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Abstract—This paper proposes a spatially common sparsity
based adaptive channel estimation and feedback scheme for
frequency division duplex based massive multi-input multi-output
(MIMO) systems, which adapts training overhead and pilot design
to reliably estimate and feed back the downlink channel state in-
formation (CSI) with significantly reduced overhead. Specifically,
a nonorthogonal downlink pilot design is first proposed, which
is very different from standard orthogonal pilots. By exploiting
the spatially common sparsity of massive MIMO channels, a
compressive sensing (CS) based adaptive CSI acquisition scheme
is proposed, where the consumed time slot overhead only adap-
tively depends on the sparsity level of the channels. In addition,
a distributed sparsity adaptive matching pursuit algorithm is
proposed to jointly estimate the channels of multiple subcarriers.
Furthermore, by exploiting the temporal channel correlation, a
closed-loop channel tracking scheme is provided, which adaptively
designs the nonorthogonal pilot according to the previous channel
estimation to achieve an enhanced CSI acquisition. Finally, we
generalize the results of the multiple-measurement-vectors case
in CS and derive the Cramér–Rao lower bound of the proposed
scheme, which enlightens us to design the nonorthogonal pilot
signals for the improved performance. Simulation results demon-
strate that the proposed scheme outperforms its counterparts, and
it is capable of approaching the performance bound.
Index Terms—Channel estimation, compressive sensing, feed-

back, frequency division duplex,massivemulti-inputmulti-output,
spatially common sparsity, temporal correlation.

I. INTRODUCTION

B Y exploiting the increased degree of freedom in the spatial
domain, massive multi-input multi-output (MIMO) can

enhance the spectrum efficiency and energy efficiency by or-
ders of magnitude [1], [2]. To harvest the benefits of massive
MIMO, the base station (BS) needs the accurate channel state
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information (CSI) in the downlink for beamforming, resource
allocation, and other operations. However, it is challenging for
the BS to acquire the accurate downlink CSI in frequency di-
vision duplex (FDD) based massive MIMO, since the overhead
used for the downlink channel estimation and feedback can be
prohibitively high. Most of the researches sidestep this chal-
lenge by assuming the time division duplex (TDD) protocol. In
TDD based massive MIMO, the CSI in the uplink can be more
easily acquired at the BS due to the limited number of users,
and the channel reciprocity property can be exploited to realize
the downlink channel estimation using the uplink channel esti-
mation [1]–[4]. However, in TDD massive MIMO, the CSI ac-
quired in the uplink may not be always accurate for the down-
link due to the calibration error of radio frequency chains [5]. In
addition, frequency division duplex (FDD) protocol still dom-
inates current wireless networks, where the downlink channel
estimation is necessary, since the channel reciprocity does not
hold. Thus, it is of great importance to explore an efficient ap-
proach to enable massive MIMO to be backward compatible
with current wireless networks [6]. In this paper, we focus on
the reliable and efficient channel estimation and feedback for
FDD massive MIMO.
Channel estimations in small-scale MIMO are usually based

on orthogonal pilots [7]–[10]. In Long Term Evolution-Ad-
vanced (LTE-A), for example, pilots associated with different
BS antennas occupy the different frequency-domain subcarriers
[9]. Pilot signals can be also orthogonal in the time or code
domain. However, the overhead of orthogonal pilots increases
with the number of BS antennas, which becomes unaffordable
for massive MIMO. For FDD massive MIMO, the work [11]
proposed a pilot design for the downlink channel estimation by
exploiting the channel statistics. However, the acquisition of the
downlink channel covariance matrix is challenging in practice.
An open-loop and closed-loop training based channel estima-
tion scheme was proposed in [5]. Nevertheless, the long-term
channel statistics required by the user may increase the training
time and memory cost. In [6], a sparse channel estimation
scheme was proposed to acquire CSI with significantly re-
duced pilot overhead by exploiting the sparsity of time-domain
channel impulse response (CIR). But this time-domain sparsity
of the channels may not exist when the number of scatterers at
the user side becomes large. Furthermore, [5], [6], [11] do not
consider the channel feedback to the BS. In order to obtain the
fine-grain spatial channel structures, the conventional codebook
based CSI feedback schemes may become impossible, since the
dimension of codebook can be huge in massive MIMO. Hence
the design, storage, and encoding of the high-dimensional
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codebook can be difficult [12]. The compressive sensing (CS)
based channel feedback schemes for massive MIMO were
proposed to reduce the feedback overhead by exploiting the
spatial correlation of CSI [12], [13]. However, these schemes
do not consider downlink channel estimation. By exploiting the
spatially joint sparsity of multiple users’ channel matrices, the
works [14], [15] proposed a joint orthogonal matching pursuit
(OMP) based CSI acquisition scheme. However, this scheme
cannot adaptively adjust the required overhead according to
the sparsity level of the channels. Moreover, the spatially joint
sparsity may disappear when the users are not spatially close.
Even for the best case that multiple users’ channel matrices
share the spatially common sparsity, the sparse CSI acquisition
problem is a multiple-measurement-vectors (MMV) problem,
where the reduction in required overhead is limited.
Recent study and experiments have shown that the wireless

