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a b s t r a c t

This contribution proposes a powerful technique for two-class imbalanced classification problems by

combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisa-

tion (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small

and specific region belonging to the positive class in the decision region, the SMOTE is applied to

sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection

procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a

PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The

experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets

are presented to demonstrate the effectiveness of our proposed algorithm.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

A classification problem is referred to as imbalanced when the
instances in one or several classes, known as the majority classes,
outnumber the instances of the other classes, called the minority
classes. Such an imbalance in the data represents the so-called
between-class imbalance [1], in contrast to the related issue of
within-class imbalance [2,3]. Imbalanced problems widely exist
in the fields of medical diagnosis, science and engineering, and
some examples includes surveillance of nosocomial infection [4],
cardiac care [5] and elucidating protein–protein interactions [6]
as well as fraud detection [7,8], network intrusion detection [9]
and telecommunication management [10]. Note that, in an
imbalance problem, the minority classes are usually the more
important classes. For instance, 11% of patients suffer from one or
more nosocomial infections [4]. In the study of two-class imbal-
anced problems, the instances in the majority class are referred
to as negative, while in its counterpart, the minority class, the
instances are referred to as positive. Since in practice the minority
class is more important, one should be more concerned with
the positive instances. Imbalanced data learning has been widely
ll rights reserved.
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researched [11–16]. Typically, the approaches for solving the
imbalanced problem can be divided into two categories: re-
sampling methods and imbalanced learning algorithms.

The re-sampling approach is actually a re-balancing process to
balance the given imbalanced data set. The studies [17,18] on class
distribution have shown that balanced data sets provide better
classification performance than imbalanced ones, though some
other studies [1,19] have argued that imbalanced data sets are
not necessarily responsible for the poor performance of some
classifiers. Re-sampling techniques are attractive under most imbal-
anced circumstances. This is because re-sampling adjusts only the
original training data set, instead of modifying the learning algo-
rithm. Thus, this approach is external and transportable [18,20],
and it provides a convenient and effective way to deal with imbal-
anced learning problems using standard classifiers. Specifically, the
re-sampling methods include the random over-sampling, which
randomly appends replicated instances to the positive class, and
the random under-sampling, which randomly removes instances
from the majority class. Alternatively, there exist the guided over-
sampling and under-sampling, respectively, of which the choices
to replicate or to eliminate are informed rather than random. In
addition, the synthetic minority over-sampling technique (SMOTE)
[21] is a well acknowledged over-sampling method. In the SMOTE,
instead of mere data oriented duplicating, the positive class is over-
sampled by creating synthetic instances in the feature space formed
by the positive instances and their K-nearest neighbours.
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The second category, consisting of imbalanced learning algo-
rithms, can be regarded as a process to modify or re-balance the
existing learning algorithms so that they can deal with imbal-
anced problems effectively. The imbalanced learning algorithms
include the cost-sensitive method [22–25], the discrimination-
based and recognition-based approaches [3]. An alternative is to
adapt standard kernel-based or radial basis function (RBF) classi-
fiers, which use a fixed common variance for every RBF kernel and
choose RBF centres from input data, to imbalanced data sets by
modifying the kernel construction and model selection procedure.
A representative work [26] of this imbalanced learning proposes
a regularised weighted least square estimator (LSE) using the
orthogonal forward selection (OFS) based on the model selection
criterion of maximising the leave-one-out (LOO) area under the
curve (AUC) of receiver operating characteristics (ROC). In this
LOO-AUCþOFS algorithm [26], the cost function of the LSE is
made sensitive to the class labels, such that the errors due to
minority class data samples are given a higher weight rZ1, and
this weighted LSE (WLSE) reduces to the standard LSE with the
weight r¼ 1. A well-known RBF modelling is the two staged
procedure [27], in which the RBF centres are first determined
using the k-means clustering [28] and the RBF weights are then
obtained using the LSE. To cope with imbalanced data sets, a
natural extension of [27] is to modify the latter stage as the WLSE,
where the same weighted cost function of [26] is used. This
k-means þWLSE algorithm provides a viable alternative within
this imbalanced learning category.

Kernel-based learning, such as support vector machine (SVM)
and RBF, is widely used for solving balanced learning problems.
In particular, a powerful approach for constructing the RBF
and other sparse kernel classifiers is to assign a fixed common
variance for every kernel and to select input data as the candidate
centres for RBF kernels by minimising the leave-one-out (LOO)
misclassification rate in the efficient OFS procedure [29]. This
approach has its root in regression application [30–33]. Two
limitations may be associated with this ‘‘fixed’’ RBF kernel
approach. Firstly, RBF kernels cannot be flexibly tuned, as the
position of each kernel is restricted to the input data and
the shape of each kernel is fixed rather than determined by the
learning procedure. Secondly, the common kernel variance has to
be determined via cross validation, which inevitably increases the
computational cost. The previous studies [34–36] have proposed
to construct the tunable RBF classifier based on the OFS procedure
using a global search optimisation algorithm [37] to optimise the
RBF kernels one by one. This tunable RBF kernel approach is
observed to produce sparser classifiers with better performance
but higher computational complexity in classifier construction, in
comparison with the standard fixed kernel approach. Recently,
the particle swarm optimisation (PSO) algorithm [38] is adopted
to minimise the LOO misclassification rate in the OFS construction
of tunable RBF classifier [39,40]. PSO [38] is an efficient popula-
tion-based stochastic optimisation technique inspired by social
behaviour of bird flocks or fish schools, and it has been success-
fully applied to wide-ranging optimisation applications [41–46].
Owing to the efficiency of PSO, the tunable RBF modelling
approach advocated in [39,40] offers significant advantages in
terms of better generalisation performance and smaller classifier
size as well as lower complexity in learning process, compared
with the standard fixed kernel approach. This PSO aided tunable
RBF classifier offers the state-of-the-art for balanced data sets.

