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The equalisation topic is well researched and a variety &imilarly, expresg (k) as
solutions are available. The MAP sequence detector pro- T ~
vides the lowest symbol error rate (SER) attainable, and the y(k) = w' (r(k) + n(k)) = y(k) + e(k) (5)
MLSE offers a near optimal solution. However, these opti\-Nhere o
mal techniques are not yet practical for high-level modula- T s - A
tion schemes, due to their computational complexity. Lin¥ W andy(k) takes values from the sgt = {y, =
ear equaliser or linear-combiner DFE are practical schem® Tq; 1 < ¢ < N, }, which can be divided intd/ subsets
for high-level modulation systems, as they readily medt rea A
time computation requirements. This research re-visis th Vi={ys €Vls(k—d) =5}, 1<I<L. (6)
linear equaliser and conventional DFE. Classically, the-mi
imum mean square error (MMSE) solution is regarded
the “optimal” solution for the linear equaliser or DFE. For
the M_MSE to be optimal, the probabilit_y distribution of the ' =wlH =[coe1 - Cmgny—2] (7)
equaliser soft output must be Gaussian. As the PDF of
the equaliser output is clear non-Gaussian (a sum of mixddeny (k) can be expressed as
Gaussians), the MMSE solution can be far away from the
optimal solution. Adopting the non-Gaussian approach nat- y(k) = cas(k — d) + Z cis(k —1) +e(k). (8)

(k) is Gaussian with zero mean and variance

Let the combined impulse response of the equaliser and
annel be:, which is given by

urally leads to the optimal minimum SER (MSER) equaliser. i#d
We will first consider the real-valued channel which genThe firsttermin (8) is the desired signal, and the second term
erates the received signal sample of: is the residual I1SI. Thus the optimal decision making is
np—1 51, ?f y(k) < (s1+1)cq,
r(k) = Y his(k —i) +n(k) Q) = s 0 (si—1ea <y(k) < (si+1ea
; s(k—d) foril=2,---L -1,

sp, if y(k)> (sp —1)cq.
whereh; are the CIR tapsy; is the CIR length, the AWGN 9)

. A
n(k) has variance?2, and theL-PAM symbols(l_c) €S= Observe that the PDF gfk) is given by
{sy =21 - L -1,1<1 < L}. The linear equaliser with an

orderm has the form: _(1\?2
@ LSS [
y(k) = wTe(k) @ P T ameaatw Ny 2 2P| T 02w Tw

wherer(k) = [r(k) r(k — 1)---r(k — m + 1)]7, and (10)

w = [wo wy - - wm_1]7 is the weight vector. The equaliserwhere Ny, = N;/L and 171@ € Y. Using the property

outputy (k) is passed to a threshold detector which providei+1 = Yi +2c4 and noting the symmetric distribution 9§
an estimates(k — d) of the transmitted symboi(k — d), ~around the symbol point;s;, it can be shown that the SER

where0 < d < m + n; — 2 is the decision delay. IS N
The received signal vector can be expressed as: Pg(w) = Nl Z Q(g1,i(w)) (12)
b=
r(k) = r(k) + n(k) = Hs(k) + n(k) () wherey = 2(L - 1)/L, and
wheren(k) = [n(k) n(k — 1) - n(k —m + 1)]7, them x g(l) —ca(si— 1)
(m + nj, — 1) CIR matrixH = [H; ,] is a Toeplitz matrix gri(w) = F———x—. (12)

T
satisfyingH; ; = hy—; if 0 < ¢ —i <n, —1andH,;, = InVW- W

0 otherwise. Ass(k) hasNy = L™*tm»~1 combinations, The MSER solutionwysgr that minimizes the SER (11)
denoted as,, 1 < ¢ < N;, r(k) takes values from the can readily be obtained using a gradient-based numerieal op
channel state set timization algorithm, such as the simplified conjugated gra
A dient algorithm with reseting the search direction to thg-ne
R ={t;, =Hs,, 1<q<N}. (4) ative gradient-V Pg(w) everyl iterations. As the SER is



invariant to a positive scaling af, it is computationally ad- n;. Under the assumption that the past decisions are correct,
vantageous to normalize the weight vectomtéw = 1. thatis,sy (k) = sp(k) = [s(k —d — 1) - -s(k —d — ny)]7,

For block-data adaptation, a channel estimate can be idetrqEa received signal vector can be expressed as

tified and the MSER solution is obtained by optimization. r(k) = Hys;(k) + Hogy (k) + n(k) . (20)
Alternatively, a kernel density or Parzen window estimate !
approach can be adopted. An estimated PDF, () is Thus, the decision feedback can be viewed to translate the