channels between the BS and users exhibit a small angle
spread seen from the BS [4], [16], [17]. Due to the small angle
spread and large dimension of the channels, massive MIMO
channels exhibit the sparsity in the virtual angular domain
[18]. Moreover, since the spatial propagation characteristics of
the wireless channels within the system bandwidth are nearly
unchanged, such sparsity is shared by subchannels of different
subcarriers when the widely used orthogonal frequency-divi-
sion multiplexing (OFDM) is considered. This phenomenon is
referred to as the spatially common sparsity within the system
bandwidth [19]. Besides, due to the temporal correlation of
the channels [19], massive MIMO channels are quasi-static
in several adjacent time slots or one time block consisting of
multiple time slots. Moreover, the support set of the sparse
channels in the virtual angular domain is almost unchanged
in multiple time blocks, which is referred to as the spatially
common sparsity during multiple time blocks.
By exploiting the spatially common sparsity and the tem-

poral correlation of massive MIMO channels, this paper pro-
poses an adaptive channel estimation and feedback scheme with
low overhead. The proposed scheme consists of two stages: a
CS based adaptive CSI acquisition with the adaptive training
overhead and a follow-up closed-loop channel tracking with
the adaptive pilot design. Specifically, the BS transmits the pro-
posed non-orthogonal pilot. The users simply feed back the re-
ceived non-orthogonal pilot signals to the BS. According to
the feedback signals, the CS based adaptive CSI acquisition
scheme acquires the downlink CSI at the BS with the adaptive
training time slot overhead. For this stage, a distributed spar-
sity adaptive matching pursuit (DSAMP) algorithm is proposed
to acquire the CSI, whereby the spatially common sparsity of
massive MIMO channels within the system bandwidth is ex-
ploited. By exploiting the spatially common sparsity of massive
MIMO channels during multiple time blocks, the closed-loop
channel tracking scheme is proposed to track the channels in
the second stage. For this stage, the BS can adaptively adjust
the pilot signals according to the previous acquired CSI, and a
simple least squares (LS) algorithm is used to estimate the chan-
nels with improved performance. Additionally, we generalize
the results for the conventional MMV to the generalized MMV
(GMMV) and provide the Cramer-Rao lower bound (CRLB) of
the proposed scheme, which enlightens us to design the non-or-

thogonal pilot signals. Simulation results verify that the pro-
posed scheme is superior to its counterparts, and it is capable
of approaching the performance bound. We now summarize our
novel contributions.
• CS based adaptive CSI acquisition scheme: By ex-
ploiting the spatially common sparsity of massive MIMO
channels within the system bandwidth, this scheme sub-
stantially reduces the required time slot overhead for
channel estimation and feedback, where the required time
slot overhead is only dependent on the channel sparsity
level, rather than the number of BS antennas as in conven-
tional CSI acquisition schemes.

• Closed-loop channel tracking scheme: By leveraging
the spatially common sparsity of massive MIMO chan-
nels during multiple time blocks, this scheme can further
reduce the required time slot overhead.