Although the study [1] has shown that kernel-based methods
provide a relatively robust classification to imbalanced problems,
the detrimental effects of a highly imbalanced data set can
seriously degrade the generalisation performance of kernel-based
classifiers. In order to achieve better classification performance
for highly imbalanced data, an effective approach is to integrate
kernel-based classifiers with re-sampling methods. The previous
studies [47–49] mainly focused on SVMs. Specifically, the method
[47] combined the SMOTE with different costs to bias SVMs by
assigning different classes with different costs so as to shift the
decision boundary away from the positive instances and to define
a better boundary. The work [48] proposed ensemble systems by
re-sampling data sets to form the input to the standard SVM
classifier, while the method [49] introduced asymmetric misclas-
sification costs in SVMs so as to improve classification perfor-
mance. Another integration of SVM with under-sampling method
used the combination of the granular support vector machine
(GSVM) [50] and repetitive under-sampling (RU) to form the
GSVM–RU algorithm [51].

Against this background, this contribution proposes an effec-
tive alternative to deal with two-class imbalanced classification
problems by combining the SMOTE algorithm [21] and the PSO
aided RBF classifier [39,40]. Specifically, the SMOTE is first applied
to generate synthetic instances in the positive class to balance
the training data set. Using the resulting balanced data set, the
tunable RBF classifier is then constructed by applying the PSO to
minimise the LOO misclassification rate in the computationally
efficient OFS procedure. In the experimental study involving a
simulated imbalanced data set and three real imbalanced data
sets, three benchmarks are used to compare with the proposed
SMOTEþPSO-OFS method. The first benchmark combines the
SMOTE [21] and the K nearest neighbour ðK -NNÞ classifier [52],
which will be denoted as the SMOTEþK -NN. The K -NN classifier
is a widely used classification method, and this combined SMOTE
and K -NN represents a typical method of the re-sampling
approach for imbalanced problems. The second benchmark is
the algorithm advocated in [26], denoted by the LOO-AUCþOFS,
which is a state-of-the-art representative of the second approach
for dealing with imbalanced problems. The third benchmark, the
k-meansþWLSE algorithm, as discussed previously, is also a
typical method of the imbalanced learning approach. The experi-
mental results obtained demonstrate that the proposed method is
competitive to these existing state-of-the-arts methods for two-
class imbalanced problems.

The rest of the paper is organised as follows. Section 2
introduces the tunable RBF model for two-class classification
and the OFS procedure based on the LOO misclassification rate,
while Section 3 presents the PSO algorithm for tuning the RBF
kernels by minimising the LOO misclassification rate. Section 4
introduces the SMOTE method and presents the proposed com-
bined SMOTE and PSO based RBF algorithm. The effectiveness of
our approach is demonstrated by numerical examples in Section
5, and our conclusions are given in Section 6.
2. RBF classifier for two-class problems

Consider the two-class data set DN ¼ fxk,ykg
N
k ¼ 1 that contains N

data instances, where yk ¼ f71g denotes the class label for the
feature vector xkARm, while there are Nþ positive instances and
N� negative instances, with N¼Nþ þN�. We use the data set DN

to construct the RBF classifier of the form:

ŷ
ðMÞ
k ¼

XM
i ¼ 1

wigiðxkÞ ¼ gT
MðkÞwM

~yðMÞk ¼ sgnðŷ
ðMÞ
k Þ ð1Þ

where M is the number of RBF kernels, ŷ
ðMÞ
k is the output of the

M-term classifier with the M kernels, gið�Þ for 1r irM, wM ¼

½w1w2 � � �wM�
T is the weight vector and gT

MðkÞ ¼ ½g1ðxkÞ

g2ðxkÞ � � � gMðxkÞ�, while ~yðMÞk denotes the corresponding estimated
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class label for xk, and

sgnðyÞ ¼
�1, yr0

1, y40

(
ð2Þ

In this study, we use the Gaussian kernel function

giðxÞ ¼ expð�ðx�ciÞ
TR�1

i ðx�ciÞÞ ð3Þ

where ciARm is the centre vector of the ith RBF kernel and
Ri ¼ diagfs2

i,1,s2
i,2, � � � ,s2

i,mg is the diagonal covariance matrix of the
ith kernel. Hence, the position of each kernel, ci, and the coverage
of each kernel, Ri, are both considered as the tunable parameters
to be determined in modelling.

From (1), the RBF classifier over DN can be written in the
matrix form as

y¼ GMwMþeðMÞ ð4Þ

where eðMÞ ¼ ½eðMÞ1 eðMÞ2 � � � e
ðMÞ
N �

T is the error vector with the M-term

modelling error eðMÞk ¼ yk�ŷ
ðMÞ
k , y¼ ½y1y2 � � � yN�

T is the desired

class label vector, and the kernel matrix GM ¼ ½g1g2 � � �gM � with

gl ¼ ½glðx1Þglðx2Þ � � � glðxNÞ�
T for 1r lrM. Note that gl is the lth

column of GM while gT
MðkÞ is the kth row of GM .

Now consider the orthogonal decomposition GM ¼ PMAM ,
where

AM ¼

1 a1,2 � � � a1,M

0 1 & ^

^ & & aM�1,M

0 � � � 0 1

2
6664

3
7775 ð5Þ

PM ¼ ½p1 p2 � � �pM� ð6Þ

and the columns in (6) satisfy pT
i pj ¼ 0 for ia j. The RBF classifier

(4) can alternatively be represented as

y¼ PMhMþeðMÞ ð7Þ

where hM ¼ ½y1 y2 � � � yM �
T satisfies hM ¼ AMwM . The space spanned

by the original model bases gi, 1r irM, is identical to that
spanned by pi, 1r irM.

