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ABSTRACT

An importance sampling (IS) simulation technique is pre-
sented for evaluating the lower-bound bit error rate (BER)
of the Bayesian decision feedback equalizer (DFE) under
the assumption of correct decisions being fed back. A de-
sign procedure is developed, which chooses appropriate bias
vectors for the simulation density to ensure asymptotic effi-
ciency of the IS simulation.

1. INTRODUCTION

For the class of equalizers based on symbol-by-symbol de-
cision with decision feedback, the Bayesian DFE [1]–[4] is
known to provide the best performance. Due to its com-
plexity, performance analysis of the Bayesian DFE is usu-
ally based on conventional Monte Carlo simulation, which
is computationally very costly even for low signal to noise
ratio (SNR) conditions. Iltis [5] developed a randomized
bias technique for the IS simulation of Bayesian equaliz-
ers. Although it can only guarantee asymptotic efficiency,
as defined in [6], for certain channels, this IS simulation
technique provides a valuable method in assessing the per-
formance of the Bayesian equalizer.

We apply the IS simulation technique to evaluate the lower-
bound BER of the Bayesian DFE. By viewing decision feed-
back as a geometric translation, the Bayesian DFE is “con-
verted” to the Bayesian equalizer in the translated space [7],
with a desired property that the subsets of opposite-class
channel states are always linearly separable. It can further
be shown that the asymptotic decision boundary is piece-
wise linear. A design procedure is developed, which de-
termines the set of hyperplanes that form the asymptotic
Bayesian decision boundary and constructs the convex re-
gions associated with individual states by intersecting hy-
perplanes that are reachable from the states concerned. This
provides the appropriate bias vectors for the simulation den-
sity to ensure asymptotic efficiency.

2. THE BAYESIAN DFE

We will assume that the channel is real-valued and the re-
ceived signal sample is given by:y(k) = na�1Xi=0 ais(k � i) + e(k) ; (1)

wherena is the channel impulse response (CIR) length,ai
are the channel taps, the Gaussian white noisee(k) has zero
mean and variance�2e , and the transmitted symbol sequencefs(k)g takes values from the setf�1g. A DFE uses the
observation vectory(k) = [y(k) � � � y(k � m + 1)℄T and
the past detected symbol vectorŝb(k) = [ŝ(k � d � 1) � � �ŝ(k� d�n)℄T to produce an estimatês(k� d) of s(k� d).
Without the loss of generality, the decision delay ofd =na � 1, feedforward order ofm = na and feedback order
of n = na � 1 are chosen, as this choice is sufficient to
guarantee the linear separability (see lemma 1 below).

The received signal vector can be expressed as:y(k) =F1 sf (k) + F2 sb(k) + e(k), wheresf (k) = [s(k) � � �s(k � d)℄T , sb(k) = [s(k � d� 1) � � � s(k � d� n)℄T , andF1 = 266664 a0 a1 � � � ana�10 a0 . . .
...

...
. . .

. . . a10 � � � 0 a0 377775 (2)

F2 = 266666664 0 0 � � � 0ana�1 0 . . .
...ana�2 ana�1 . . . 0

...
. . .

. . . 0a1 � � � ana�2 ana�1
377777775 (3)

are them� (d+ 1) andm� n CIR matrices, respectively.
Under the assumption of correct decision feedback, we have



ŝb(k) = sb(k), and the decision feedback translates the
original signal spacey(k) into a new spacer(k):r(k) 4= y(k)� F2 ŝb(k) : (4)

Let theNf = 2d+1 sequences ofsf (k) besfj , 1 � j � Nf .
The set of the noiseless channel states in the translated space

is defined asR 4= frj = F1 sfj ; 1 � j � Nfg, which can
be partitioned into the two subsets conditioned ons(k� d):R(�) 4= frj 2 R : s(k � d) = �1g : (5)

Lemma 1 R(+) andR(�) are linearly separable.

Proof: Choose the weights of a hyperplaneH(r) = wT r =0 to be: wT = h0 � � � 0 1a0 i. For anyr(+) 2 R(+) andr(�) 2 R(�), we havewT r(+) = 1 > 0 andwT r(�) =�1 < 0.

Although it is always possible to construct a single hyper-
plane to correctly separate opposite-class states for the DFE,
the optimal decision boundary in general cannot be realized
by one hyperplane.

Proposition 1 The asymptotic decision boundary�E of the
Bayesian DFE for large SNR is piecewise linear and made
up of a set ofL hyperplanes. Each of these hyperplanes is
defined by a pair ofdominantopposite-class states(r(+)l 2R(+); r(�)l 2 R(�)), such that the hyperplane is orthogonal
to the line connecting the pair of dominant states and passes
through the midpoint of the line.

