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Outline

o Motivations/overview for incorporating a priori knowledge,

specifically symmetry, in kernel modelling

o Practical example of symmetry: multiple-antenna aided

beamforming in wireless communication

o Proposed symmetric kernel classifier for beamforming

detection and orthogonal forward selection algorithm

based on Fisher ratio of class separability measure

o Simulation results and performance comparison
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Motivations

o Standard kernel modelling constitutes black-box approach

m Black-box modelling is appropriate, if no a priori information exists
regarding underlying data generating mechanism

o Fundamental principle in data modelling however is to incorporate a
priori information in modelling process

m Many real-life phenomena exhibit inherent symmetry, which are
hard to infer accurately from noisy data with black-box models

m For regression, symmetric properties of underlying system have been
exploited by imposing symmetry in RBF or kernel models

m This leads to substantial improvements in achievable regression mod-
elling performance
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Motivations (continue)

o For classification, there appears lack of exploiting known properties of
underlying system, such as symmetry

o Standard support vector machine and other kernel models have been
adopted for detection in communication systems

m Block-box kernel detector requires more kernels than number of
necessary channel states

m with notable performance degradation compared with optimal
Bayesian detection solution

o We believe this gap can be bridged if inherent odd symmetry of un-
derlying Bayesian solution is “copied” to kernel classifier

m This motivates our novel symmetric kernel classifier
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Multiple-Antenna Aided Beamforming

o System supports S users of same car-
rier with single transmit antenna, and
receiver is equipped with a L-element
linear antenna array

o Traditionally, beamforming is defined
as linear processing, and optimal de-
sign for linear beamforming is linear
minimum bit error rate solution

o If we are willing to extend beamforming
process to nonlinear, significant per-
formance improvement and larger user
capacity can be achieved

o At cost of increased complexity
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Signal Model

o Received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k)

o n(k) = [n1(k) n2(k) · · ·nL(k)]T is complex-valued channel white noise
vector with E[n(k)nH(k)] = 2σ2

nIL, and system channel matrix

P = [A1s1 A2s2 · · ·ASsS ]

si is complex-valued steering vector of user i, and Ai is i-th complex-
valued non-dispersive channel tap

o BPSK users bi(k) ∈ {−1, +1}, 1 ≤ i ≤ S, and transmitted symbol vector

b(k) = [b1(k) b2(k) · · · bS(k)]T

User 1 is desired user
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Optimal Bayesian Beamforming

o Denote Nb = 2S legitimate sequences of b(k) as bq, 1 ≤ q ≤ Nb, and
first element of bq, related to desired user, as bq,1

o Noiseless channel state x̄(k) takes values from set

x̄(k) ∈ X = {x̄q = Pbq, 1 ≤ q ≤ Nb}

o Optimal decision is b̂1(k) = sgn(yBay(k)), with Bayesian detector

yBay(k) = fBay(x(k)) =
Nb∑
q=1

sgn(bq,1)βqe
− ‖x(k)−x̄q‖2

2σ2
n

o State set can be divided into two subsets conditioned on value of b1(k)

X (±) = {x̄(±)
i ∈ X , 1 ≤ i ≤ Nsb : b1(k) = ±1}

where Nsb = Nb/2 = 2S−1, and noise power is 2σ2
n
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Symmetry of Bayesian Solution

o Optimal Bayesian beamforming solution has structure of radial basis
function or kernel model with Gaussian kernel function

o Two state subsets are symmetric, as

X (+) = −X (−)

o Thus Bayesian detector has odd symmetry, as fBay(−x(k)) =
−fBay(x(k)), and it takes form

yBay(k) =
Nsb∑
q=1

βq

(
e
− ‖x(k)−x̄

(+)
q ‖2

2σ2
n − e

− ‖x(k)+x̄
(+)
q ‖2

2σ2
n

)

since all states are equiprobable, all coefficients βq are equal

o Standard kernel model does not guarantee to have this symmetry,
particularly when kernel model is trained using noisy data



9School of ECS, University of Southampton, UKIJCNN 2007

Symmetric Kernel Classifier

o Consider generic kernel model

ySker(k) = fSker(x(k)) =
M∑

i=1

θiφi(x(k))

o where M is number of kernels, with novel symmetric kernel defined by

φi(x) = ϕ(x; ci, ρ
2)− ϕ(x;−ci, ρ

2)

o θi are real-valued kernel weights, ci are complex-valued centre vectors,
ρ2 is positive kernel variance, and

o ϕ(•) is usual kernel function⇒ in standard kernel model, a kernel would
simply be φi(x) = ϕ(x; ci, ρ