The OFS procedure constructs the RBF kernels one by one by
minimising the LOO misclassification rate [39,40]. Specifically, at
the nth stage, the nth RBF kernel, namely, pn and yn, is deter-
mined. Define the LOO-model output of the n-term RBF model
constructed from the LOO data set DN\ðxk,ykÞ, calculated at xk, as
ŷ
ðn,�kÞ
k . Further define the associated LOO decision variable as

sðn,�kÞ
k ¼ sgnðykÞŷ

ðn,�kÞ
k ¼ ykŷ

ðn,�kÞ
k ð8Þ

Then the LOO misclassification rate is defined by [29]

JðnÞLOO ¼
1

N

XN

k ¼ 1

Idðs
ðn,�kÞ
k Þ ð9Þ

in which the indicator function IdðsÞ is defined as

IdðsÞ ¼
1, sr0

0, s40

(
ð10Þ

The LOO misclassification rate is a measure of the classifier’s
generalisation capability [29,35,36,53]. By making use of
Sherman–Morrison–Woodbury theorem [53] as well as the ortho-
gonal property, the LOO decision variable can be efficiently
calculated according to [29,39,40]

sðn,�kÞ
k ¼

cðnÞk

ZðnÞk

ð11Þ
in which cðnÞk and ZðnÞk can be computed recursively by

cðnÞk ¼cðn�1Þ
k þykynpnðkÞ�

p2
nðkÞ

pT
npnþl

ð12Þ

ZðnÞk ¼ Z
ðn�1Þ
k �

p2
nðkÞ

pT
npnþl

ð13Þ

where pn(k) is the kth element of pn, and lZ0 is a small
regularisation parameter if the regularisation is employed.

At the nth stage of the OFS procedure, the nth RBF kernel,
namely, its centre vector cn and diagonal covariance matrix Rn,

are determined by minimising JðnÞLOO. The construction terminates

at the size of M when JðMþ1Þ
LOO Z JðMÞLOO [29,39,40].
3. PSO for optimising RBF parameters

Denote l¼ ½mð1Þ mð2Þ � � �mð2mÞ�T as the 2m-dimensional para-
meter vector that contains cn and Rn. Then, as defined in the
previous section, the problem of determining the nth RBF kernel’s
parameters at the nth OFS stage is to solve the following
optimisation problem

l̂ ¼ arg min
lAC

JðnÞLOOðlÞ ð14Þ

where the 2m-dimensional search space C is defined by

C9
Y2m

i ¼ 1

½Gi,min,Gi,max� ð15Þ

Specifically, the search space for cn ¼ ½cn,1cn,2 � � � cn,m�
T is specified

by the distribution of the training data fxk ¼ ½xk,1 xk,2 � � � xk,m�
TgNk ¼ 1,

namely,

cn,iA ½xmin,i,xmax,i�9½Gi,min,Gi,max� ð16Þ

for 1r irm, with

xmin,i ¼ min
1rkrN

xk,i

xmax,i ¼ max
1rkrN

xk,i

8<
: ð17Þ

while each element of Rn is limited in the range

s2
n,iA ½s

2
min,s2

max�9½GðiþmÞ,min,GðiþmÞ,max� ð18Þ

for 1r irm. When applying a PSO [38] to solve the optimisation
(14), a swarm of the candidate particles fl½l�i g

S
i ¼ 1 are ‘‘flying’’ in

the search space C in order to find a solution l̂, where S is the size
of the swarm and lAf0,1, � � � ,Lg denotes the lth movement of the
swarm. Each particle l has a 2m-dimensional velocity
m ¼ ½nð1Þ nð2Þ � � � nð2mÞ�T to direct its search, and mAV with the
velocity space defined by

V9
Y2m

i ¼ 1

½�Vi,max,Vi,max� ð19Þ

where Vi,max ¼
1
2 ðGi,max�Gi,minÞ.

To start the PSO, the candidate particles fl½0�i g
S
i ¼ 1 are initialised

randomly within C, and the velocity for each candidate particle is

initialised to zero, namely, fm½0�i ¼ 0gSi ¼ 1. The cognitive information

pb½l�i and the social information gb½l� record the best position

visited by the particle i and the best position visited by the entire
swarm, respectively, during the l movements. The LOO costs

associated with pb½l�i and gb½l� are denoted by JðnÞLOOðpb½l�i Þ and

JðnÞLOOðgb½l�Þ, respectively. The cognitive information pb½l�i and the

social information gb½l� are used to update the velocities and
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positions according to

m½lþ1�
i ¼ a � m½l�i þrandðÞ � b � ðpb½l�i �l½l�i ÞþrandðÞ � c � ðgb½l��l½l�i Þ ð20Þ

l½lþ1�
i ¼ l½l�i þm½lþ1�

i ð21Þ

where a denotes the inertia weight, randðÞ is the random number
uniformly distributed in [0, 1], b and c are the two acceleration
coefficients. Experimental results given in [40] show that a better

performance can be achieved by using a¼ randðÞ instead of a
constant inertia weight. Adopting the time varying acceleration
coefficients (TVAC) [41], in which

b¼ 2:5�ð2:5�0:5Þ � l=L

c¼ 0:5þð2:5�0:5Þ � l=L ð22Þ

can often enhance the performance of PSO. The search space C

and the velocity space V are used to confine l½lþ1�
i and m½lþ1�

i

derived from (20) and (21), respectively. If m½lþ1�
i becomes too

close to 0, a random re-initialisation is needed, which may take

the form m½lþ1�
i ¼ 70:1 � randðÞ � Vmax, where Vmax ¼ ½V1,maxV2,max

� � �V2m,max�
T. The detailed PSO aided OFS algorithm can be found

in [40], also see the next section.
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Fig. 1. Simulated 2-dimensional example: (a) original training data space, and

(b) training data space after SMOTE over-sampling the positive class by 500% of its

original size, where x denotes a positive-class instance while J denotes a negative

class instance.
4. Combined SMOTE and PSO optimised RBF for imbalanced
classification

The SMOTE [21] over-samples the positive class by creating
synthetic instances by a specified over-sampling ratio of the
original minority data size, b%. Based on each minority data
sample, denoted by xo, b% synthetic data points are generated by
randomly selecting data points on the lines linking xo with some
of its K nearest neighbours, where K is predetermined. Depending
on the required SMOTE amount b%, one out of the K nearest
positive-class data samples are randomly selected several times.
For example, if b%¼ 600% and K¼5, then one out of five nearest
neighbours of xo is randomly chosen repeatedly for six times.
Each time a random kth neighbour is selected to create a line
linking xo to this neighbour, and then a single synthetic instance
is created by randomly selecting a point on the line. Thus any
synthetic instance xs is given by

xs ¼ xoþd � ðxftgo �xoÞ ð23Þ

where xs denotes one synthetic instance, xftgo is the tth nearest
neighbors of xo in the positive class, and dA ½0,1� is a random
number. The procedure is repeated for all the positive data points.

