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ABSTRACT

The paper investigates nonlinear equalisation using a
novel symmetric radial basis function (RBF) network.
By explicitly exploiting the inherently symmetric struc-
ture of the optimal Bayesian equaliser, the proposed sym-
metric RBF equaliser can be determined from the re-
ceived noisy training data. Both a block-data based and
a sample-by-sample adaptive algorithm are designed for
this novel symmetric RBF equaliser. Simulation results
are also provided to demonstrate the efficiency of the pro-
posed symmetric RBF network equaliser.

1. INTRODUCTION

In this paper, we re-visit nonlinear equalisation usingrée
dial basis function (RBF) network [1]-[5]. It is well-known

pressed as
nc—1

5 cblk=—i)+n(K.

x(k) = @)
wherec; represents the channel tapg the channel impulse
duration,b(k) € {1} andn(k) the Gaussian white noise as-
sociated withE[|n(k)|?] = g?. A finite-memory equaliser
is employed, which has the input vectotk) = [x(k) x(k —
1)---x(k—ne+1)]" in order to detect the transmitted sym-
bolsb(k— 1), wheren, is the equaliser’s order ardis the
decision delay. The vector(k) is given by
x(k) = Cb(k) +n(k) = x(k) + n(k), 2
where n(k) = [n(k) n(k—1)---n(k — ne + 1)]7, b(k) =
[b(k) b(k—1)---b(k —L + 1)]T and C is the (ne x L)-
dimensional channel matrix havihg= nc +ne — 1.

that equalisation can be viewed as a classification problem Denote the\l, = 2" combinations ob (k) asbg, 1<q<

and the optimal solution for this classification problem 'SNb. Furthermore, denote thie -+ 1)-th element obg asby .

known to be the Bayesian equaliser [1],[2]. We first showpe giseless channel outpetk] assumes legitimate values
that the Bayesian nonlinear equalisation solution has an 'rf[om the signal state set

herent symmetry, because the signal states corresporaling
the different signal classes are distributed symmetsidéll
This symmetry is hard to infer from noisy training data using 3

the traditional RBF network. We propose a novel RBF net- . . ) . ) .
work that is capable of exploiting the signal constellaon The deq|5|on variable of the optimal Bayesian equaliser is
symmetric structure and demonstrate that the proposed syrffien defined as [1],[2]

metric RBF network is capable of approaching the optimal
Bayesian equalisation performance.

2 2 [Xq=Cbg, 1< q < Np}.

Np  |Ix(k)—xq|®

— 20§
A block-data based algorithm is developed for the con- Yaay(k) = qzlsgr(qu)qu ()
struction of the symmetric RBF equaliser using the orthog-
onal forward selection (OFS) procedure combined with theyjth the optimal decision given by
Fisher ratio of class separability measure (FRCSM) [7]-[9]
It is shown that by explicitly exploiting the symmetry of N 1 K) >0
the underlying signal constellation, the proposed symimetr ~ b(k—T) = sgnysay(K)) = { J_rl: ));::igkg Zo. ©

RBF equaliser becomes capable of effectively realising the

Bayesian equalisation solution. A novel nonlinear least bi h h _ 1
error rate (NLBER) algorithm is also proposed, which en-Vhere we aveg = Np(2ma2)L/2 "

ables a sample-by-sample adaptation of the symmetric RBF The signal state se2” can be divided into the following
equaliser. The NLBER adaptive algorithm has its roots in théwo subsets conditioned on the valuebok — 1)

Parzen window density estimation technique of [10]-[13].

ZE LI e 2 1<i<Ng: bk—1)=+1}, (6)

_ _ _ _ ~ where the sizes of2"") and 2°(~) are bothNgp = Np/2.
Consider a binary phase shift keying (BPSK) modulationt may readily be visualised that the two subs@$+) and
scheme communicating over a dispersive communication,(-)' are gistributed symmetrically with respect to each
channel. The symbol-rate channel output samples can be eXgqr [6]. More explicitely, given an appropriate constell
tion point indexing, for any phasot!™ € 2°(*) there ex-

ists a symmetrical positioned phasar e 2°(-) so that

2. NONLINEAR CHANNEL EQUALISATION
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we havexf‘) = —iim. Upon exploiting this symmetry, the

Bayesian equaliser (4) can be rewritten as
) (M

Ix(-xg 12
e 20%

where we havei”) € 2°(*). Note that the symmetry of the

(g2
—e 20%

Nsp

YBay(K) = > Bq
o=1

Bayesian equaliser, as seen in (7) is hard to both recognis

and to exploit using a traditional RBF network.