Proof: See [5]. As�2e ! 0, a necessary condition for a
pointr 2 �E isr = r(+)l + r(�)l2 + "r(+)l � r(�)l2 #? ; (6)

wherex? denotes an arbitrary vector in the subspace or-
thogonal tox, r(+)l andr(�)l are a pair of dominant states;
and the sufficient conditions forr 2 �E arekr� r(+)l k2 < kr� rik2; 8ri 2 R(+); ri 6= r(+)l ; (7)kr� r(�)l k2 < kr� rjk2; 8rj 2 R(�); rj 6= r(�)l ; (8)kr� r(+)l k2 = kr� r(�)l k2 : (9)

Proposition 1 follows as a direct consequence.

The set of all the dominant state pairsfr(+)l ; r(�)l gLl=1 can
easily be determined using an algorithm given in [5],[8].

3. IS SIMULATION METHOD

Since the Bayesian DFE is reduced to the Bayesian equal-
izer in the translated space, the IS simulation technique of
[5] can be extended to evaluate its lower-bound BER, which
is given by:P̂e = 1Ns 1Nk NsXi=1 NkXk=1 IE(ri(k)) p(ri(k)jri)p�(ri(k)jri) ; (10)

whereIE(r(k)) = 1 if r(k) causes an error, andIE(r(k)) =0 otherwise;p(ri(k)jri) is the true conditional density givenri 2 R(+), andNs = 2d is the number of states inR(+);
the sampleri(k) is generated using the simulation densityp�(ri(k)jri) chosen to bep�(ri(k)jri) =LiXj=1 pji 1(2��2e )m2 exp��kri(k)� vjik22�2e � : (11)

In the simulation density (11),Li is the number of the bias
vectorsji = �ri + vji for ri 2 R(+), pji � 0 for1 � j � Li, and

PLij=1 pji = 1. An estimate of the IS gain,
which is defined as the ratio of the numbers of trials required
for the same estimate variance using the Monte Carlo and IS
methods, is given in [5]. To achieve asymptotic efficiency,fjig must meet certain conditions [6]. We present the fol-
lowing procedure of constructingp�(ri(k)jri) to meet these
conditions.

Each of theL dominant state pairsfr(+)l ; r(�)l g defines a
hyperplaneHl(r) = wTl r + bl = 0. The weight vectorwl
and biasbl of the hyperplane are given by:wl = 2�r(+)l � r(�)l �kr(+)l � r(�)l k2 ; (12)bl = � (r(+)l � r(�)l )T (r(+)l + r(�)l )kr(+)l � r(�)l k2 : (13)

Notice that the theory of support vector machines [9],[10]
has been applied to determine the hyperplaneHl with (r(+)l ;r(�)l ) as its two support vectors, and the hyperplaneHl is a

canonical hyperplane having the propertyHl(r(+)l ) = 1
andHl(r(�)l ) = �1.

A stateri 2 R is said to besufficiently separableby the
hyperplaneHl, if Hl can separateri correctly withjwTl ri+blj � 1. Thus, ifwTl r(+)i + bl � 1 for r(+)i 2 R(+), r(+)i
is sufficiently separable byHl and a separability indexh(+)li
is set to 1; otherwiseh(+)li = 0. Similarly, if r(�)i 2 R(�)



satisfieswTl r(�)i + bl � �1, it is sufficiently separable byHl andh(�)li = 1; otherwiseh(�)li = 0. The reachability ofHl from r(+)i 2 R(+) can be tested by computingli = �0:5�wTl r(+)i + bl��r(+)l � r(�)l � : (14)

If vli = r(+)i + li 2 �E, Hl is said to be reachable fromr(+)i (li is then a bias vector), and the reachability index
is li = 1; otherwiseli = 0. The process produces the
following separability and reachability table:r(�)1 � � � r(�)Ns r(+)1 � � � r(+)NsH1 h(�)11 � � � h(�)1Ns h(+)11 (11) � � � h(+)1Ns (1Ns )

...
... � � � ...