• Non-orthogonal downlink pilot design at BS: i) We
theoretically prove that the GMMV outperforms the
conventional MMV on the sparse signal recovery perfor-
mance. This enlightens us to design the non-orthogonal
pilot for CS based adaptive CSI acquisition for improving
channel estimation performance. ii) We derive the CRLB
for the proposed scheme. In the stage of closed-loop
channel tracking, the derived CRLB enlightens us to
adaptively design the non-orthogonal pilot according to
the previous channel estimation for further improving
performance.

• DSAMP algorithm: This algorithm leverages the spatially
common sparsity of massive MIMO channels to jointly es-
timate multiple channels associated with different subcar-
riers. Compared with the conventional algorithms, such as
sparsity adaptive matching pursuit (SAMP), subspace pur-
suit (SP) and OMP, the proposed DSAMP substantially re-
duces the required time slot overhead with similar compu-
tational complexity.

Throughout our discussions, scalar variables are denoted
by normal-face letters, while boldface lower and upper-case
symbols denote column vectors and matrices, respectively, and

is the imaginary axis. The Moore-Penrose inversion,
transpose and conjugate transpose operators are given by ,

and , respectively, while is the integer ceiling
operator and is the inverse operator. The -norm and
-norm are given by and , respectively, and is

the cardinality of the set . The support set of the vector is
denoted by , denotes the th entry of the vector ,
and denotes the -row and -column element of the
matrix , while is the identity matrix. The rank
of is denoted by and is the matrix trace
operator, while is the expectation operator and
is the variance of a random variable. Finally, denotes
the entries of whose indices are defined by , while
denotes a sub-matrix of with column indices defined by .

II. SYSTEM MODEL

A. Massive MIMO in the Downlink
In a typical massive MIMO system, the BS employing an-

tennas simultaneously serves single-antenna users [2], where
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Fig. 1. Channel vector representation in the virtual angular domain, where the
BS employs the ULA with half wave-length spacing, , and two clusters
of scatterers are considered as an example.

. For the subchannel at the th subcarrier, where
and is the size of the OFDM symbol, the received

signal of the th user can be expressed as

(1)

where denotes the downlink channel between
the th user and the antennas at the BS, is the
transmitted signal after precoding, and is the associated
additive white Gaussian noise (AWGN). The received signal
of the users can be
collected together as

(2)

in which is the down-
link channel matrix, and
is the corresponding AWGN vector.

B. Massive MIMO Channels in Virtual Angular Domain
Wemodel the channel vector by using the virtual angular

domain representation [18], [19]

(3)

where the user index in , and is dropped to
simplify the notations, while and
is the unitary matrix representing the transformation matrix of
the virtual angular domain at the BS side. is determined by
the geometrical structure of the BS’s antenna array.
To intuitively explain the channel vector , a simple ex-

ample is illustrated in Fig. 1, where the BS employs the uniform
linear array (ULA)with the antenna spacing of and is
the wave-length. In this case, becomes the discrete Fourier
transform (DFT) matrix [19]. The channel vector in the virtual
angular domain then simply means to ‘sample’ the channel in
the angular domain at equi-spaced angular intervals at the BS
side, or equivalently to represent the channel in the virtual an-
gular domain coordinates. More specifically, the th element
of is the channel gain consisting of the aggregation of all the
paths, whose transmit/receive directions are within an angular
window around the th angular coordinate [19].

Fig. 2. The virtual angular-domain channel vectors within the system band-
width exhibit the common sparsity.

As the BS is usually elevated high with few scatterers around,
while users are located at low elevation with relatively rich local
scatterers, the angle spread at the BS side is small [4], [16], [17].
Since the angle spread is limited at the BS, a small part of the
elements in contain almost all the multipath signals reflected,
diffracted, or refracted by scatterers around the user. If we take
the typical angular-domain spread of 10 and the ULA with

as an example [4], the uniformly virtual angular domain
sampling interval is [18], and the
vast majority of the channel energy is concentrated on around

virtual angular domain coordinates, which
is far smaller than the total dimension of the channel
vector. Consequently, exhibits the sparsity [19], namely,

(4)

where is the support set, and is the sparsity level.
Moreover, since the spatial propagation characteristics of the

channels within the system bandwidth (e.g., 10 MHz in typical
LTE-A systems) are almost unchanged, the subchannels associ-
ated with different subcarriers share very similar scatterers in the
propagation environment [19]. Hence the small angle spreads of
the subchannels within the system bandwidth are very similar.
Consequently, have the common sparsity, namely,

(5)

which is illustrated in Fig. 2.