X original observation spaagk) into a new space (k):
By (z) = 1 L S exp [ - (z —y(k)) o
Y V2rpaVwTiw K 2p2wlw r (k) = r(k) — HaSy (k) . (21)

where K is the length of training samples, and the radiuér? this translgted observation space, the DFE (19) becomes a
parametep,, is related tas,,. From this estimated PDF, the linear equaliser”:

estimated SER expression is given by T -
y(k) = wr (k) = G(k) + e(k). (22)
K
Pg(w) = Z Q(gr(w)) (14) Notice that the feedback filter coefficients do not disappear
k=1 They in fact have been set to their optimal values, which
are the related channel taps. All the results for the linear
y(k) = éa(s(k —d) — 1) equaliser are readily applicable. The SER expression (11)
Jr(w) = d = , (15) gives the lower-bound of the SER for the DFE with the
Pn VW= W weight vectorw, under the assumption of correct symbols
¢4 = wThy, andh, an estimate for thé-th columnh, of ~ Peing fed back.
H. Given the gradienV P (w), the estimated MSER solu- e finally turn to the complex-valued channel. Pdr=
tion can be obtained. To derive a sample-by-sample adaptiye, the 1/-QAM symbol set is defined by
algorithm, consider a single-sample estimatg,gf:)

. 2 Sé{sl7q=ul+juq, 1<l,g< L} (23)
—————exp —7@ —y(k)) . (16)
V2rpaVwlw 2p2wTw with u; = 2l-L—1andu, = 2¢—L—1. AScq = cgr,+jcr,

generally involves a rotation of the symbol set, it is desbire

With a re-scaling after each update to ensstfew = 1, the  to perform a de-rotation ok
instantaneous stochastic gradient is given by

==

where

ﬁy(l‘,k) =

_ Jealw

. 24
V Pp(w, k) = A @4
~y (y(k) — éa(s(k — d) — 1))2 so thatcr, = 0. With this measure, the optimal decision rule
NS exp (- 2 > X for $g(k — d) is according to
k) — éa(s(k — d) — 1))w — v(k) + (s(k — d) — 1)hy) . ur, 1 yr(k) < (w1 +1)cgy,
((y( ) — éalol )= D) (s )= d) w, i (w —1)er, <yr(k) < (w +1)cg,

(A7) sp(k—d) = fori=2,---L—1,

ur,, if yR(k) > (UL — 1)cRd

. 25)
k+1) = wk) — iV Pa(w(k), k). (18 . _ (
wik +1) = w(k) - uVPp(w(k), k) (18) and a similar rule is used fox; (k — d). Furthermore, the

The adaptive gaip and widthp,, are the two algorithm pa- SER is given by
rameters that need to be set appropriately.

We next address the DFE defined by:

This leads to the least SER (LSER) algorithm

Pp(wW) = Ppgp(W) + Pp, (W) — Prg,(W)Pg, (W) (26)

. - where Pg, (w) = Prob{sr(k — d) # sr(k — d)} and
y(k) = w r(k) + b sy (k) (19)  Pg,(w) = Prob{s;(k — d) # si(k — d)} can similarly
be derived based on the PAM result. The MSER is defined

wheres, (k) = [$(k —d —1) - 5(k — d — ny)]" isthe past 45 the solution that minimizes the upper-bound of the SER

detected symbol vector with, being the feedback order,

andb = [b; ---by,,]T the feedback filter coefficient vector. Pg, (W) = P, (W) 4+ Pg, (w) (27)
We will choosed = nj, — 1, m = ny andny = np — 1,

as this choice of the DFF structure parameters is sufficient and the adaptive MSER algorithm can similarly be derived.
guarantee linear separability. Defingk) = [s(k) - - - s(k—

d)]* and partition the CIR matrill = [H; | H,], whereH

has a dimension of. x (d + 1) andH, a dimension ofn x



Example 1. The channel i (z) = 1.0 + 0.52~! with 4-
PAM, the linear equaliser has = 2 andd = 0.
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Fig. 1. The SER surface for Example 1 with SNR5 dB. The MMSE so-

lution wyivse = [0.929 —0.371]7, which has been normalized, with 0
log1o Pe(Wavsg) = —2.7593. The MSER solutionwysgr = 05 0 0° ! Lo 2 25
@[0.896 — 0.445]7, & > 0, with log,; Pr(wwmskr) = —7.1566. y
(b) MSER
Example 2: The channel ig7(z) = 0.3+ 1.027! —0.32=2  Fig. 3. Conditional PDF of the equaliser output givefk — d) = 1 for
with 8-PAM, the DFE hasn = 3, d = 2 andn;, = 2 Example 2 with SNR= 34 dB. The weight vector is normalized to a
’ T - unit length.
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Fig. 2. Lower-bound symbol error rate comparison for Exanhlassum-

ing correct symbols being fad back. Sample
Fig. 4. Learning curves of the LSER for Example 2 with SNRB4 dB, av-
eraged over 100 runs. Initigy = [—0.01 0.01 0.01]”. Dashed curve:
after 200-sample training, switched to decision-direaddptation with
§(k — d) substitutings(k — d).



