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ABSTRACT

The paper investigates nonlinear equalisation using a
novel symmetric radial basis function (RBF) network.
By explicitly exploiting the inherently symmetric struc-
ture of the optimal Bayesian equaliser, the proposed sym-
metric RBF equaliser can be determined from the re-
ceived noisy training data. Both a block-data based and
a sample-by-sample adaptive algorithm are designed for
this novel symmetric RBF equaliser. Simulation results
are also provided to demonstrate the efficiency of the pro-
posed symmetric RBF network equaliser.

1. INTRODUCTION

In this paper, we re-visit nonlinear equalisation using thera-
dial basis function (RBF) network [1]-[5]. It is well-known
that equalisation can be viewed as a classification problem
and the optimal solution for this classification problem is
known to be the Bayesian equaliser [1],[2]. We first show
that the Bayesian nonlinear equalisation solution has an in-
herent symmetry, because the signal states corresponding to
the different signal classes are distributed symmetrically [6].
This symmetry is hard to infer from noisy training data using
the traditional RBF network. We propose a novel RBF net-
work that is capable of exploiting the signal constellation’s
symmetric structure and demonstrate that the proposed sym-
metric RBF network is capable of approaching the optimal
Bayesian equalisation performance.

A block-data based algorithm is developed for the con-
struction of the symmetric RBF equaliser using the orthog-
onal forward selection (OFS) procedure combined with the
Fisher ratio of class separability measure (FRCSM) [7]-[9].
It is shown that by explicitly exploiting the symmetry of
the underlying signal constellation, the proposed symmetric
RBF equaliser becomes capable of effectively realising the
Bayesian equalisation solution. A novel nonlinear least bit
error rate (NLBER) algorithm is also proposed, which en-
ables a sample-by-sample adaptation of the symmetric RBF
equaliser. The NLBER adaptive algorithm has its roots in the
Parzen window density estimation technique of [10]-[13].

2. NONLINEAR CHANNEL EQUALISATION

Consider a binary phase shift keying (BPSK) modulation
scheme communicating over a dispersive communication
channel. The symbol-rate channel output samples can be ex-
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pressed as

x(k) =
nc−1

∑
i=0

cib(k− i)+n(k), (1)

whereci represents the channel taps,nc the channel impulse
duration,b(k) ∈ {±1} andn(k) the Gaussian white noise as-
sociated withE[|n(k)|2] = σ2

n . A finite-memory equaliser
is employed, which has the input vectorx(k) = [x(k) x(k−
1) · · ·x(k−ne+ 1)]T in order to detect the transmitted sym-
bols b(k− τ), wherene is the equaliser’s order andτ is the
decision delay. The vectorx(k) is given by

x(k) = Cb(k)+n(k) = x̄(k)+n(k), (2)

where n(k) = [n(k) n(k − 1) · · ·n(k − ne + 1)]T , b(k) =
[b(k) b(k − 1) · · ·b(k − L + 1)]T and C is the (ne × L)-
dimensional channel matrix havingL = nc +ne−1.

Denote theNb = 2L combinations ofb(k) asbq, 1≤ q≤
Nb. Furthermore, denote the(τ +1)-th element ofbq asbq,τ .
The noiseless channel output ¯x(k) assumes legitimate values
from the signal state set

X
△
= {x̄q = Cbq, 1≤ q≤ Nb}. (3)

The decision variable of the optimal Bayesian equaliser is
then defined as [1],[2]

yBay(k) =
Nb

∑
q=1

sgn(bq,τ)βqe
− ‖x(k)−x̄q‖2

2σ2
n , (4)

with the optimal decision given by

b̂(k− τ) = sgn(yBay(k)) =

{

+1, yBay(k) ≥ 0,
−1, yBay(k) < 0,

(5)

where we haveβq = 1
Nb(2πσ2

n )L/2 .

The signal state setX can be divided into the following
two subsets conditioned on the value ofb(k− τ)

X
(±) △

= {x̄i ∈ X ,1≤ i ≤ Nsb : b(k− τ) = ±1}, (6)

where the sizes ofX (+) and X (−) are bothNsb = Nb/2.
It may readily be visualised that the two subsetsX (+) and
X (−) are distributed symmetrically with respect to each
other [6]. More explicitely, given an appropriate constella-

tion point indexing, for any phasor ¯x
(+)
i ∈ X (+) there ex-

ists a symmetrical positioned phasor ¯x
(−)
i ∈ X (−) so that



we have ¯x(−)
i = −x̄

(+)
i . Upon exploiting this symmetry, the

Bayesian equaliser (4) can be rewritten as

yBay(k) =
Nsb

∑
q=1

βq



e
− ‖x(k)−x̄

(+)
q ‖2

2σ2
n −e

− ‖x(k)+x̄

(+)
q ‖2

2σ2
n



 , (7)

where we have ¯x
(+)
q ∈ X (+). Note that the symmetry of the

Bayesian equaliser, as seen in (7) is hard to both recognise
and to exploit using a traditional RBF network.