C. Temporal Correlation of Wireless Channels
Since the user mobility is not very high in massive MIMO

systems, the channels remain static for the duration of a block
that consists of consecutive time slots, while the channels
change from block to block. Here, one time slot represents one
OFDM symbol. This block fading implies that
for , where is the channel at the th time
slot of the th block and denotes the quasi-static channel in
the th block. Similarly, there exists the quasi-static relationship

for , with and being the
virtual angular representations of and , respectively.
For massive MIMO channels, due to the limited co-

herence time and the large number of BS antennas. For example,
consider massive MIMO systems with: the carrier frequency

, the system bandwidth , the OFDM
size , the number of BS antennas , and the
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maximum delay spread (need the guard interval
) [2], [20]. Suppose that the maximum mobile velocity

of the supported users is . Then the maximum
Doppler frequency shift is , where is
the velocity of electromagnetic wave. Hence the coherence time

[21], or the coherence time slots
, which is much smaller than .

Since the channels change from block to block, they must
be estimated in every time block, which may impose very high
complexity and overhead. Fortunately, experiments and theoret-
ical analysis have shown that although the channels vary con-
tinuously from one block to another, the variation rate of the
channel angle spread is much lower than that of the associated
channel gains [18]. This implies that

(6)
where is the number of consecutive time blocks over the du-
ration of which the common support of virtual angular domain
channels holds. For the example of Fig. 1, assume that the dis-
tance between the BS and the user is and

. Further assume the case of the mobile direction
of the user being perpendicular to the direction connecting the
BS and the user. Then, over the duration of successive
time blocks, the maximum variance in the virtual angular do-
main is around . Such a
small variance of the angle spread is negligible, compared to
the resolution of the virtual angular domain . If

and/or the mobile direction of the user is not per-
pendicular to the direction connecting the BS and the user,
can be larger than 5.

D. Challenges of Channel Estimation and Feedback
Consider the downlink channel estimation in the th time

block. To reliably estimate the channel of the th subcarrier, the
user should jointly utilize the received pilot signals over several
successive time slots, say, time slots, for channel estimation.
Let be the received pilot of (3) at the th subcarrier in the
th time slot, and for can be collected together
in the vector . Then

(7)

where with
being the transmitted pilot signals in the th

time slot, and
is the corresponding AWGN vector. To accurately estimate
the channel from (7), the value of used in conventional
algorithms, such as the minimum mean square error (MMSE)
algorithm, is heavily dependent on the value of . Usually,
can be larger than , which leads to the poor channel estimation
performance [10]. Moreover, to minimize the mean square
error (MSE) of the channel estimate, should be a unitary
matrix scaled by a transmit power factor [10]. Usually,
is a diagonal matrix with equal-power diagonal elements. Such
a pilot design is illustrated in Fig. 3(a), which is called the
time-domain orthogonal pilot. It should be pointed out that
in MIMO-OFDM systems, to estimate the channel associated

Fig. 3. (a) Time-domain orthogonal pilot [10], (b) time-frequency orthogonal
pilot in LTE-A [9], and (c) proposed non-orthogonal pilot, assuming .

with one transmit antenna, pilot subcarriers should be used,
and usually is considered since adjacent
subcarriers are correlated [10]. Hence the total pilot overhead to
estimate the complete MIMO channel is .
Similarly, LTE-A adopts the time-frequency orthogonal pilots
as shown in Fig. 3(b), which also needs .
These two kinds of orthogonal pilots are equivalent, since
both of them are based on the framework of Nyquist sampling
theorem and have the same pilot overhead. Hence we only
consider the time-domain orthogonal pilot in this paper, and we
will propose an efficient non-orthogonal pilot scheme.
Codebook based channel feedback schemes are widely

adopted in small-scale MIMO systems. However, to obtain
the fine-grain spatial channel structures in massive MIMO
systems, the codebook size can be huge. Moreover, the storage
and encoding of large dimension codebook at the user is chal-
lenging. To overcome this difficulty, we combine the channel
estimation and feedback, whereby the CSI acquisition is mainly
realized at the BS which has sufficient computation capability.
By exploiting the spatially common sparsity and temporal
correlation of massive MIMO channels, the proposed scheme
can significantly reduce the required overhead and complexity
for channel estimation and feedback.

