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Kernel Classifier Construction Using Orthogonal
Forward Selection and Boosting With Fisher
Ratio Class Separability Measure

S. Chen, X. X. Wang, X. Hong, and C. J. Harris

Abstract—A greedy technique is proposed to construct parsimonious
kernel classifiers using the orthogonal forward selection method and
boosting based on Fisher ratio for class separability measure. Unlike most
kernel classification methods, which restrict kernel means to the training
input data and use a fixed common variance for all the kernel terms, the
proposed technique can tune both the mean vector and diagonal covariance
matrix of individual kernel by incrementally maximizing Fisher ratio for
class separability measure. An efficient weighted optimization method is
developed based on boosting to append kernels one by one in an orthogonal
forward selection procedure. Experimental results obtained using this
construction technique demonstrate that it offers a viable alternative to the
existing state-of-the-art kernel modeling methods for constructing sparse
Gaussian radial basis function network classifiers that generalize well.

Index Terms—Boosting, classification, Fisher ratio of class separability,
forward selection, kernel classifier, orthogonal least square, radial basis
function network.

[. INTRODUCTION

A fundamental principle in practical nonlinear data modeling is the
parsimonious principle of ensuring the smallest possible model that ex-
plains the training data. Recently, the state-of-the-art kernel modeling
techniques, such as the support vector machine (SVM) and relevant
vector machine (RVM) [1]-[3], have widely been adopted in classifi-
cation applications to construct sparse classifiers that generalize well.
Alternatively, a greedy technique can be applied to construct parsimo-
nious classifiers by incrementally maximizing Fisher ratio of class sep-
arability measure in an orthogonal forward selection (OFS) procedure
[4], [5]. In most of the existing sparse kernel construction techniques, a
fixed common variance is used for all the kernels and the kernel centers
or means are placed at the training input data.

We present a flexible construction method for parsimonious clas-
sifier modeling. The proposed algorithm tunes both the mean vector
and diagonal covariance matrix of individual kernel by incrementally
maximizing the Fisher ratio of class separability measure in an OFS
procedure. To incrementally append the classifier’s kernels one by
one, a weighted optimization search algorithm is developed, which
is based on the idea from boosting [6]-[8]. Because kernel means
are not restricted to the training input data and each kernel term has
an individually tuned diagonal covariance matrix, our method can
produce very sparse classifiers. The proposed weighted optimization
algorithm is simple, robust, and easy to implement. Experimental re-
sults are included to demonstrate the effectiveness of this incremental
OFS construction algorithm with boosting (OFSwB) optimization for
constructing Gaussian radial basis function network classifiers.
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II. ORTHOGONAL FORWARD SELECTION FOR
CLASSIFIER CONSTRUCTION

Consider the kernel classifier of the form

M
¢ = sgn(y;) with y; = Zwig,' (x1)

=1

(€]

where x; is an m-dimensional pattern vector with its associated class
label ¢; € {£1}, v is the classifier output for input x;, and & is the
estimated class label for x;;w;,1 < i < M, denote the classifier
weights, M is the number of kernels, and g;(-),1 < 7 < M, denote
the classifier kernels. We allow the kernel function to be chosen as the
general Gaussian function g;(x) = G(x; p,, X;) with

1 e
G(x; ;. Zi) = exp <_§(X_F'i)12i 1(X-m)> )

where the diagonal covariance matrix has the form of %;
diag{c}1,..., 07 }. Obviously, our method is equally applicable to
other kernel functions. We will adopt an OFS procedure to build up
the classifier (1) by appending kernels one by one.

Given the N pairs of training data {x;, ¢;}1, , let us define the mod-
eling residual as e; = ¢; — y;. Then the classifier model(1) over the
training data set can be expressed as

c=Gw+e 3)
where ¢ = [c1c2 - -+ cN]T, e=[e1ez--- eN]T, the kernel matrix
G =[gig2--- 8] @)
with gr = [gk(X1)gk(X2) - g (XN)]T, and the classifier weight
vector w = [wyws -+ - was]” . Let an orthogonal decomposition of G
be
G =PA )
where
1 a2 a1, M
A— 0 1 )
: . aM—1,M
0 - 0 1
and
P11 P12 1M
P21 P22 P2,M
P =[pip2- -py] = @)
PN,1 PN,2 PN, M

with orthogonal columns that satisfy pip ; = 0,if i # j. The model
(3) can alternatively be expressed as

c=Pl+e ®)
where the weight vector § = [6,62 - -+ 8,7]7 for the orthogonal model
satisfies the triangular system Aw = 6.