A major problem caused by imbalanced data sets is that
most classifiers tend to attribute the positive-class instances
within the decision region to the negative class, due to insuffi-
cient positive-class training instances in the decision region.
As a result, the trained decision boundary tends to be far away
from the negative class and too close to the positive class. The
contribution of SMOTE is to enhance the significance of the small
and specific region belonging to the positive class in the decision
region, which leads to the better generalisation for classifiers.
Fig. 1(a) shows a simulated imbalanced data set, the details of
which are specified in Section 5. After the SMOTE over-sampling
the positive class by 500% of its original size, the instances
from the positive class become more significant in the decision
region (the area specified by dash–dot line), as shown in Fig. 1(b),
compared with the original data set. Consequently, the trained
decision boundary tends to be further away from the posi-
tive class.
We combine this SMOTE with the PSO optimised RBF classifier
described in Section 3 to create a powerful algorithm for two-
class imbalanced problems. This combined SMOTE and PSO aided
RBF is detailed below.
1.
 Over-sampling the training data set:
(a) SMOTE initialisation: Specify the balanced degree b% and

the value of K.
(b) Create the new training data set ~DN by appending the

generated positive training data points to the original
training data set via the SMOTE.
2.
 PSO aided OFS initialisation:
(a) Specify the search space C and the velocity space V.

Specify the values of L and S.
(b) Set Jð0ÞLOO ¼ 1, cð0Þk ¼ 0, and Zð0Þk ¼ 1.

(c) Set regularisation parameter l¼ 10�6.

3.
 Construct the nth RBF kernel:

(a) PSO initialisation: Randomly initialise fl½0�i g
S
i ¼ 1 in C, and

set fm½0�i ¼ 0gSi ¼ 1.

(b) For 0r loL:



Table 1
Confusion matrix.

Predicted positive Predicted negative
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(b.i) Construct the candidates gfign from l½l�i , for 1r irS. Then,

for 1r irS and 1r jon, compute:

afigj,n ¼

1, n¼ 1

pT
j gfign

pT
j pj

, n41

8>><
>>:

pfign ¼

gfign , n¼ 1

gfign �
Xn�1

j ¼ 1

afigj,npj, n41

8>><
>>:

yfign ¼
ðpfign Þ

Ty

ðpfign Þ
Tpfign þl

(b.ii) For 1r irS and 1rkrN, compute:

cðnÞk fig ¼cðn�1Þ
k þyðkÞyfign pfign ðkÞ�

ðpfign ðkÞÞ
2

ðpfign Þ
Tpfign þl

ZðnÞk fig ¼ Z
ðn�1Þ
k �

ðpfign ðkÞÞ
2

ðpfign Þ
Tpfign þl

Then, for 1r irS, calculate the LOO costs:

JðnÞLOOfig ¼
1

N

XN

k ¼ 1

Id

cðnÞk fig

ZðnÞk fig

 !

(b.iii) For 1r irS:
If JðnÞLOOfigo JðnÞLOOðpb½l�i Þ:

pb½l�i ¼ l½l�i and JðnÞLOOðpb½l�i Þ ¼ JðnÞLOOfig

Then find

in ¼ arg min
1r irS

JðnÞLOOðpb½l�i Þ

If JðnÞLOOðpb½l�in Þo JðnÞLOOðgb½l�Þ:

gb½l� ¼ pb½l�in and JðnÞLOOðgb½l�Þ ¼ JðnÞLOOðpb½l�in Þ

(b.iv) For 1r irS:

m½lþ1�
i ¼ a � m½l�i þrandðÞ � b � ðpb½l�i �l½l�i Þ

þrandðÞ � c � ðgb½l��l½l�i Þ

If n½lþ1�
i ðjÞ ¼ 0:

n½lþ1�
i ðjÞ ¼70:1 � randðÞ � Vj,max

If n½lþ1�
i ðjÞ4Vj,max: n½lþ1�

i ðjÞ ¼ Vj,max

If n½lþ1�
i ðjÞo�Vj,max: n½lþ1�

i ðjÞ ¼ �Vj,max

Then for 1r irS:

l½lþ1�
i ¼ l½l�i þm½lþ1�

i

If m½lþ1�
i ðjÞ4Gj,max: m½lþ1�

i ðjÞ ¼Gj,max

If m½lþ1�
i ðjÞoGj,min: m½lþ1�

i ðjÞ ¼Gj,min

(c) Termination of PSO: gb½L� provides cn and Rn with the

associated LOO cost JðnÞLOO ¼ JðnÞLOOðgb½L�Þ.

The algorithm also generates aj,n for 1r jon, pn and yn

as well as cðnÞk and ZðnÞk for 1rkrN.
4.

Actual positive True positive (TP) False negative (FN)

Actual negative False positive (FP) True negative (TN)
OFS termination condition checking:

If JðnÞLOOo Jðn�1Þ
LOO : n¼ nþ1, go to step 3.

Otherwise, M¼ n�1, terminate the OFS procedure.
5. Experimental results
The effectiveness of the proposed SMOTEþPSO-OFS algorithm
was investigated using a simulated imbalanced date set and three
real imbalanced data sets. The first two real data sets were taken
from [54], while the third real data set was from [55]. These three
real data sets were chosen in the order of increasing imbalance.
For each data set, the positive class was over-sampled at different
rates b% of its original size using the SMOTE. For the synthetic
data set, a separate test data set was used, while for the three
real data sets, P-fold cross validation was used, to indicate the
classifier generalisation capability based on multiple specifica-
tions, including the true positive rate (TP%) and the false positive
rate (FP%) [56], as well as the precision (Pr), the F-measure
(F-meas) and the G-mean [57]. These criteria are commonly
adopted as the performance metrics for evaluating imbalanced
learning classifiers. They were calculated according to the confu-
sion matrix in Table 1 as follows:

TP%¼
TP

TPþFN
ð24Þ

FP%¼
FP

FPþTN
ð25Þ

Pr¼
TP

TPþFP
ð26Þ

G-mean¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP%� ð1�FP%Þ

p
ð27Þ

F-meas¼
2� Pr� TP%

PrþTP%
ð28Þ

As discussed in the introduction section, the three typical
methods that represent the two different approaches for dealing
with imbalanced problems, respectively, were used as the bench-
marks for comparison, and they were the SMOTEþK -NN with
K ¼ 1 and 3, as well as the LOO-AUCþOFS with different weight r
and the k-means þWLSE with different weight r. Note that in the
SMOTEþK -NN classifiers if there is any data sample in the test
data set that duplicates a data sample in the training data set, this
was not counted in the statistics in order to obtain honest cross
validation. This is necessary in particular for ADI data sets which
are produced by randomly sampling the original data set, causing
repetitive data samples. For the k-means þWLSE algorithm a
fixed common variance for every kernel was predetermined
empirically (similar to [26]), and in addition the number of
centres were also predetermined empirically.