III. SPATIALLY COMMON SPARSITY BASED ADAPTIVE
CHANNEL ESTIMATION AND FEEDBACK SCHEME

The procedure of the proposed adaptive channel estimation
and feedback scheme is first summarized.
Step 1: In each time slot, the BS transmits a non-orthogonal

pilot to the user, and the user directly feeds back the
received pilot signal to the BS. Except for Step 4, the
pilot signal is designed in advance.

Step 2: The BS uses the proposed DSAMP algorithm to
jointly reconstruct multiple sparse virtual angular
domain channels of high dimension from the feed-
back signals of low dimension collected in multiple
time slots.

Step 3: The BS judges the reliability of the estimated sparse
channels according to a pre-specified criterion. If the
given criterion is met, the BS stops transmitting pilot
in the following time slots, and the acquired CSI at
the BS is used for precoding and user scheduling in
the current time block. Otherwise, the BS goes back
to Step 1 until the feedback signals are sufficient for
acquiring the reliable CSI.

Step 4: Since the BS has acquired the estimated support set
and the estimated sparsity level , it can directly

use the LS algorithm to estimate the channels in
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every time block of the following blocks.
Here, the time slot overhead required in Step 1 can
be reduced to , and the pilot signals can
be adaptively adjusted according to for further
improving performance.

It is seen that the proposed adaptive channel estimation and
feedback scheme consists of two stages: the CS based adaptive
CSI acquisition in the th time block, which includes Step 1 to
Step 3, and the following closed-loop channel tracking in the
following time blocks, which includes Step 1 and Step 4.
We now detail all the key technical components.

A. Non-Orthogonal Pilot for Downlink Channel Estimation

The proposed non-orthogonal pilot scheme is illustrated in
Fig. 3(c). Similar to the time-domain orthogonal pilot scheme,
subcarriers are dedicated to pilots in each OFDM symbol. How-
ever, the proposed scheme allows the non-orthogonal pilot sig-
nals associated with different BS antennas to occupy the com-
pletely identical frequency-domain subcarriers.
The orthogonal pilot based conventional designs usually re-

quire . By contrast, the proposed non-orthogonal pilot
for CS based adaptive CSI acquisition is capable of providing
the efficient compression and reliable recovery of sparse sig-
nals. Therefore, is mainly determined by . The
non-orthogonal pilot of the first stage is designed in advance,
which will be discussed in Section IV-A. According to the CSI
acquired in the first stage, the non-orthogonal pilot used for
closed-loop channel tracking is adaptively designed tominimize
both and theMSE performance of CSI acquisition, which will
be illustrated in Section III-D.
For the placement of pilot subcarriers, the widely used

equi-spaced pilot is considered, and the specific reason
is given in Section IV-C. For convenience, we denote
ξ ξ ξ ξ as the index set of the pilot subcarriers,

where ξ for denotes the subcarrier index dedicated
to the th pilot subcarrier. It is worth pointing out that the th
pilot subcarrier is shared by the pilot signals of the transmit
antennas as illustrated in Fig. 3(c).

B. CS Based Adaptive CSI Acquisition Scheme

In the th time block, as indicated in Step 1, the user di-
rectly feeds back the received pilot signals to the BS without
performing downlink channel estimation where the feedback
channel can be considered as the AWGN channel [12]–[15]. Ac-
cording to (7), at the BS, the fed back signal1 (at the ξ th sub-
carrier) in the th time slot can be expressed as

(8)

where ξ is the th feedback pilot signal in the th

time slot, ξ is the virtual angular domain channel

vector associated with the th pilot subcarrier, ξ is
the pilot signal vector transmitted by the BS antennas, and

1The delay of the feedback signal is negligible, compared with the relatively
long channel coherence time.