3. SYMMETRIC RBF NETWORK EQUALISER

Consider the problem of training a RBF netwoiksr(x) :
#" — {£1} based on a training data sdDx =
{x(k),d(K)}X_;, whered(k) € {1} is the class type for data
samplex (k). We adopt the RBF network of the form

M
d(k) = sgriyrer(k)) with yrar(k) = 3 8a(x(). @)

whered (k) is the estimated class label fafk), @ (e) de-
notes the-th RBF nodef; are the RBF weights and is the

number of RBF centres. We propose to adopt the following

symmetric RBF construction

A(x) = o (x; 1, p2) — § (x; — i, 07, 9)

wherey; € %" represents the RBF centrgg, the RBF vari-
ance and () the usual RBF function. In this study we adopt
the Gaussian RBF function of

ST

ol p%) =e (10)
We now consider both a block-data based and a sample-b

sample adaptive algorithm for constructing this symmetric

RBF equaliser.

3.1 Block-Data Based Algorithm

We apply the OFS procedure based on the FRCSM [8],[9] tq,

construct a sparse symmetric RBF equaliser using the train

ing data seDy. We consider every training data poii) as
a candidate RBF centre, hence we h&le= K in the RBF
model (8) andy; = x(i) for 1 <i < K as well as a given RBF
variancep?. Let us now define(i) = d(i) — yrer(i) as the

and
W1 W2 (R
W1 W2 W2 M
Q=[www=| . : , (14)
WK1 K2 K M

where2 has orthogonal columns that satisfjm =0, if
i gé I. The model (11) can alternatively be expressed as

|
d=Qy+e, (15)

wherey = [y1 yo---Ww]" = A8 is the weight vector in the
orthogonal space defined 5.

A sparseMsprterm RBF network can be selected by in-
crementally maximising the FRCSM using the OFS proce-
dure, outlined in [8],[9]. Let us define the two class sets
Xyt = {x(k) : d(k) = £1}, and let the number of points in
X4 beKy, respectively, wittK, + K_ = K. The means and
variances of the training samples belonging to cl¥ssand
classX_ in the direction of the basi@ are given by

K
Moo= Y 8 - ek, (16)
+ k=1
2 1 K 2
ofy = Ekzlé(d(k)—l)(am—mn, (17)
and
1 K
= Kk;5(d(k)+l)m<,|, (18)
0%, = iKé(d(kH—l)(wK ~-m )%, (19)
- = K_ kzl dl —1) >
{/Qspectively, where we have
o0={3 iz @

To elaborate a little further, the Fisher ratio is definedhas t
ratio of the inter-class difference and the intra-claseagr
ncountered in the direction aj, which is given by [14]

(m+,| - m,,|)2

R= (21)

Based on the FRCSM, the significant RBF units can be se-

modelling residual sequence. Then the model (8) consttuctdected with the aid of an OFS procedure. At thih stage, a

from the training data sddx can be written in matrix form
as

d=®0+¢, (11)
whered = [d(1) d(2)---d(K)]T, € = [g(1) £(2)---&(K)]T,
0= [91 92-~~9M]T, and

=g @] € Z (12)

is the regression matrix having the column vectgrs=
[@(x(1) @(x(2))-- @(x(K))T, 1<i < M. Letan orthog-
onal decomposition o be® = QA, where

1 aio aim

a=| % 1 (13)
: aM-1.M
0 0 1

candidate unit is chosen as théh RBF unit in the selected
model, if it produces the largeBt ratio among thé — | +1
candidate unitsy. The procedure is terminated with a sparse
Mspzterm model when we have

FMspa
MS a
-1 h

where the threshold determines the grade of sparsity for
the model selected. The appropriate valu€ afepends on
the application concerned and it must be determined em-
pirically. The least squares solution for the correspond-
ing sparse model weight vecték,, = (61 62«--6Mspa]T is
readily available, given the least squares solutiopRf, =
n yg-~-y1\,|spa}T. The detailed construction algorithm based

on the Gram-Schmidt orthogonalisation can be found in
[8],[9] and hence it will not be repeated here.