2)

o Like Bayesian detector, symmetric kernel model has odd symmetry

fSker(−x(k)) = −fSker(x(k))
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Training Model

o Given training data set DK = {x(k), d(k) = b1(k)}K
k=1, consider every

x(i) as candidate kernel centre, i.e. M = K, ci = x(i) for 1 ≤ i ≤ K

o By defining modelling residual ε(i) = d(i)−ySker(i), kernel model over
DK can be written as

d = Φθ + ε

o where d = [d(1) d(2) · · · d(K)]T , ε = [ε(1) ε(2) · · · ε(K)]T , θ =
[θ1 θ2 · · · θM ]T , and

Φ = [φ1 φ2 · · ·φM ] ∈ RK×M

is regression matrix with φi = [φi(x(1)) φi(x(2)) · · ·φi(x(K))]T

o The task becomes selecting small subset of Mspa significant kernels,
where Mspa ¿ M
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Orthogonal Decomposition

o Let an orthogonal decomposition of Φ be Φ = ΩA, where

A =




1 α1,2 · · · α1,M

0 1
. . .

...
...

. . . . . . αM−1,M

0 · · · 0 1




, Ω =




ω1,1 ω1,2 · · · ω1,M

ω2,1 ω2,2 · · · ω2,M

...
...

...
...

ωK,1 ωK,2 · · · ωK,M




o Orthogonal matrix Ω = [ω1 ω2 · · ·ωM ] has orthogonal columns satis-
fying ωT

i ωl = 0, if i 6= l

o Kernel model can alternatively be expressed as

d = Ωγ + ε

γ = [γ1 γ2 · · · γM ]T = Aθ is weight vector in orthogonal space Ω
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Fisher Ratio Class Separability

o Define two class sets X± = {x(k) : d(k) = ±1}, having points K±

o Means and variances of training samples x(k) ∈ X± in direction of
basis ωl are

m+,l =
1

K+

K∑
k=1

δ(d(k)− 1)ωk,l, σ2
+,l =

1

K+

K∑
k=1

δ(d(k)− 1) (ωk,l −m+,l)
2

m−,l =
1

K−

K∑
k=1

δ(d(k) + 1)ωk,l, σ2
−,l =

1

K−

K∑
k=1

δ(d(k) + 1) (ωk,l −m−,l)
2

where δ(x) = 1 if x = 0 and δ(x) = 0 if x 6= 0

o Fisher ratio is defined as ratio of interclass difference and intraclass
spread encountered in direction of ωl

Fl =
(m+,l −m−,l)

2

σ2
+,l + σ2

−,l
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Construction Algorithm

o Orthogonal forward selection with Fisher ratio class separability

m At l-th stage, a candidate kernel is chosen as l-th kernel in selected
model, if it produces largest Fl among remaining candidates

m Procedure is terminated with a sparse Mspa-term model, when

FMspa∑Mspa
l=1 Fl

< ξ

where threshold ξ determines sparsity level of model selected

m Appropriate value for ξ depends on application concerned, and can
be determined empirically

o LS solution for sparse model weight vector θMspa = [θ1 θ2 · · · θMspa ]
T is

available via γMspa
= AMspaθMspa , given γl = ωT

l d/ωT
l ωl, 1 ≤ l ≤ Mspa
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Simulation Set Up

o Three-element antenna array with half wavelength spacing supports five
BPSK equal-power users

o Simulated channel conditions are Ai = 1 + j0, 1 ≤ i ≤ 5

o K = 600 training samples
are used to construct sym-
metric kernel classifier

o FRCSM-based OFS is used
and kernel variance ρ2 = 3σ2

n

o As X (+) has 16 states, we
terminate kernel classifier
construction at Mspa = 16
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Performance Comparsion

(a) Bit error rate performance comparison, where standard SVM classifier has 40

to 60 support vectors, and (b) Influence of kernel variance, where SNR= 5 dB

(a) (b)
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Algorithm Investigation

(a) Influence of classifier’s size, where K = 600, ρ2 is variable depending on Mspa

and SNR= 5 dB, and (b) Influence of training data length, where Mspa = 16,

ρ2 = 3σ2
n and SNR= 5 dB

(a) (b)
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Conclusions

o A novel symmetric kernel classifier has been proposed for

nonlinear beamforming

m Explicitly exploit underlying symmetry property of op-

timal Bayesian solution

m Orthogonal forward selection based on Fisher ratio of

class seaparability to determine sparse kernel classifier

m Substantially outperform previous solutions

o Proposed sparse symmetric kernel classifier is generically ap-

plicable to any problem exhibiting similar symmetry
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