3. SYMMETRIC RBF NETWORK EQUALISER

Consider the problem of training a RBF networkyRBF(x) :
Rne → {±1} based on a training data setDK =
{x(k),d(k)}K

k=1, whered(k)∈ {±1} is the class type for data
samplex(k). We adopt the RBF network of the form

d̂(k) = sgn(yRBF(k)) with yRBF(k) =
M

∑
i=1

θiφi(x(k)), (8)

where d̂(k) is the estimated class label forx(k), φi(•) de-
notes thei-th RBF node,θi are the RBF weights andM is the
number of RBF centres. We propose to adopt the following
symmetric RBF construction

φi(x)
△
= ϕ(x; µi ,ρ2)−ϕ(x;−µi ,ρ2), (9)

whereµi ∈Rne represents the RBF centres,ρ2 the RBF vari-
ance andϕ(•) the usual RBF function. In this study we adopt
the Gaussian RBF function of

ϕ(x; µi ,ρ2) = e
− ‖x−µi‖2

2ρ2 . (10)

We now consider both a block-data based and a sample-by-
sample adaptive algorithm for constructing this symmetric
RBF equaliser.

3.1 Block-Data Based Algorithm

We apply the OFS procedure based on the FRCSM [8],[9] to
construct a sparse symmetric RBF equaliser using the train-
ing data setDk. We consider every training data pointx(i) as
a candidate RBF centre, hence we haveM = K in the RBF
model (8) andµi = x(i) for 1≤ i ≤ K as well as a given RBF
varianceρ2. Let us now defineε(i) = d(i)− yRBF(i) as the
modelling residual sequence. Then the model (8) constructed
from the training data setDK can be written in matrix form
as

d = Φθ + ε, (11)

whered = [d(1) d(2) · · ·d(K)]T , ε = [ε(1) ε(2) · · ·ε(K)]T ,
θ = [θ1 θ2 · · ·θM]T , and

Φ = [φ1 φ2 · · ·φM] ∈ R
K×M (12)

is the regression matrix having the column vectorsφi =
[φi(x(1)) φi(x(2)) · · ·φi(x(K))]T , 1≤ i ≤ M. Let an orthog-
onal decomposition ofΦ beΦ = ΩA, where

A =











1 α1,2 · · · α1,M

0 1
...

...
...

. . .
. .. αM−1,M

0 · · · 0 1











(13)

and

Ω = [ω1 ω2 · · ·ωM] =









ω1,1 ω1,2 · · · ω1,M
ω2,1 ω2,2 · · · ω2,M

...
...

...
...

ωK,1 ωK,2 · · · ωK,M









, (14)

whereΩ has orthogonal columns that satisfyωT
i ωl = 0, if

i 6= l . The model (11) can alternatively be expressed as

d = Ωγ + ε, (15)

whereγ = [γ1 γ2 · · ·γM]T = Aθ is the weight vector in the
orthogonal space defined byΩ.

A sparseMspa-term RBF network can be selected by in-
crementally maximising the FRCSM using the OFS proce-
dure, outlined in [8],[9]. Let us define the two class sets
X± = {x(k) : d(k) = ±1}, and let the number of points in
X± beK±, respectively, withK+ +K− = K. The means and
variances of the training samples belonging to classX+ and
classX− in the direction of the basisωl are given by

m+,l =
1

K+

K

∑
k=1

δ (d(k)−1)ωk,l , (16)

σ2
+,l =

1
K+

K

∑
k=1

δ (d(k)−1)
(

ωk,l −m+,l
)2

, (17)

and

m−,l =
1

K−

K

∑
k=1

δ (d(k)+1)ωk,l , (18)

σ2
−,l =

1
K−

K

∑
k=1

δ (d(k)+1)
(

ωk,l −m−,l
)2

, (19)

respectively, where we have

δ (x) =

{

1, x = 0,
0, x 6= 0.