... � � � ...HL h(�)L1 � � � h(�)LNs h(+)L1 (L1) � � � h(+)LNs (LNs )
In order to construct a convex regionR(+)i for r(+)i 2 R(+),
we select those hyperplanes that cansufficientlyseparater(+)i and that are reachable fromr(+)i with the aid of the
above table. This yields the following integer set:G(+)i 4= fj : h(+)ji = 1 and ji = 1g : (15)

ThenR(+)i is the intersection of all the half-spacesH(+)j 4=fr : Hj(r) � 0g with j 2 G(+)i . In fact, it is not neces-

sary to use every hyperplanes defined inG(+)i to constructR(+)i . A subset of these hyperplanes will be sufficient, pro-
vided that every opposite-class state inR(�) can sufficiently
be separated by at least one hyperplane in the subset. If
such aG(+)i exists for eachr(+)i , the simulation density con-

structed with the bias vectorsfjig, j 2 G(+)i , will achieve
asymptotic efficiency, since all the hyperplanes defined inG(+)i are reachable fromr(+)i and obviously at least one offvjig is the minimum rate point (as defined in [6]), and the
error regionE satisfiesE � R(+)i 4= [j2G(+)i H(�)j (16)

with the half-spacesH(�)j 4= fr : Hj(r) < 0g.
For the 2-tap channela = [a0 a1℄T , it is straightforward to
verify that the simulation density for the Bayesian DFE can
always be constructed to satisfy the conditions for asymp-
totic efficiency. This is in contrast to the case of the Bayesian
equalizer where, for the 2-tap channel, asymptotic efficiency
is not always guaranteed [5]. We believe that asymptotic ef-
ficiency of the IS simulation for the Bayesian DFE can gen-
erally be ensured, although a rigorous proof is still under

consideration. This may be because of the linear separabil-
ity and because of the associated property of a much more
sparse state distribution due to the decision feedback. We
have tested a variety of channels, and no counter example
has been found.

4. SIMULATION EXAMPLE

The IS technique for the Bayesian DFE was simulated using
the 3-tap CIR defined by:a = [�0:8 1:0 � 0:5℄T : (17)

The bias vectors were generated using the procedure de-
scribed in the previous section. As in [5], the bias vec-
tors were selected with uniform probability in the simula-
tion. For all the cases,105 iterations were employed at each
SNR, averaging over all the possible states inR(+). Since
the channel had a length ofna = 3, the DFE structure was
specified bym = 3, d = 2 andn = 2. The asymptotic de-
cision boundary consisted of 5 hyperplanes. Table 1 gives
the separability and reachability table for this channel.R(�) R(+)H1 1 1 0 1 0 0 1 (1) 0H2 1 0 1 1 1 (1) 1 (1) 0 1 (1)H3 1 1 1 1 0 1 (1) 0 0H4 0 1 0 0 1 (1) 0 1 (0) 1 (1)H5 0 0 1 0 1 (1) 1 (1) 1 (1) 1 (1)

Table 1: The separability and reachability table for the CIR
of a = [�0:8 1:0 �0:5℄T . The DFE structure is defined bym = 3, d = 2 andn = 2. R(�) = fr(�)1 ; r(�)2 ; r(�)3 ; r(�)4 g.
The statesr(+)1 and r(+)4 require the two hyperplanesH2
andH4 to separate them from all the opposite-class states,
andH2 andH4 are reachable from both states. Thus, there
are two bias vectors forr(+)1 and r(+)4 , respectively, andE � H(�)2 SH(�)4 . The stater(+)2 is separated fromR(�)
by the single reachable hyperplaneH3. The stater(+)3 is
separated fromR(�) by the two reachable hyperplanesH1
andH5, andE � H(�)1 SH(�)5 . Asymptotic efficiency of
the IS simulation is therefore guaranteed for this example.
Fig. 1 shows the lower-bound BERs obtained using the IS
and conventional simulation methods, respectively. It can
be seen that the conventional Monte Carlo results for low
SNR conditions agreed with those of the IS simulation. The
estimated IS gains, depicted in Fig. 2, indicate that expo-
nential IS gains were obtained with increasing SNRs.



5. CONCLUSIONS

We have extended the randomized bias technique for IS
simulation of [5] to evaluate the lower-bound BER of the
Bayesian DFE. A design procedure has been presented for
constructing the simulation density that meets the asymp-
totic efficiency conditions. Although asymptotic efficiency
for the general channel has not rigorously been proven, we
are unable to find a counter example suggesting that the
asymptotic efficiency conditions are not met. The more dif-
ficult problem of how to derive an upper-bound BER of the
Bayesian DFE, taking into account error propagation, re-
mains an open question and is still under investigation.
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Figure 1: The lower-bound BERs of the Bayesian DFE for
the CIR ofa = [�0:8 1:0 �0:5℄T using conventional sam-
pling (CS) and importance sampling (IS) simulation. The
DFE structure is defined bym = 3, d = 2 andn = 2.
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Figure 2: The IS gain of the Bayesian DFE for the CIR ofa = [�0:8 1:0 � 0:5℄T . The DFE structure is defined bym = 3, d = 2 andn = 2.