A sparse k-term classifier model can be selected by incrementally
maximizing a class separability measure in an OFS procedure [4], [5].
Define the two class sets C+ = {x; : ¢; = £1}, and let the numbers of
points in C+ be N, respectively, with N+ N_ = N.The means and
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variances of training samples belonging to classes C+ in the direction
of basis py are given by

1 &
J\T Z(S(Cl - 1)plk

My k=
+ =1
1

i = w2 S Dl = mai) ©)
1 N

k= S(er+1 .

Mk = A ; (i + Dpix
1 N

O’i;‘ = % Z(S(Cl + 1)(]71,)\» - 771_71,»)2 (10)

=1

respectively, where 6(x) = 1 for x = 0 and §(x) = 0 for = # 0.
Fisher ratio,! defined as the ratio of the interclass difference and the
intraclass spread, in the direction of ps is given by [9]

_(mg— m_ )?
= 2 )
oL+ oy

Fi 1D
At the kth stage of incremental modeling, the kth term is selected to
maximize the Fisher ratio (11). However, unlike the original OFS pro-
cedure [4], [5], which restricts the choice of the kernel center g, to
the training data points and uses a fixed common variance, the maxi-
mization here is with respect to the mean vector g, and the diagonal
covariance matrix X of the kth kernel term. The forward selection
procedure is terminated at the kth stage if

Fy,
25:1 F;

is satisfied, where the small positive scalar £ is a chosen tolerance that
determines the sparsity of the selected classifier model. The appropriate
value for £ is problem dependent and has to be found empirically. Alter-
natively, cross-validation can be employed to terminate the OFS proce-
dure. The least square solution for the corresponding sparse classifier
weight vector wy, is readily available given the least square solution
of 8 k-

< (12)

III. WEIGHTED OPTIMIZATION WITH BOOSTING

It can be seen that at each incremental modeling stage, the basic task
is to maximize the Fisher ratio criterion Fj(u) over u € U, where
the vector u contains the kernel mean vector g and the diagonal co-
variance matrix 3. This task may be carried out by some global opti-
mization methods, such as the genetic algorithm [10], [11] and adap-
tive simulated annealing [12], [13]. These standard global optimization
methods are, however, computationally very expensive. Let us consider
a simple search method to perform this optimization. Given s points of
u,u; for 1 < i < s, let Upesy = arg max{ Fr(u;),1 < ¢ < s} and
Uworst = argmin{Fr(u;),1 < ¢ < s}. An (s+1)th point us41 is
first generated by a weighted convex combination of u;,1 < ¢ < s.
An (s+2)th value w4 is then generated as the mirror image of w41,
with respect to Upes, along the direction defined by Upest — Ws1.
The best of u,4+; and u,y» then replaces Uworst. The process is re-
peated until it converges. A simple illustration is depicted in Fig. 1 for
a one-dimensional case, where there are s = 3 points, u;, uz and us,
and Upest = U2 and Uworst = 3. The fourth value uy is a weighted
combination of u;, u2, and us, and us is the mirror image of u4 with
respect to uz. As uy is better than us, it will replace us.

ITn this paper, we restrict to the two-class classification problem. The defi-
nition of Fisher ratio, however, is applicable to the multiclass case, and the al-
gorithm presented in this paper can be extended to the multiclass classification
problem. Also see [4].
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Fig. 1. Tllustration of a simple weighted search optimization process.
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Fig. 2. Synthetic data: training and test error rates versus size of selected clas-
sifier.

Clearly, how the weighted combination is performed is crucial. The
weightings for u;, 1 < i < s, should reflect the “goodness” of u; and,
moreover, the process should be capable of self-learning or adapting
these weightings. This is exactly the basic idea of boosting [6]-[8].
Specifically, we combine the AdaBoost algorithm of [6] with the afore-
mentioned simple search strategy to form a weighted search routine.
This weighted search routine performs a guided random search with
a population of s members u;,1 < ¢ < s, and the solution obtained
may depend on the initial choice of population. To derive a robust algo-
rithm that is independent of the initial choices of population and to im-
prove the probability of achieving a global optimal solution, we adopt
a strategy of repeating the weighted search routine with an elitist ini-
tialization of the population, namely, each repeat or generation of the
weighted search will start by retaining the solution found in the pre-
vious generation and filling the rest of the population randomly. The
resulting weighted optimization algorithm, referred to as the OFSwB,
is summarized as follows, given the training data {x;, ¢; ], at the kth
stage of modeling.