Simulated imbalanced data set: The simulated data set was
generated with the m¼2 features. The mean vector of the
negative class was [0 0]T, while the mean vector of the positive
class was [2 2]T. The covariance matrices of both the negative-
class and positive-class instances were the same 2-dimensional
identity matrix. The training data set contained 100 instances
from the negative class and 10 instances from the positive class,
as depicted in Fig. 1(a). The test data set contained 1000 instances
from the negative class, and 100 instances from the positive class.
The 5-nearest neighbour method was applied to generate syn-
thetic training data in the SMOTE, with the over-sampling rate b%
set to 0%, 100%, 500%, 1000%, 1500% and 2000%, respectively.
For the SMOTEþPSO-OFS, the swarm size and the number of
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movements were set to S¼10 and L¼20. The test results obtained
by the various classifiers are shown in Table 2.

It can be seen from the results for the SMOTEþPSO-OFS listed
in Table 2 that, as the over-sampling rate b% increases, typically
TP% increases but FP% inevitably increases as well. A better
tradeoff between TP% and FP% was achieved, however, at the
over-sampling rate where the better G-mean and F-measure were
obtained. Since the imbalance degree of the negative class to
the positive class was 10:1, the over-sampled positive instances
made ~DN fully balanced at b%¼ 1000%. From Table 2, it can be
seen that the best test performance tradeoff occurred at the over-
sampling rate around 500–1000%. Compared with the other
Table 2
Test classification performance comparison for the synthetic data set.

Method TP% FP% Pr G-mean F-meas

SMOTEþ1-NN 0.830 0.047 0.638 0.899 0.722

ðb%¼ 0%Þ

SMOTEþ1-NN 0.880 0.094 0.484 0.893 0.624

ðb%¼ 100%Þ

SMOTEþ1-NN 0.920 0.113 0.449 0.903 0.603

ðb%¼ 500%Þ

SMOTEþ1-NN 0.930 0.156 0.373 0.886 0.533

ðb%¼ 1000%Þ

SMOTEþ1-NN 0.940 0.158 0.373 0.890 0.534

ðb%¼ 1500%Þ

SMOTEþ1-NN 0.930 0.150 0.383 0.889 0.542

ðb%¼ 2000%Þ

SMOTEþ3-NN 0.780 0.022 0.780 0.873 0.780

ðb%¼ 0%Þ

SMOTEþ3-NN 0.900 0.092 0.495 0.904 0.638

ðb%¼ 100%Þ

SMOTEþ3-NN 0.940 0.134 0.412 0.902 0.573

ðb%¼ 500%Þ

SMOTEþ3-NN 0.950 0.156 0.378 0.895 0.541

ðb%¼ 1000%Þ

SMOTEþ3-NN 0.950 0.151 0.386 0.898 0.549

ðb%¼ 1500%Þ

SMOTEþ3-NN 0.950 0.174 0.353 0.886 0.515

ðb%¼ 2000%Þ

LOO-AUCþOFS 0.860 0.049 0.637 0.904 0.732

ðr¼ 1Þ

LOO-AUCþOFS 0.840 0.028 0.750 0.903 0.792

ðr¼ 5Þ

LOO-AUCþOFS 0.900 0.063 0.588 0.918 0.712

ðr¼ 10Þ

LOO-AUCþOFS 0.870 0.046 0.654 0.911 0.747

ðr¼ 15Þ

LOO-AUCþOFS 0.870 0.049 0.640 0.909 0.737

ðr¼ 20Þ

k-means þWLSE 0.810 0.030 0.730 0.886 0.768

ðr¼ 1Þ

k-means þWLSE 0.840 0.041 0.672 0.898 0.747

ðr¼ 5Þ

k-meansþWLSE 0.860 0.078 0.524 0.890 0.652

ðr¼ 10Þ

k-means þWLSE 0.940 0.131 0.418 0.904 0.578

ðr¼ 15Þ

k-means þWLSE 0.950 0.185 0.339 0.880 0.500

ðr¼ 20Þ

SMOTEþPSO-OFS 0.860 0.044 0.662 0.907 0.748

ðb%¼ 0%Þ

SMOTEþPSO-OFS 0.880 0.055 0.615 0.912 0.724

ðb%¼ 100%Þ

SMOTEþPSO-OFS 0.810 0.023 0.780 0.890 0.794

ðb%¼ 500%Þ

SMOTEþPSO-OFS 0.890 0.053 0.627 0.918 0.736

ðb%¼ 1000%Þ

SMOTEþPSO-OFS 0.930 0.102 0.476 0.914 0.631

ðb%¼ 1500%Þ

SMOTEþPSO-OFS 0.940 0.110 0.461 0.915 0.618

ðb%¼ 2000%Þ
benchmark methods, the proposed SMOTEþPSO-OFS showed a
competitive test performance. The effect of the SMOTE on the
decision boundary is shown in Fig. 2, where it can be seen that
the decision boundary trained by the more balanced data set was
pushed further away from the positive class.
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Fig. 2. Decision boundaries obtained by the SMOTEþPSO-OFS with different over-

sampling rates for the simulated 2-dimensional example: (a) b%¼ 0%, (b)

b%¼ 100%, (c) b%¼ 1000%, and (d) b%¼ 2000%, where x denotes a positive-

class test instance while J denotes a negative-class test instance.
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Pima Indians diabetes data set: The data set was obtained from
the UCI repository [54], and it contained 768 instances from the
two classes with 500 negative instances and 268 positive
instances. This data set was used to identify the positive diabetes
cases in a population near Phoenix, Arizona. The feature space
dimension was m¼8. All the eight input features were normalised
Table 3
Eight-fold cross validation classification performance and standard deviations for Pima