ξ is the effective noise which aggregates both the
downlink channel’s AWGN and feedback channel’s AWGN.
Due to the quasi-static property of the channel during one

time block, the feedback signals in successive time slots can
be jointly exploited to acquire the downlink CSI at the BS,
which can be expressed as

(9)

for , where ,
,

and .
The system’s signal to noise ratio (SNR) is defined as

, according to
(9). By exploiting the spatially common sparsity within the
system bandwidth, the proposed DSAMP algorithm can re-
construct the sparse angular domain channels of multiple pilot
subcarriers, as will be detailed in Section III-C.

Algorithm 1: CS Based Adaptive CSI Acquisition Scheme
1: Determine the initial time slot overhead , and set the

iteration index .
2: repeat
3: Collect and in (9) for given ,

. is the required overhead at the th iteration.

4: Acquire the channel vectors by using the
proposed DSAMP algorithm (Algorithm 2).

5: .

6: until .

If the error is smaller than the threshold , end repeat;
otherwise, continue transmitting the pilot in the next
time slot.

7: . Optional, determine the initial time slot
overhead for the next CS based adaptive CSI acquisition.

For practical massiveMIMO systems, the sparsity level of
the channels in the virtual angular domain can be time-varying.
If is relatively small, a small time slot overhead is suf-
ficient to acquire an accurate CSI estimate, while if is rela-
tively large, a large is required to guarantee the reliable sparse
signal recovery. We propose the CS based adaptive CSI acqui-
sition as presented in Algorithm 1, which can adaptively adjust
to acquire the reliable CSI at the BS efficiently.
At the first CS based adaptive CSI acquisition, we need to

empirically determine the initial time slot overhead . Since
the typical angle spread is about 10 [4], for massive MIMO
with , the effective sparsity level . Thus, we
may set to start. Given , the DSAMP algorithm
(Algorithm 2) acquires the set of channel vectors . If

is larger than the pre-

defined threshold , the sparse signal recovery is judged to be
unreliable. Hence, the training time slots increase by one, and
a set of the feedback pilot signals and transmitted pilot signals,

and , are collected in the th time
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slot, which are combined with the previously collected
and to enlarge the dimension of the measurement vec-
tors sequentially, yielding

to improve the channel estimation. Furthermore, an appropriate
initial time slot overhead for the next CS based adaptive CSI
acquisition is automatically determined at the end.

Algorithm 2: Proposed DSAMP Algorithm

Input: Noisy feedback signals and sensing matrices
in (10), ; termination threshold .

Output: Estimated channel vectors in the virtual angular
domain at multiple pilot subcarriers , .

1: ; ; . , , are the sparsity level of the
current stage, iteration index, and stage index, respectively.

2: , . and are
intermediate variables, and is the channel estimation
of the last stage.

3: ; . is the
estimated support set in the th iteration, , , , and are
sets, and denote the support indexes.

4: , . is the residual of the th
iteration.

5: . is the residual of the last
stage.

6: repeat
7: , . Signal proxy is saved in

.

8: .
Identify support.

9: , . LS
estimation.

10: .
Prune support.

11: , . LS estimation.

12: , . Compute the residual.

13: . Find the
support of the minimum average energy according to the
estimated .

14: if then
15: Quit iteration. Support index associated with

AWGN may be included in .
16: else if then
17: Quit iteration. Larger residual of the current stage than

that of the last stage indicates that it is unnecessary to
continue the iteration.

18: else if then
19: ; ; , , .

Begin a new stage. The larger residual of current

iteration than that of last iteration indicates that
iteration at current stage converges.

20: else
21: , ; . Continue the

iteration at the current stage.
22: end if
23: until

24: , . Obtain the final channel estimation.

C. Proposed DSAMP Algorithm for Channel Estimation

Given the measurements (9), the CSI can be acquired by
solving the following optimization

(10)

The DSAMP algorithm, listed in Algorithm 2, is used to solve
the optimization (10) to simultaneously acquire multiple sparse
channel vectors at different pilot subcarriers. This algorithm is
developed from the SAMP algorithm [22]. Specifically, for each
stage with the fixed sparsity level , line 8 selects the poten-
tial non-zero elements; line 9 estimates the values associated
with the support set using LS; line 10 selects most
likely supports. Lines and line 21 together aim to find
virtual angular domain coordinates which contain most of the
channel energy. In particular, Lines remove wrong in-
dices added in the previous iteration and add the indices asso-
ciated with the potential true indices. If line 18 is triggered, the
algorithm updates and begins a new stage. The algorithm is
halted when the stopping criteria, indicated in lines and
line 23, are met.
Compared to the classical SAMP algorithm [22] which