A. Outer Loop: Number of Generations—| = 1 : Lpax

1) Initialization:

a) Setu; = u{f;ﬁ ) and randomly generate the rest of the popula-
tion members u;,2 < ¢ < s, where ul(f(;tl) denotes the solution
found in the previous generation. If I — 1 = 0, u; is also ran-

domly chosen.

b) Set the inner loop iteration index ¢ = 0 and the initial weightings
4 = (1/s) for1 <i < s.
c¢) Forl < i < s, generate g;f) from u;, the s candidates for the
kth model column, and orthogonalize them
) 1,1
ol = PBE e 1<
' P; P,
) k—1
py’

g — > alip.
i=1
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Fig. 3. Synthetic data: (a) decision boundary of the two-term classifier, (b) decision boundary of the four-term classifier, (c) decision boundary of the six-term
classifier, and (d) decision boundary of the ten-term classifier. The 250 samples of the training data are shown as crosses and circles for the two classes, respectively,

and the kernel centers are depicted by the dark-filled squares.

d) Forl < i < s, calculate the loss of each point, namely
(i _ L
J, = 7 {i)
where F ,fl) denotes the Fisher ratio (11) calculated in the direc-
tion of p’.

B. Inner Loop: Weighted Search Routine
Step 1) Boosting.

1) Find
Upest = arg min{Jéi),l <i<s}
Uyorst = arg Illax{,f,gi),l <i< st

2) Normalize the loss
7"
s 0’
S
3) Compute a weighting factor 3¢ according to

with ¢, = Ed&t)jg).

=1

JW = 1<i<s.

Bt

— €

4) Update the weighting vector

. j(.i)
dgt)ﬁt k

d£t+l) _ for 5 <1 1<i<s

_ g =
dgt)ﬂ; Ik for /3[ > 1,
5) Normalize the weighting vector

d(t+1)

s t+1)°
Y, At

Step 2) Parameter updating.
1) Construct the (s+1)th point using the formula

At = 1<i<s.

s

(t+1
Us41 = Zd& + )ll,j.

=1

2) Construct the (s4-2)th point using the formula
Us42 = Upest + (ubest - us-‘,—l)-

3) Orthogonalize these two candidate model columns and
compute their losses.

4) Choose a better (smaller loss value) point from ws41
and u,2 to replace Uworst-
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TABLE I

OFS PROCEDURE WITH BOOSTING FOR THE SYNTHETIC DATA SET
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step k mean vector diagonal covariance Xy, weight wy, | Fisher ratio F}

1 -1.17849e+0  -1.35250e-1 | 8.48630e+1 6.49353e+0 | -1.35897e+1 | 2.07539e+0

2 -1.39026e-1  9.70182¢-1 | 5.78028e+1 2.03028e+1 | 5.10463e+1 2.18588¢e+0

3 -8.07991e-1  9.32838e-1 | 8.83254e+1 7.99372e+1 | -3.79584e+1 9.85976e-3

4 -3.03289%-1  2.48324e-1 | 1.70513e-2 9.97627e+1 | 7.84764e-1 9.65163e-2

training error rate 12.8% and testing error rate 8.1%
Repeat from Step 1) with t = ¢ 4 1 until the (s+ 1)th value changes TABLE II
very little compared with the last round or a preset maximum number COMPARISON OF CLASSIFICATION FOR THE SYNTHETIC DATA SET
of iterations has been reached. SVM TRVM | OFSwE
C. End of Inner Loop classifier size 38 4 4
test error rate | 10.6% | 9.3% 8.1%

From the converged population of s points, find
i, = arg 111111{J,£,i), 1<i< s}

and select o = ozy,’:),l <j < kand
' ‘ k-1
pe =pi* =g = > ayup;.
J=1

This determines the solution of the /th generation, denoted as uglist.

Repeat from outer loop until I = Ly ax.

D. End of Outer Loop

This determines the kth kernel’s mean vector and diagonal covari-
ance matrix or selects the kth kernel term.

The important algorithmic parameters that need to be chosen appro-
priately are the population size s and the number of generations L.
The population size depends on the dimension of u and the objective
function to be optimized. This is very similar to the choice of popula-
tion size in the genetic algorithm. The number of generations should be
chosen sufficiently large for the algorithm to search for a global min-
imum but not too large, which may incur unnecessary computation.
Again, the appropriate value for L.« depends on the dimension of u
and how hard is the objective function to be optimized. Also the choice
of s has some influence on the choice of Lyax. Generally, these two
algorithmic parameters have to be found empirically.

IV. EXPERIMENTAL RESULTS

The synthetic two-class problem and Diabetes in Pima Indians, taken
from [14], were used to investigate the proposed OFSwB algorithm.2

A. Synthetic Data

The dimension of the feature space was m = 2. The training set
contained 250 samples and the test set had 1000 points. The optimal
Bayes error rate for this example is around 8%. With a population size
s = 21 and the number of generations Lmax = 20, we applied the
OFSwB algorithm to the 250-sample training set. Fig. 2 depicts the
training and test error rates versus the size of the selected classifier. The
decision boundaries of the two-term, four-term, six-term, and ten-term
classifiers are illustrated in Fig. 3(a)—(d), respectively. The decision
boundary of the eight-term classifier, not shown here, is almost iden-
tical to that of the four-term classifier. The result of Fig. 2 indicates that
the four-term classifier is sufficient, and the selection procedure for this
four-term classifier is summarized in Table I. Note that the four-term
classifier constructed by the OFSwB algorithm achieved the optimal

2The data sets were obtained from http://www.stats.ox.ac.uk/PRNN/
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Fig. 4. Pima Diabetes data: training and test error rates versus size of selected
classifier.

