 
that this was possible mainly because the initial condi- 
tions were set near the limit cycle. Of all the networks 
the RBF and MLP produced the smaller variances. 
That is, these networks have developed better short- 
range iterated dynamics over the limit cycle in the 
average sense. 

When the initial conditions were set near the origin, 
the iterated dynamics was found to be quite different, as 
can be seen in the phase plots. The fitness of the spiral 
arm dynamics can be inferred graphically from its 
diverging rate (for example number of points along each 
arm) and its phase lag (or its orientation) with respect to 

Part I :  Journal of Systems and Control Engineering 

the true spiral arm. Based on these characteristics, the 
B-splines network generated the best spiral arm. The 
spiral arms in the CMAC and MLP networks had 
slightly faster divergences, implying that their recon- 
structed origins were slightly less stable than the true 
one. On the other hand, the origin in the RBF network 
was found to be much stabler. This implies that the 
RBF surface near the origin was much flatter than the 
true one. 

The B-splines network has incorporated the ‘y(t - 2) 
linearity and smoothness’ prior knowledge about the 
time series into its model. This results in fewer adapt- 
able weights and, in turn, a better noise-filtering condi- 
tion. It must be stressed again that the use of such prior 
knowledge is merely used to demonstrate the flexibility 
of the model structure in the B-splines over the CMAC. 
Without such knowledge, the modelling performance of 
the B-splines will be similar to that of the CMAC. 

The CMAC network has also incorporated the 
‘smoothness’ knowledge into its model by using the 
globally extended receptive fields. However, the ‘y(t  - 2) 
linearity’ knowledge cannot be straightforwardly 
incorporated into this model because the receptive fields 
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are only sparsely distributed. This thus brings up an 
important compromise between the two LAN model 
structures: while the CMAC can be employed for mod- 
elling in a much higher dimensional space, the existing 
placement scheme requires p to be the same in each 
axis, which then restricts the flexibility of the CMAC 
model. 

Similar to the LAN, the RBF and MLP have also 
incorporated the ‘smoothness’ knowledge about f’(. ) 
into their models in order to constrain the networks 
from overfitting the noise. This was done by optimizing 
the number of nodes in these networks on a trial and 
error basis. However, because the RBF basis function 
responses are restricted to be radially symmetrical,* the 
‘y( t  - 2) linearity’ knowledge cannot be incorporated. 
Nevertheless, it is possible that other forms of prior 
knowledge can be incorporated into the RBF model. 

* Except the described Gaussian bar functions. 
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Fig. 17 Instantaneous learning curves in the first training cycle 

One example is to place the RBF centres near the time 
series limit cycle. 

With regard to the transient convergence character- 
istics, their instantaneous learning curves indicate that 
the one-step-ahead prediction errors were similar based 
on their decaying rates and their RMS errors at the end 
of the first training cycle. Among these curves, the one 
generated by the B-splines had the least jittering effect. 
This might be explained by the use of a relatively small 
p for modelling. A summary of the network parameters 
used in the time series modelling is given in Table 1. 

c I-1.5, 1.51 

Fig. 18 B-splines surface reconstruction. Input region : 
[ - 1.5, 1.51 x [ - 1.5, 1.51. Surface height range: 

y ( t  - 2) 

[ - 1.864, l.SSl] 
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7 SUMMARY 

The model structures and learning rules of the CMAC, 
B-splines, RBF and the MLP networks have been 
described. Their modelling abilities were compared 
using a two-dimensional non-linear noisy time series. 
The network performances were evaluated based on 
their surface reconstructions, normalized error autocor- 
relation characteristics, phase/time history plots, k-step- 
ahead prediction error variances and finally their 
instantaneous learning curves. The modelling results 
suggest that all four networks were able to capture the 
underlying dynamics of the iterated time series. 

The LAN can generally achieve adequate con- 
vergence properties with simpler learning rules because 
their models are linear with respect to their adaptable 
weights. Also, their computational complexities in every 
training instance are on orders of O(K)  where K is a 
small number in most practice. Thus, they are well 
suited to applications with real-time constraints. The 
local generalization property also ensures that the 
learning interference across the network is restricted to 
be local. Between the two LAN models, the CMAC 

Table 1 

Network size rule knowledge cycles 
Network Learning Prior Training 

CMAC 65 SANLMS Smooth 20 

4 RBF 40 PRPE 
MLP 64 PRPE Smooth 4 

B-splines 16 SANLMS Linear/smooth 20 
Smooth 
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c [-1.5, 1.51 
Y O  - 2) 