<, (22)



3.2 Sample-by-Sample Adaptive Algorithm 0

'RBF —=—
Let us quantify the dependency of the RBF network’s output Optimal —e—
on its parameters by using the general notation L
-1 -y
M
yrer(k w) = 219. (9 (x(Kk); i, p7) — P (x(K); — i, p7)) » g
i= T 2
(23) 5
where the parameter vecter includes all the RBF centres - \\
L, variancep? and weights,. Let us define the signed de- g 3
cision variable ags(k) = sgn(d(k))yrer(k; w) and denote =1
the probability density function (PDF) ofs(k) as py(ys). L X
Then the error probability of the RBF equaliser (23) is - \
0
Re(w) = Probys(k) < O} = [ pyyo)dys.  (24) i \
0 2 4 6 8 10 12 14 16 18
The minimum bit error rate (MBER) solution is defined SNR (dB)

as the parameter vectar that directly minimisesh:(w)

[13]. Although the PDF ofys(k) is unknown, it may be Figure 1: BER performance of the symmetric RBF and the
estimated sufficiently accurately using the Parzen windovBayesian equaliser for transmission over a two-tap channel
method. Specifically, given a block of training dddg, a  using an equaliser ordeg = 2 and a decision delay = 1.

Parzen window estimate [10] @(ys) is given as The OFS aided FRCSM algorithm was used.
. K _ (ys—sgrld<k)>2yRBF<k:w)>2 For the RBF equaliser (23) using the Gaussian basis func-
Py(ys) = Kv/2ro Ye 20 , (25)  tion of (10), the derivatives of the RBF network’s outputlwit
k=1 respect to the RBF equaliser’'s parameters are given by
whereg? is the kernel variance chosen. With this estimated (942 (94412
PDF, the estimated or approximate BER is given by a;a/%sp —_e P _g

0 1 K 5 Ce®owl® o b
B (w) :/ s ds= 3 Q@(w), (@6) FEFE=ale 7 BEhb-e 4 "‘”“ﬁ) 7
- k=1

I (p?) (p?)
xR —pi12 _ (2
whereQ(e) is the usual Gaussian error function and "(V?L“?F =6 (e A % +e A "“2;*“) ,
-~ sgn(d(k))yrer(k; w) (30)
Gi(w) = p : @) fori<i<m.
An approximate MBER solution fow can be obtained by 4. SIMULATION STUDY

minimisingPe (w) using a gradient-based optimisation, com- )

mencing for example from the minimim mean squared errofXample 1 The two-tap CIR used was given byk) =
(MMSE) solution. To derive a sample-by-sample adaptive al9-50(k) + 1.0b(k— 1) + n(k), the equaliser order was set to
gorithm, consider a single-sample PDF “estimatepgfys) ~ Ne = 2 and the decision delay = 1. Fig. 1 shows the

given by BER of the optimal Bayesian equaliser as a function of the
~ ‘ 1 _<ys—Sgrld<k>>2yRBF<k:w>>2 - 1 e
= 2 5
p)’(ysa ) \/ETUe o . ( ) R Bayesian -~ -
5]
Conceptually, given this instantaneous PDF “estimate”, we &
arrive at the single-sample BER “estimatét(w,k) = S N
Q(fk(w)). Using the instantaneous gradiedf:(w,k) w -15 N
gives rise to the following stochastic gradient algorithm ) \S‘E
g e,
K gy & el S - -
w = w{kK-1)+—-=10 20
() (k=1)+ = .
Oyrer(k;w(k—1 0 2 4 6 8 10
xsgnd(k)) (dw( ))7 (29) Model Size

which we refer to as the NLBER algorithm, where the stepmigure 2: Influence of the model size on the BER perfor-
size& and kernel widtho should be carefully chosen in or- mance for transmission over a two-tap channel in conjunc-

der to ensure a fast convergence and small steady-state BEEIRN With ne = 2 and7 = 1, given SNR= 10 dB. The OFS
misadjustment. aided FRCSM algorithm was used.