(20)

To elaborate a little further, the Fisher ratio is defined as the
ratio of the inter-class difference and the intra-class spread
encountered in the direction ofωl , which is given by [14]

Fl =

(

m+,l −m−,l
)2

σ2
+,l +σ2

−,l

. (21)

Based on the FRCSM, the significant RBF units can be se-
lected with the aid of an OFS procedure. At thel -th stage, a
candidate unit is chosen as thel -th RBF unit in the selected
model, if it produces the largestFl ratio among theM− l +1
candidate unitsωi . The procedure is terminated with a sparse
Mspa-term model when we have

FMspa

∑
Mspa
l=1 Fl

< ξ , (22)

where the thresholdξ determines the grade of sparsity for
the model selected. The appropriate value ofξ depends on
the application concerned and it must be determined em-
pirically. The least squares solution for the correspond-
ing sparse model weight vectorθMspa = [θ1 θ2 · · ·θMspa]

T is
readily available, given the least squares solution ofγMspa =

[γ1 γ2 · · ·γMspa]
T . The detailed construction algorithm based

on the Gram-Schmidt orthogonalisation can be found in
[8],[9] and hence it will not be repeated here.



3.2 Sample-by-Sample Adaptive Algorithm

Let us quantify the dependency of the RBF network’s output
on its parameters by using the general notation

yRBF(k;w) =
M

∑
i=1

θi
(

ϕ(x(k); µi ,ρ2
i )−ϕ(x(k);−µi ,ρ2

i )
)

,

(23)
where the parameter vectorw includes all the RBF centres
µi , variancesρ2

i and weightsθi . Let us define the signed de-
cision variable asys(k) = sgn(d(k))yRBF(k;w) and denote
the probability density function (PDF) ofys(k) as py(ys).
Then the error probability of the RBF equaliser (23) is

PE(w) = Prob{ys(k) < 0} =

∫ 0

−∞
py(ys)dys. (24)

The minimum bit error rate (MBER) solution is defined
as the parameter vectorw that directly minimisesPE(w)
[13]. Although the PDF ofys(k) is unknown, it may be
estimated sufficiently accurately using the Parzen window
method. Specifically, given a block of training dataDK , a
Parzen window estimate [10] ofpy(ys) is given as

p̃y(ys) =
1

K
√

2πσ

K

∑
k=1

e
− (ys−sgn(d(k))yRBF(k;w))2

2σ2 , (25)

whereσ2 is the kernel variance chosen. With this estimated
PDF, the estimated or approximate BER is given by

P̃E(w) =

∫ 0

−∞
p̃y(ys)dys =

1
K

K

∑
k=1

Q(g̃k(w)) , (26)

whereQ(•) is the usual Gaussian error function and

g̃k(w) =
sgn(d(k))yRBF(k;w)

σ
. (27)

An approximate MBER solution forw can be obtained by
minimisingP̃E(w) using a gradient-based optimisation, com-
mencing for example from the minimim mean squared error
(MMSE) solution. To derive a sample-by-sample adaptive al-
gorithm, consider a single-sample PDF “estimate” ofpy(ys)
given by

p̃y(ys,k) =
1√
2πσ

e
− (ys−sgn(d(k))yRBF(k;w))2

2σ2 . (28)

Conceptually, given this instantaneous PDF “estimate”, we
arrive at the single-sample BER “estimate”̃PE(w,k) =
Q(g̃k(w)). Using the instantaneous gradient∇P̃E(w,k)
gives rise to the following stochastic gradient algorithm

w(k) = w(k−1)+
ξ√
2πσ

e
− y2

RBF(k;w(k−1))

2σ2

×sgn(d(k))
∂yRBF(k;w(k−1))

∂w
, (29)

which we refer to as the NLBER algorithm, where the step
sizeξ and kernel widthσ should be carefully chosen in or-
der to ensure a fast convergence and small steady-state BER
misadjustment.
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Figure 1: BER performance of the symmetric RBF and the
Bayesian equaliser for transmission over a two-tap channel
using an equaliser orderne = 2 and a decision delayτ = 1.
The OFS aided FRCSM algorithm was used.

For the RBF equaliser (23) using the Gaussian basis func-
tion of (10), the derivatives of the RBF network’s output with
respect to the RBF equaliser’s parameters are given by

∂yRBF
∂θi

= e
− ‖x(k)−µi‖2

ρ2
i −e

− ‖x(k)+µi‖2

ρ2
i ,

∂yRBF
∂ρ2

i
= θi

(

e
− ‖x(k)−µi‖2

ρ2
i

‖x(k)−µi‖2

(ρ2
i )

2 −e
− ‖x(k)+µi‖2

ρ2
i

‖x(k)+µi‖2

(ρ2
i )

2

)

,

∂yRBF
∂ µi

= θi

(

e
− ‖x(k)−µi‖2

ρ2
i

x(k)−µi

ρ2
i

+e
− ‖x(k)+µi‖2

ρ2
i

x(k)+µi

ρ2
i

)

,

(30)
for 1≤ i ≤ M.