Method TP% FP%

SMOTEþ1-NN 0.5470.04 0.2170.04

ðb%¼ 0%Þ

SMOTEþ1-NN 0.5870.06 0.2470.04

ðb%¼ 50%Þ

SMOTEþ1-NN 0.5970.06 0.2570.04

ðb%¼ 75%Þ

SMOTEþ1-NN 0.6370.06 0.2770.05

ðb%¼ 100%Þ

SMOTEþ1-NN 0.6670.05 0.2770.05

ðb%¼ 150%Þ

SMOTEþ1-NN 0.6870.07 0.2870.04

ðb%¼ 200%Þ

SMOTEþ1-NN 0.7070.04 0.3070.04

ðb%¼ 250%Þ

SMOTEþ1-NN 0.7270.04 0.3670.07

ðb%¼ 500%Þ

SMOTEþ3-NN 0.5870.06 0.1770.06

ðb%¼ 0%Þ

SMOTEþ3-NN 0.6270.07 0.1970.05

ðb%¼ 50%Þ

SMOTEþ3-NN 0.6770.07 0.2570.05

ðb%¼ 75%Þ

SMOTEþ3-NN 0.7070.08 0.2970.05

ðb%¼ 100%Þ

SMOTEþ3-NN 0.7470.08 0.3070.04

ðb%¼ 150%Þ

SMOTEþ3-NN 0.7670.09 0.3370.06

ðb%¼ 200%Þ

SMOTEþ3-NN 0.7870.07 0.3470.05

ðb%¼ 250%Þ

SMOTEþ3-NN 0.8270.06 0.4170.05

ðb%¼ 500%Þ

LOO-AUCþOFS 0.5870.03 0.1370.05

ðr¼ 1:0Þ

LOO-AUCþOFS 0.6870.06 0.2070.07

ðr¼ 1:5Þ

LOO-AUCþOFS 0.7370.05 0.2470.07

ðr¼ 2:0Þ

LOO-AUCþOFS 0.7770.05 0.3170.06

ðr¼ 2:5Þ

k-meansþWLSE 0.6070.06 0.1370.05

ðr¼ 1:0Þ

k-meansþWLSE 0.7070.08 0.2070.07

ðr¼ 1:5Þ

k-meansþWLSE 0.7770.07 0.2970.07

ðr¼ 2:0Þ

k-meansþWLSE 0.8470.05 0.3470.07

ðr¼ 2:5Þ

SMOTEþPSO-OFS 0.5770.04 0.1170.04

ðb%¼ 0%Þ

SMOTEþPSO-OFS 0.70 70:07 0.1970.09

ðb%¼ 50%Þ

SMOTEþPSO-OFS 0.7370.12 0.2370.19

ðb%¼ 75%Þ

SMOTEþPSO-OFS 0.7970.07 0.2570.10

ðb%¼ 100%Þ

SMOTEþPSO-OFS 0.8170.07 0.2970.09

ðb%¼ 150%Þ

SMOTEþPSO-OFS 0.8370.04 0.3370.07

ðb%¼ 200%Þ

SMOTEþPSO-OFS 0.8570.07 0.3570.07

ðb%¼ 250%Þ

SMOTEþPSO-OFS 0.9170.05 0.4470.06

ðb%¼ 500%Þ
to the range [0, 1] using the operation

xk,i ¼
xk,i�xmin,i

xmax,i�xmin,i
, 1rkrN, 1r irm ð29Þ

The 5-nearest neighbour scheme was applied to generate syn-
thetic training data in the SMOTE. The over-sampling rate b% was
Indians diabetes data set.

Pr G-mean F-meas

0.5870.06 0.6570.02 0.5670.04

0.5670.07 0.6670.03 0.5770.05

0.5670.07 0.6670.02 0.5770.06

0.5570.08 0.6770.02 0.5870.05

0.5770.07 0.7070.03 0.6170.05

0.5670.07 0.7070.04 0.6170.06

0.5570.07 0.7070.03 0.6170.04

0.5270.09 0.6870.04 0.6070.05

0.6570.07 0.6970.04 0.6170.04

0.6370.05 0.7070.04 0.6270.04

0.5970.06 0.7170.04 0.6370.06

0.5670.05 0.7170.05 0.6270.04

0.5670.05 0.7270.04 0.6470.04

0.5570.06 0.7170.05 0.6470.06

0.5570.07 0.7270.03 0.6470.06

0.5270.07 0.7070.03 0.6370.06

0.7070.09 0.7170.03 0.6370.05

0.6570.08 0.7370.04 0.6670.05

0.6270.07 0.7470.04 0.6770.05

0.5770.05 0.7370.03 0.6670.07

0.7270.07 0.7270.04 0.6570.03

0.6570.07 0.7470.06 0.6770.05

0.5970.07 0.7470.06 0.6670.06

0.5770.06 0.7570.06 0.6870.06

0.7370.10 0.7170.03 0.6470.06

0.6770.07 0.7570.03 0.6870.04

0.6870.14 0.7370.06 0.6970.04

0.6470.06 0.7670.05 0.7070.04

0.6070.06 0.7670.04 0.6970.05

0.5870.06 0.7570.04 0.6870.05

0.5770.07 0.7470.06 0.6870.06

0.5270.05 0.7170.04 0.6770.05
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set to 0%, 50%, 75%, 100%, 150%, 200%, 250% and 500%, respec-
tively. The swarm size and the number of movements were set to
S¼10 and L¼20 for the PSO. The 8-fold cross validation was used
to investigate the test performance of a classifier. The 8-fold cross
validation results for the various classifiers are shown in Table 3.