Fig. 19 RBF surface reconstruction. Input region: [ - 1.5, 
1.53 x [-1.5, 1.51. Surface height range: [-1.794, 
1.4281 

basis functions are sparsely distributed, resulting in a 
smaller p compared with the B-splines. In addition, the 
number of active weights in the CMAC is user defined, 
and is not dependent on n. Thus, the CMAC can be 
employed in applications of higher dimensionality rela- 
tive to the B-splines. However, the existing placement 
scheme in the CMAC requires that p be the same in 
each axis, which thus restricts the flexibility of the 
CMAC compared with the B-splines, as was demon- 
strated in the time series example. Nevertheless, the 
sizes p of both networks are still exponentially depen- 
dent on n, which pose a computational constraint for 
high-dimensional modelling. 

Unlike the LAN, the RBF and MLP models can be 
highly non-linear because their inner structures are gen- 
erally adapted based on the commonly used output 
error. The convergence properties of these models are 
generally sensitive to the presentation order of the train- 
ing data, and often result in undesired sub-optimal solu- 
tions, as can be seen in the placement of the RBF 
centres (Fig. 20). This means the adaptation based only 
on a single criterion might not be desirable when other 
effective criteria are available. For example, a better 
RBF centre placement for the same time series was 

0 
0 

- 3  
-2.0 -1.0 0 1 .O 2.0 3.0 

y(r - 1) 

Fig. 20 RBF centre placement after four training cycles 

0 IMechE 1993 

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 

Weight 

Fig. 21 
cycles 

RBF weight/width distribution after four training 

Fig. 22 MLP surface reconstruction. Input region: [- 1.5, 
1.51 x [ - 1.5, 1.51. Surface height range: [ - 1.513, 
1.4821 
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Fig. 23 MLP hyperplane formation after four training cycles 
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found when the thin-plate-spline non-linearity and the 
centre clustering algorithm were used (41). Note that, 
however, the sizes of these networks are generally not 
dependent on n because their basis functions are glob- 
ally spanned. Thus, these networks are often better 
suited for fitting high-dimensional surfaces with sparse 
training data. The convergence rates for these models 
are generally slow because of the non-linear opti- 
mization procedures and maximum learning inter- 
ferences.* Nevertheless, the convergence rates for these 
networks can be improved when a higher order gradient 
information is utilized for adaptation. 

Knowing that the model selection can be influenced 
by the dimensionality of the problem domain, it is 
possible that the actual number of relevant inputs is 
unavailable. When the training inputs are strongly cor- 
related or highly redundant, the modelling abilities are 
generally degraded as the network is employed in a 
much higher dimensional platform. In this situation, the 
non-linear models of the RBFT and MLP with adapt- 
able inner structures can generally provide more efi- 
cient representations of the input-output relationship 
than the LAN of fixed inner structurest. 

Thus far, the modelling abilities are based on how 
accurately these networks interpolate between neigh- 
bouring training samples. In the untrained input region, 
the extrapolative abilities of these networks are solely 
determined by the shape and extent of their basis func- 
tions, and are generally unreliable for evaluating the 
modelling performance. Owing to the local definition of 
basis functions, the LAN embodies a ‘do nothing’ phil- 
osophy when an input is distant from the trained 
region, as opposed to a ‘do something’ philosophy in 
the MLP or a ‘do little’ philosophy in the Gaussian 
RBF. Notice that the ‘do nothing’ and ‘do something’ 
philosophies can be traced back to their initial network 
behaviours prior to learning. When these networks are 
applied to closed-loop control problems, the ‘do 
nothing’ philosophy is generally desirable based on the 
similar argument made for the linear adaptive model 
described in the introduction. 

It has been found in various modelling and control 
literatures that certain types of network architectures 
are frequently chosen without having carefully justified 
their appropriateness for use in specific applications of 
interest. It is hoped that this paper can be used as an 
unbiased guideline of choosing a network model with 
appropriate non-linearity. 
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APPENDIX 
The overall response of an no - n1 - n2 - (n3 = 1) 
MLP is 

n2 n2 

g =  i = l  1 w 3 , 1 , i x 2 , i =  i =  x w 3 , 1 , i 4 (  1 j= $wZ,i , jxl , j+f i2 , i  1 

The activation function 4( .) is assumed to be equa- 
tion (34) and its derivative is 

~- - Qt(x)(l - +(x)} 
ax 

For the output node, the gradient vector is 

with 

For the ith node in the second layer, where 1 9 i 9 n 2 ,  

the gradient vector is 

with 

and 

For the ith node in the first layer, where 1 9 i < n,,  the 
gradient vector is 

with 

and 

i + P2.i 
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