4. SIMULATION STUDY

Example 1. The two-tap CIR used was given byx(k) =
0.5b(k)+ 1.0b(k−1)+ n(k), the equaliser order was set to
ne = 2 and the decision delay toτ = 1. Fig. 1 shows the
BER of the optimal Bayesian equaliser as a function of the
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Figure 2: Influence of the model size on the BER perfor-
mance for transmission over a two-tap channel in conjunc-
tion with ne = 2 andτ = 1, given SNR= 10 dB. The OFS
aided FRCSM algorithm was used.
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Figure 3: Influence of the data length on the BER perfor-
mance for transmission over the two-tap channel in conjunc-
tion with ne = 2 andτ = 1, given SNR= 10 dB. The OFS
aided FRCSM algorithm was used.
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Figure 4: Influence of the RBF variance on the BER perfor-
mance for transmission over the two-tap channel in conjunc-
tion with ne = 2 andτ = 1, given SNR= 10 dB. The OFS
aided FRCSM algorithm was used.

signal to noise ratio (SNR). For this example, the size of
the Bayesian equaliser was defined byNsb = 4. For each
SNR, a symmetric RBF equaliser having aMspa = 4 was
constructed from the training data set of lengthK = 160 us-
ing the OFS aided FRCSM algorithm, and the BER perfor-
mance of the resultant RBF equaliser is also plotted in Fig. 1.
Given SNR= 10 dB and a training data length ofK = 160,
Fig. 2 depicts the influence of the RBF model sizeMspa on
the attainable BER performance, where the RBF varianceρ2

was tuned for each model size and was in the range ofσ2
n

to 4σ2
n . At SNR= 10 dB, a model size ofMspa= 4 and the

RBF variance ofρ2 = 2σ2
n , the influence of the data length

K is plotted in Fig. 3, while Fig. 4 illustrates the influence
of the RBF varianceρ2 given SNR= 10 dB, Mspa= 4 and
K = 160. Fig. 5 compares the optimal Bayesian decision
boundary with that of the RBF equaliser, given SNR= 10 dB.
Example 2. The three-tap CIR was given byx(k) =
0.3b(k)+0.8b(k−1)+0.3b(k−2)+n(k), the equaliser or-
der was set tone = 4 and the decision delay wasτ = 2.
The BER of the optimal Bayesian equaliser is depicted in
Fig. 6. For this example, the size of the Bayesian equaliser
was defined byNsb = 32. Given SNR= 13 dB and a model
size ofM = 30, Fig. 7 shows the learning curvẽPE(w(k))
of the NLBER algorithm averaged over 10 runs, where the
BER was estimated using a block size ofK = 500 sym-
bols and a kernel variance ofσ2 = σ2

n . The NLBER al-

gorithm having a step sizeξ = 0.1 was initialised with the
first 30 data points as the initial RBF centres, and we had
ρ2

i (0) = 4.0σ2
n and θi(0) = 1

30 for 1 ≤ i ≤ 30. The true
BER PE(w(k)) was also calculated using simulations for
K = 0,400,800,1200,1600,2000. Fig. 8 depicts the influ-
ence of the model size on the RBF equaliser’s performance,
where the NLBER algorithm had the same settings as those
used for obtaining the results of Fig. 7. The BER of the
RBF equaliser using the model size ofM = 30, trained by
the NLBER algorithm overK = 2000 samples is also shown
in Fig. 6.

The OFS aided FRCSM algorithm was also used to se-
lect the RBF equaliser having a model size ofMspa= 30 in
conjunction with the training block length ofK = 600 and
the RBF variance ofρ2 = σ2

n . The BER performance of the
resultant RBF equaliser is depicted in Fig. 9, in comparison
to the performance of the Bayesian equaliser.
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Figure 5: Comparison of the decision boundaries (solid:
Bayesian and dashed: RBF) for the two-tap channel in con-
junction withne = 2 andτ = 1, given SNR= 10 dB, where
pairs of cross and plus symbols indicate the positions of sym-
metric state pairs, and the pairs of square and triangular sym-
bols indicate the positions of RBF centre pairs. The OFS
aided FRCSM algorithm was used.

5. CONCLUSIONS

In this paper, we have investigated a novel symmetric RBF
network structure designed for channel equalisation applica-
tion. As a benefit of the underlying symmetry property of the
optimal Bayesian equalisation solution, we were able to ap-
proach the optimal Bayesian performance using noisy train-
ing data. Both a block-data based and a sample-by-sample
adaptive training algorithm have been proposed for this sym-
metric RBF equaliser, and the simulation results have in-
dicated that they are capable of approaching the optimum
Bayesian performance.
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