For the SMOTEþPSO-OFS, it can be seen that the best TP%,
that is, the best detection capability for diabetes, occurred at
b%¼ 500%, while the best FP% occurred at b%¼ 0%. But the best
TP% was obtained at the expense of the worst FP%, and the best
FP% was obtained at the expense of the worst TP%, as indicated by
the poor values of the G-mean and F-measure. The best tradeoff
between TP% and FP% occurred around b%¼ 1002150%, which
enabled to detect as many positive diabetes patients as possible
while ensuring the minimum incorrect diagnose of healthy
people. As expected, this best over-sampling rate made the
enlarged data set fully balanced. The results of Table 3 also show
that the test performance of the proposed SMOTEþPSO-OFS
compare favourably with the other classifiers.

Haberman survival data set: This data set in the UCI repository
[54] contained 306 instances from the two classes with 225
negative instances and 81 positive instances. It came from a
study on the survival of patients after surgery for breast cancer.
Table 4
Three-fold cross validation classification performance and standard deviations for Hab

Method TP% FP%

SMOTEþ1-NN 0.2870.06 0.2070.13

ðb%¼ 0%Þ

SMOTEþ1-NN 0.3670.11 0.2270.16

ðb%¼ 100%Þ

SMOTEþ1-NN 0.4170.13 0.2870.14

ðb%¼ 200%Þ

SMOTEþ1-NN 0.4470.29 0.2770.21

ðb%¼ 300%Þ

SMOTEþ1-NN 0.4770.20 0.2970.22

ðb%¼ 400%Þ

SMOTEþ3-NN 0.3070.10 0.1570.10

ðb%¼ 0%Þ

SMOTEþ3-NN 0.4170.07 0.2170.14

ðb%¼ 100%Þ

SMOTEþ3-NN 0.4970.15 0.2470.18

ðb%¼ 200%Þ

SMOTEþ3-NN 0.5370.19 0.2870.20

ðb%¼ 300%Þ

SMOTEþ3-NN 0.5670.16 0.3170.21

ðb%¼ 400%Þ

LOO-AUCþOFS 0.2170.02 0.0570.01

ðr¼ 1Þ

LOO-AUCþOFS 0.3870.08 0.1370.02

ðr¼ 2Þ

LOO-AUCþOFS 0.6270.08 0.2770.03

ðr¼ 3Þ

LOO-AUCþOFS 0.6770.02 0.4270.08

ðr¼ 4Þ

k-meansþWLSE 0.2070.02 0.0270.00

ðr¼ 1Þ

k-meansþWLSE 0.3670.06 0.05 70.01

ðr¼ 2Þ

k-meansþWLSE 0.4970.03 0.1070.01

ðr¼ 3Þ

k-meansþWLSE 0.5670.04 0.1470.01

ðr¼ 4Þ

SMOTEþPSO-OFS 0.2370.04 0.0770.06

ðb%¼ 0%Þ

SMOTEþPSO-OFS 0.4470.09 0.1570.06

ðb%¼ 100%Þ

SMOTEþPSO-OFS 0.6370.06 0.2370.06

ðb%¼ 200%Þ

SMOTEþPSO-OFS 0.8070.09 0.5870.07

ðb%¼ 300%Þ

SMOTEþPSO-OFS 0.8470.08 0.6970.08

ðb%¼ 400%Þ
The feature space dimension was m¼3. All the three input
features were normalised to the range [0, 1] using the operation
(29). The 5-nearest neighbour method was adopted to generate
synthetic training data in the SMOTE. The over-sampling rate b%
was set to 0%, 100%, 200%, 300% and 400%, respectively. The
swarm size and the number of movements were chosen to be
S¼10 and L¼20. The 3-fold cross validation was used to calculate
test performance, and the results obtained for the various classi-
fiers are shown in Table 4. Compared with the other benchmark
classifiers, the SMOTEþPSO-OFS demonstrated its competitive
performance. For the SMOTEþPSO-OFS, the best tradeoff between
TP% and FP% occurred around b%¼ 150%, which was again close
to the imbalanced degree of the original data set.

ADI data set: The austempered ductile iron (ADI) material
data set was obtained from a study on fatigue cracks from the
graphite nodules within the microstructure in an automotive
camshaft application [55]. This two-class data set contained
2923 instances in the feature space of dimension m¼9, with
2807 negative instances and 116 positive instances. As in [55,26],
700 negative-class instances and 90 positive-class instances were
randomly selected from the original data set to form the 8-fold
cross validation set. Initially, all the nine input features were
erman survival data set.

Pr G-mean F-meas

0.3870.12 0.4770.02 0.3170.02

0.4170.12 0.5270.03 0.3670.01

0.3670.05 0.5370.04 0.3770.04

0.4070.09 0.5370.08 0.3870.09

0.4070.11 0.5570.02 0.4070.04

0.4570.14 0.4970.08 0.3570.09

0.4570.13 0.5670.04 0.4170.06

0.4670.10 0.6070.03 0.4570.04

0.4470.09 0.6070.04 0.4670.05

0.4370.09 0.6070.02 0.4670.01

0.6170.05 0.4570.02 0.3170.03

0.5170.02 0.5770.05 0.4470.06

0.4570.05 0.6770.05 0.5270.06

0.3670.03 0.6270.03 0.47 70.02

0.6370.05 0.4470.02 0.3070.03

0.4670.03 0.5870.04 0.4070.04

0.3970.02 0.6770.02 0.44 70.01

0.3470.01 0.6970.02 0.4270.01

0.5770.01 0.4470.05 0.3170.05

0.5270.09 0.6170.07 0.48 70.09

0.5070.07 0.6970.08 0.5570.09

0.3470.05 0.5770.09 0.4770.05

0.3170.04 0.5170.08 0.4570.05
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normalised to within the range [0, 1] using the operation (29).
The SMOTE adopted the 5-nearest neighbour scheme to generate
synthetic training data. The over-sampling rate b% was set to 0%,
100%, 300%, 500%, 800%, 1000%, 1500% and 2000%, respectively.
Table 5
Eight-fold cross validation classification performance and standard deviations for ADI

