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Motivations

Equalization and multiuser detection applications — classification

e Real-time computational constraint

Sample-by-sample adaptation or stochastic algorithms

e Minimize bit error rate

Traditional mean square error based may not be right one

e System BER is very low

“Adjusting classifier only when error occurs” strategy converges too slowly
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Previous Works for Linear Case

Difference approximation by perturbation to estimate stochastic gradient
of one-sample error rate (Pados & Papantoni-Kazakos, Trans NN 1995;
Psaromiligkos et al, Trans COM 1999)

Readily applicable to nonlinear case. Effectively only adjusting when error

occurs, complexity O(IN;).

AMBER or “modifying” sgn LMS so that algorithm continuously updates
in a region around decision boundary even when error does not occur

(Yeh & Barry, ICC'97; Yeh et al, Globecom'98)

Not readily for nonlinear case. Very simple, complexity O(N,).

LBER (Bulgrew and Chen, Symp. ASSPCC 2000; Chen et al, Trans SP
2001).

Complexity O(N,), better performance — nonlinear case
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Problem Formulation

Classifier

c(k) = sgn(y(k)) with y(k) = f(r(k); w)

r(k): M-dimensional pattern vector, c(k) € {£1}: class label
w: parameters of classifier f, ¢(k): estimated class label for r(k).

r(k) = t(k) + n(k)
r(k) € {r;, 1 < j < Ny}, and n(k) Gaussian with E[n(k)n’ (k)] = 21

Each r; has associated class label cU) € {+1}.

Let pdf of ys(k) = sgn(c(k))y(k) be py(ys)

Pi(w) = Prob{sgn(c(k)y () < 0} = [ py(u.) dy.
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Approximate Error Rate

Linearization around r(k),

y(k) = f(t(k);w) + e(k) = y(k) + e(k)

e(k): Gaussian with zero mean and variance p? = p?(w)
y(k) €{y; = f(rjiw), 1<7< N}

1 e, (s — sen(cD)y;)’
py(ys) = N, \/ﬁp; p( 2 )
Po(w) ~ - 3 Qlg;(w)

gi(w) = sgn(cD)y;/p = sgn(cD) f(r;; w)/p
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Approximate Minimum Error Rate Solution

Assume p? is fixed (to its optimal value p*(Wopt))

Ny,

2 COf(rew
wPu) = 2 (- e L

Nyv 2P =1 p2 ow

Given w(0), at [th iteration:

yi(l) = f(rj;w(l—1)), 1<75< N )
2(1 N\ Of(rsw(l—

V(W) = 5t S exp (27 ) sgn(e) 200 B

w(l)=w(l—1)— uVPg(w(l)) )

e p?, like adaptive gain i, becomes a tunable algorithm parameter
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Block-data Gradient Algorithm

Given training samples {r(k), c(k)}1-_,, kernel density estimate of p,(ys)

R R  (ys — sgn(c(k))y(k))?
Py(i%) — K\/ﬂp klexp< 22 )

From estimated error probability

K

A 1 " (k) o (e Of (r(k); w)
VPs) = e (5 ) senCeth)

= block-data based gradient algorithm
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Stochastic Gradient Algorithm

Using single-sample estimate of p,(ys)

. 1 (ys — sgn(c(k))y(k))*
py(y87 k) — \/%,0 exXp (_ 2p2 )

and instantaneous gradient VPg(k; w) = LER algorithm

y(k) = f(r(k); w(k — 1))
w(k—1)+ \/g—wp exp (-if}?) sgn(c(k))af(r(kgz(k—l))

z
~~
a5
~—
]

Two algorithm parameters: 1 — adaptive gain, p — width

They need to be chosen appropriately
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Equalization Example

Channel Ag(z) = 0.5+ 1.0271, co-channel A;(z) = A\(1.0 + 0.5271) with A
set to give SIR= 12 dB, equalizer order M = 2 and decision delay d = 1,
number of states NV, = 64. With SNR= 20 dB (SINR= 11.36 dB):

o 1 |

& L 4LMS S

o) \"; 7777777777777777777777777 L]

5 o-LMS 2

e n

o 0.01¢

= 4-LER S

7 _

W 0.001 ‘ ‘ GLER, ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 2000 400 600 800 1000

Sample k Sample k

() (b)

Convergence rates in terms of (a) estimated BER for various adaptive RBF equalizers, and
(b) MSE for LMS adaptive RBF equalizers. Results averaged over 100 runs.
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Equalization Example (continue)

(a) Comparison of optimal decision boundary (thick solid) with that of 6-center LER RBF
equalizer (thin solid). SNR = 20 dB and SIR = 12 dB. Dots: noise-free states and stars:
final centers. (b) Performance comparison of three equalizers in terms of BER versus SNR.
SIR = 12 dB and adaptive LER RBF equalizer has 4 centers.
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Equalization Example (continue)

Influence of p? to the performance of the LER algorithm. SIR = 12 dB and
SNR = 20 dB. The adaptive RBF equalizer has 4 centers and the algorithm
has a fixed .
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CDMA Multiuser Detection Example

A three-equal-power-user system with eight chips per symbol. M = 8 and
number of states N, = 64. User 3 is considered. Given SNR3 = 15 dB

(SINR; = —3.08 dB):
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Convergence rates in terms of (a) estimated BER for various user-3 adaptive RBF detectors
and (b) MSE for user-3 LMS RBF detectors. Results averaged over 100 runs.
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CDMA Multiuser Detection (continue)
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Conclusions

e LER: an adaptive stochastic gradient near minimum error rate training
for nonlinear classifiers

* MSE criterion may not be relevant to problem and may lead to poor
performance

* Approach based on kernel density estimation and stochastic
approximation for sample-by-sample training

* Work well for low error rate or high performance situations

e Results verified in channel equalization and CDMA downlink multiuser
detection
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