Bayezgﬁ ? gorithm having a step siz& = 0.1 was initialised with the
first 30 data points as the initial RBF centres, and we had

£) p?(0) = 4.002 and 6,(0) = & for 1 <i < 30. The true

= E\ BER P:=(w(k)) was also calculated using simulations for
= Y K = 0,400,800,1200 1600 2000. Fig. 8 depicts the influ-

) \B\( ence of the model size on the RBF equaliser’s performance,
S where the NLBER algorithm had the same settings as those
g o855 oBg

used for obtaining the results of Fig. 7. The BER of the
RBF equaliser using the model size df= 30, trained by

2 the NLBER algorithm oveK = 2000 samples is also shown
0 40 80 120 160 200 240 280 320 in Fig. 6.
Data Size The OFS aided FRCSM algorithm was also used to se-

. lect the RBF equaliser having a model siz =30in
Figure 3: Influence of the data length on the BER perfor—Corljunctiorl wit% the traininggblock length a@iaGOO and

mance for transmission over the two-tap channel in conjunc[he RBF variance ob? — 62, The BER performance of the
= 0P,

tion with ne = 2 andt = 1, given SNR= 10 dB. The OFS S, ; L : .
. : ' resultant RBF equaliser is depicted in Fig. 9, in comparison
aided FRCSM algorithm was used. to the performance of the Bayesian equaliser.
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Figure 4: Influence of the RBF variance on the BER perfor-
mance for transmission over the two-tap channel in conjunc-
tion with ng = 2 andt = 1, given SNR= 10 dB. The OFS - - 3
aided FRCSM algorithm was used. x(K)

signal to noise ratio (SNR). For this example, the size 0]Figure_ 5: Comparison of the decision boundaries _(solid:
the Bayesian equaliser was defined My, = 4. For each Bayesian and dashed: RBF) for the two-tap channel in con-

SNR, a symmetric RBF equaliser havingMapa= 4 was unction withne =2 andr = 1, given SNR= 10 dB, where
constructed from the training data set of lentth= 160 us- ~ Pairs of cross and plus symbols indicate the positions of sym
ing the OFS aided FRCSM algorithm, and the BER perfor/Metric state pairs, and the pairs of square and triangufar sy
mance of the resultant RBF equaliser is also plotted in Fig. 1P°IS indicate the positions of RBF centre pairs. The OFS
Given SNR= 10 dB and a training data length Kf= 160, ~&ided FRCSM algorithm was used.

Fig. 2 depicts the influence of the RBF model shg), on

the attainable BER performance, where the RBF varigrice 5. CONCLUSIONS

was tuned for each model size and was in the range?of In this . . :

) paper, we have investigated a novel symmetric RBF
to 4. At SNR= 10 dB, a model size d¥spa=4 and the  epyork structure designed for channel equalisation egpli
RBF variance op? = 207, the influence of the data length tion. As a benefit of the underlying symmetry property of the
K is plotted in Fig. 3, while Fig. 4 illustrates the influence gptimal Bayesian equalisation solution, we were ablie to ap-
of the RBF variancep? given SNR= 10 dB, Mspa=4 and  proach the optimal Bayesian performance using noisy train-
K =160. Fig. 5 compares the optimal Bayesian decisiofing data. Both a block-data based and a sample-by-sample
boundary with that of the RBF equaliser, given SNROdB.  adaptive training algorithm have been proposed for this-sym
Example 2 The three-tap CIR was given by(k) = metric RBF equaliser, and the simulation results have in-
0.3b(k) +0.8b(k — 1) +0.3b(k — 2) 4 n(k), the equaliser or- dicated that they are capable of approaching the optimum
der was set ta, = 4 and the decision delay was= 2. Bayesian performance.

The BER of the optimal Bayesian equaliser is depicted in

Fig. 6. For this example, the size of the Bayesian equaliser

was defined byNg, = 32. Given SNR= 13 dB and a model REFERENCES
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