Method TP% FP%

SMOTEþ1-NN 0.3270.07 0.0870.01

ðb%¼ 0%Þ

SMOTEþ1-NN 0.4470.10 0.1270.02

ðb%¼ 100%Þ

SMOTEþ1-NN 0.5170.13 0.1970.02

ðb%¼ 300%Þ

SMOTEþ1-NN 0.5870.14 0.2270.02

ðb%¼ 500%Þ

SMOTEþ1-NN 0.6270.12 0.2670.02

ðb%¼ 800%Þ

SMOTEþ1-NN 0.6670.13 0.2770.02

ðb%¼ 1000%Þ

SMOTEþ1-NN 0.6970.14 0.3170.02

ðb%¼ 1500%Þ

SMOTEþ1-NN 0.7370.14 0.3470.02

ðb%¼ 2000%Þ

SMOTEþ3-NN 0.2370.08 0.0470.01

ðb%¼ 0%Þ

SMOTEþ3-NN 0.3970.14 0.1170.01

ðb%¼ 100%Þ

SMOTEþ3-NN 0.5770.02 0.1770.01

ðb%¼ 300%Þ

SMOTEþ3-NN 0.6570.15 0.2270.02

ðb%¼ 500%Þ

SMOTEþ3-NN 0.6970.16 0.2870.02

ðb%¼ 800%Þ

SMOTEþ3-NN 0.7370.17 0.3070.02

ðb%¼ 1000%Þ

SMOTEþ3-NN 0.7670.16 0.3470.02

ðb%¼ 1500%Þ

SMOTEþ3-NN 0.7770.13 0.3870.03

ðb%¼ 2000%Þ

LOO-AUCþOFS 0.2170.03 0.0170.01

ðr¼ 1Þ

LOO-AUCþOFS 0.5570.09 0.1470.02

ðr¼ 5Þ

LOO-AUCþOFS 0.7170.05 0.2270.03

ðr¼ 10Þ

LOO-AUCþOFS 0.7770.02 0.2570.02

ðr¼ 15Þ

LOO-AUCþOFS 0.8870.03 0.3670.04

ðr¼ 20Þ

k-meansþWLSE 0.1970.03 0.0270.00

ðr¼ 1Þ

k-meansþWLSE 0.6270.03 0.1770.02

ðr¼ 5Þ

k-meansþWLSE 0.8070.03 0.2770.02

ðr¼ 10Þ

k-meansþWLSE 0.8770.02 0.3470.03

ðr¼ 15Þ

k-meansþWLSE 0.9170.02 0.4470.03

ðr¼ 20Þ

SMOTEþPSO-OFS 0.2070.04 0.0170.01

ðb%¼ 0%Þ

SMOTEþPSO-OFS 0.3070.07 0.0470.02

ðb%¼ 100%Þ

SMOTEþPSO-OFS 0.5170.07 0.1170.03

ðb%¼ 300%Þ

SMOTEþPSO-OFS 0.7270.09 0.2370.06

ðb%¼ 500%Þ

SMOTEþPSO-OFS 0.7770.07 0.2870.08

ðb%¼ 800%Þ

SMOTEþPSO-OFS 0.8270.04 0.2970.04

ðb%¼ 1000%Þ

SMOTEþPSO-OFS 0.8970.04 0.3570.04

ðb%¼ 1500%Þ

SMOTEþPSO-OFS 0.8870.02 0.3570.03

ðb%¼ 2000%Þ
The swarm size and the number of movements were set to S¼10
and L¼20 for the PSO. The 8-fold cross validation results obtained
by the various classifiers are shown in Table 5. For the SMO-
TEþPSO-OFS, the best overall test performance was achieved at
data set.

Pr G-mean F-meas

0.1370.03 0.5470.06 0.1970.04

0.1170.03 0.6270.07 0.1870.04

0.0970.02 0.6470.09 0.1570.04

0.0970.02 0.6770.08 0.1570.04

0.0870.02 0.6770.07 0.1470.03

0.0870.02 0.6970.07 0.1470.03

0.0770.02 0.6970.07 0.1370.03

0.0770.01 0.6970.07 0.1370.02

0.1870.06 0.4670.08 0.2070.07

0.1270.03 0.5970.10 0.1870.06

0.1170.03 0.6870.10 0.1870.05

0.1070.03 0.7170.08 0.1770.04

0.0870.02 0.7070.09 0.1570.04

0.0870.02 0.7170.09 0.1570.03

0.0770.01 0.7070.08 0.1470.03

0.0770.01 0.6970.06 0.1370.02

0.6770.08 0.4670.03 0.3270.04

0.3370.02 0.6870.05 0.4170.04

0.3070.01 0.7470.02 0.4270.01

0.2870.01 0.7670.01 0.4170.02

0.2470.02 0.7570.02 0.3770.02

0.6170.05 0.4370.03 0.2970.03

0.3270.02 0.7270.01 0.4270.02

0.2870.02 0.7770.02 0.4270.02

0.2570.02 0.7570.02 0.3870.02

0.2170.01 0.7170.02 0.3470.02

0.7070.09 0.4470.04 0.3070.03

0.5370.09 0.5570.05 0.3970.03

0.3870.04 0.6770.02 0.4370.02

0.2970.03 0.7470.02 0.4170.03

0.2770.03 0.7470.02 0.4070.03

0.2770.02 0.7670.01 0.4170.01

0.2570.02 0.7670.02 0.3970.02

0.2470.02 0.7570.02 0.3870.02
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the over-sampling rate around b%¼ 1000% to 1500%, and the
SMOTEþPSO-OFS showed a competitive performance to the other
methods.
6. Conclusions

The RBF classifier performs well on balanced or slightly
imbalanced data sets, and our previous work has provided an
efficient and tunable RBF classifier optimised by the PSO based on
the OFS procedure. For highly imbalanced data sets, however, the
performance of the tunable RBF classifier may no longer be
satisfactory. In order to combat challenging imbalanced classifi-
cation problems, many approaches have been proposed, which
aim to reduce the influence from the underlying imbalanced
distribution. In particular, the SMOTE is effective to increase the
significance of the positive class in the decision region. In this
contribution, we have proposed a powerful and efficient algo-
rithm for solving two-class imbalanced problems, referred to as
the SMOTEþPSO-RBF, by combining the SMOTE and the PSO
optimised RBF classifier. The experimental results presented in
this study have demonstrated that the proposed SMOTEþPSO-
RBF offers a very competitive solution to other existing state-of-
the-arts methods for combating imbalanced classification
problems.
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