TABLE III
COMPARISON OF CLASSIFICATION FOR THE PIMA DIABETES DATA SET
SVM | RVM | OFSwB
classifier size 109 4 4
test error rate | 20.1% | 19.6% | 18.1%

Bayes classification performance. Tipping [3] applied the SVM and
RVM to this data set and only used 100 random selected samples from
the 250-points training data set in training. The results given in [3] are
compared with our result in Table II.

B. Pima Diabetes Data

The dimension of the input space was m = 7, the training data set
contained 200 samples and the test data set had 332 samples. With a
population size s = 61 and the number of generations Lmax = 20
for the OFSwB algorithm, Fig. 4 shows the training and test error rates
versus the size of the selected classifier, which clearly indicates that a
four-term classifier is sufficient. Table III compares the performance of
the selected four-term classifier with those obtained by the SVM and
RVM methods, quoted from [3].

V. CONCLUSION

A novel algorithm has been proposed for the construction of parsi-
monious kernel classifiers using the orthogonal forward selection with
boosting based on Fisher ratio for class separability measure. The pro-
posed algorithm has the ability to tune both the mean vector and diag-
onal covariance matrix of individual kernel to incrementally maximize
Fisher ratio for class separability measure. A weighted optimization
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search method has been developed based on boosting to append classi-
fier kernels one by one in an orthogonal forward regression procedure.
Experimental results presented have demonstrated the effectiveness of
the proposed technique.
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O(log, M) Self-Organizing Map Algorithm Without
Learning of Neighborhood Vectors

Hiroki Kusumoto and Yoshiyasu Takefuji

Abstract—TIn this letter, a new self-organizing map (SOM) algorithm with
computational cost O(log, M) is proposed where )/ ? is the size of a feature
map. The first SOM algorithm with O (1 ?) was originally proposed by Ko-
honen. The proposed algorithm is composed of the subdividing method and
the binary search method. The proposed algorithm does not need the neigh-
borhood functions so that it eliminates the computational cost in learning of
neighborhood vectors and the labor of adjusting the parameters of neigh-
borhood functions. The effectiveness of the proposed algorithm was exam-
ined by an analysis of codon frequencies of Escherichia coli (E. coli) K12
genes. These drastic computational reduction and accessible application
that requires no adjusting of the neighborhood function will be able to con-
tribute to many scientific areas.

Index Terms—Binary search, computational reduction, codon fre-
quency, Escherichia coli (E. coli), neighborhood function, self-organizing
map (SOM), subdividing method.

[. INTRODUCTION

A self-organizing map (SOM) algorithm is one of unsupervised
learning methods in the artificial neural network in order to map a
multidimensional input data set into two-dimensional (2-D) space
according to the neighborhood function. The first SOM algorithm
was originally developed by Kohonen [1] and has been used in a
variety of research areas including speech or speaker recognition
[2], mathematics [3], financial analysis [4], color quantization [5],
identification and control of dynamical systems [6], color clustering
[7], and bioinformatics [8]-[10]. Particularly in the field of bioinfor-
matics, many researchers have adopted SOM algorithm for analysis
of gene sequences as a method of clustering, visualization, or feature
extraction. Wang et al. clustered genes according to codon usage by
SOM algorithm in order to identify highly expressed and horizon-
tally transferred genes [8]. Sultan ef al. and Gill ef al. applied SOM
algorithm to analyze microarray data [9], [10].

When M? is the size of a feature map, the number of compared
weight vectors for one input vector to search a winner vector by ex-
haustive search is equivalent to M?. Tree-structured SOM proposed
by Koikkalainen and Oja [11] and Truong [12] to improve the winner
search reduces the number of searching operations to O(M log M ).
Kohonen proposed a new method with the total number of compar-
ison operations by O(M) [1]. Self-organizing topological tree with
O(log M) was proposed by Xu and Chang [13].

In this letter, a new SOM algorithm with O(log, M) is proposed
where it is composed of the subdividing method and the binary search
method. The proposed algorithm not only reduces the computational
costs but also eliminates the time-consuming parameter tuning in the
neighborhood function in SOM applications. When we use SOM for
practical analyses, one of the most time-consuming tasks for effective
learning is to adjust the values of several parameters, particularly in
neighborhood function. In addition to that, the neighborhood function
has a critical effect on the performance of SOM. In the proposed algo-
rithm, only winner vectors are trained. The proposed algorithm not to
train neighborhood vectors is completely original.
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