recovers one high-dimensional sparse signal from single
low-dimensional received signal, the proposed DSAMP algo-
rithm can simultaneously recover multiple high-dimensional
sparse signals with the common support set by jointly pro-
cessing multiple low-dimensional received signals. In terms of
termination condition, the SAMP algorithm stops the iteration
once the residual is smaller than a threshold . By contrast,
the proposed DSAMP algorithm has two halting criteria.
Specifically, if the energy associated with one virtual angular
coordinate in the estimated support set is smaller than or
the residual of the current stage is larger than that of the pre-
vious stage, the algorithm stops. The proposed halting criteria
ensure the robust signal recovery performance, which will be
discussed in Section IV-D2 and confirmed by simulations.
By using the DSAMP algorithm at the BS, we can acquire

the estimates of the virtual angular domain channels at the pilot
subcarriers, i.e., for . Consequently, the actual
channel at the ξ th subcarrier dedicated to the th pilot signal
can be acquired according to (8), yielding

ξ ξ (11)
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D. Closed-Loop Channel Tracking With Adaptive Pilot Design

Since the channels in successive time blocks share the spa-
tially common sparsity, in the following time blocks, we
can use the simple LS algorithm to estimate the channels at the
BS from the feedback pilot signals by utilizing the estimated
support set and the sparsity level
acquired in the th time block. Specifically, for the th time
block, where , the BS first transmits
a non-orthogonal pilot to the user, and the user again directly
feeds back the received pilot signal to the BS. At the BS, sim-
ilar to (9), the feedback pilot signal associated with the th pilot
subcarrier can be expressed as

(12)

where , and are the pilot signal matrix, vir-
tual angular domain channel, and effective noise in the th time
block, respectively. If and are known, the CSI can be ac-
quired using the LS algorithm as

(13)

which is an unbiased estimator for that is capable of ap-
proaching the CRLB [23]. The BS can use and , obtained
in the th time block, to calculate this LS estimate.
As will be shown in Section IV-F, to acquire the estimate

of , the required time slot overhead can be reduced to .
Moreover, the non-orthogonal pilot used for channel tracking
(for the time blocks of ) is very different
from that used in the th time block. Specifically, to minimize
the MSE performance of the channel estimation with ,

should be a unitary matrix scaled by a power factor
. Therefore, for the closed-loop channel tracking, we can

design the non-orthogonal pilot signal to guarantee this condi-
tion, and reduce to while attaining the best MSE perfor-
mance for the channel estimation. Specifically, let and

be a unitary matrix. Then

(14)

which yields the required non-orthogonal pilot matrix
.

IV. PERFORMANCE ANALYSIS

The performance analysis of the proposed scheme includes:
1) the non-orthogonal pilot design for the CS based adaptive
CSI acquisition; 2) the theoretical limit of the required time
slot overhead for the CS based adaptive CSI acquisition; 3) the
placement of pilot subcarriers; 4) the computational complexity
and convergence of the DSAMP algorithm; 5) the performance
bound of the proposed scheme; 6) the required time slot over-
head and the performance analysis for the adaptive non-orthog-
onal pilot based closed-loop channel tracking; and 7) the selec-
tion of thresholds for Algorithms 1 and 2.

A. Non-Orthogonal Pilot Design for CS Based Adaptive CSI
Acquisition

In the th time block, the measurement matrices in
(9) are very important for guaranteeing the reliable CSI acquisi-
tion at the BS. Usually, . Since
and is determined by the geometrical structure of the an-
tenna array at the BS, the pilot signals transmitted
by the BS should be designed to guarantee the desired robust
channel estimation and feedback.
1) Restricted Isometry Property (RIP): In CS theory, RIP

is used to evaluate the quality of the measurement matrix, in
terms of the reliable compression and reconstruction of sparse
signals. It is proven in [24] that the measurement matrix with its
elements following the independent and identically distributed
(i.i.d.) complex Gaussian distributions satisfies the RIP and en-
joys a satisfying performance in compressing and recovering
sparse signals.
2) Processing Multiple Measurement Vectors in Parallel:

The optimization problem (10) is essentially different from the
single-measurement-vector (SMV) and MMV problems in CS.
The SMV recovers single high-dimensional sparse signal

from its low-dimensional measurement signal , which may be
formulated as , where , , and the
support set Ξ with the sparsity level Ξ .
On the other hand, the MMV can simultaneously recover

multiple high-dimensional sparse signals with the common sup-
port set and common measurement matrix from multiple low-
dimensional measurement signals, which may be formulated
as , with , ,

Ξ, and the spar-
sity level Ξ .
By contrast, our problem (10) can jointly reconstruct multiple

high-dimensional sparse signals with the common support set
but having different measurement matrices, i.e.,

(15)

where , . Therefore, our problem can be regarded
as the GMMV problem, which includes the SMV and MMV
problems as its special cases. Specifically, if the multiple mea-
surement matrices are identical, our GMMV becomes the con-
ventional MMV, and furthermore if , it reduces to the
conventional SMV.
Typically, theMMVhas the better recovery performance than

the SMV, due to the potential diversity from multiple sparse
signals [24]. Intuitively, the recovery performance of multiple
sparse signals with different measurement matrices, as defined
in the GMMV, should be better than that with the common
measurement matrix as given in the MMV. This is because the
further potential diversity can benefit from different measure-
ment matrices for the GMMV. To prove this, we investigate the
uniqueness of the solution to the GMMV problem. First, we in-
troduce the concept of ‘spark’ and the -minimization based
GMMV problem associated with (15).
Definition 1 [24]: The smallest number of columns of

which are linearly dependent is the spark of the given matrix
, denoted by .
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Problem 1:
Ξ .

For the above -minimization based GMMV problem, the
following result can be obtained.
Theorem 1: For , , whose elements obey an

i.i.d. continuous distribution, there exist full rank matrices
for satisfying Ξ Ξ if we select Ξ
as the bridge, where Ξ is the common support set. Consequently,
for will be the unique solution to Problem 1 if

(16)

where .
Proof: Consider (15) with for ,

whose elements follow an i.i.d. continuous distribution. The
common support set is Ξ with the sparsity level
Ξ . This GMMV can be expressed as

Ξ Ξ Ξ (17)

The random matrix Ξ is a tall matrix, as
. Clearly, with high probability, since the

measure of the set is zero [25].
If we take Ξ as the bridge, then there exist the full rank
matrices , , satisfying Ξ Ξ, and
thus

Ξ Ξ (18)

In this way, the GMMV is converted to the ‘equivalent’ MMV

(19)

where . Applying the existing result for the
MMV given in [26], (16) can be directly obtained.
From Theorem 1, it is clear that the achievable diversity gain

introduced by diversifying measurement matrices and sparse
vectors is determined by . The larger is, the
more reliable recovery of sparse signals can be achieved. Hence,
compared to the SMV andMMV, more reliable recovery perfor-
mance can be achieved by the proposed GMMV. For the special
case that multiple sparse signals are identical, theMMV reduces
to the SMV since , and there is no diversity gain
by introducing multiple identical sparse signals. However, the
GMMV in this case can still achieve diversity gain which comes
from diversifying measurement matrices.
Pilot Design for CS Based Adaptive CSI Acquisition: Ac-

cording to the above discussions, a measurement matrix whose
elements follow an i.i.d. Gaussian distribution satisfies the RIP.
Furthermore, diversifying measurement matrices can further
improve the recovery performance of sparse signals. This
enlightens us to appropriately design pilot signals.
Specifically, each element of pilot signals is given by

(20)

where , and each has the i.i.d. uniform
distribution in , namely, the i.i.d. . Note that the
pilot signals for the CS based adaptive CSI acquisition are fixed

once they have been designed. Moreover, when designing the
pilot signals, the worst case of has to be considered.
It is readily seen that the designed pilot signals (20) guarantee
that the elements of of (10), , obey the i.i.d. complex
Gaussian distribution with zero mean and unit variance, i.e.,
the i.i.d. . Hence, the proposed pilot signal design is
‘optimal’, in terms of the reliable compression and recovery of
sparse angular domain channels.

B. Time Slot Overhead for CS Based Adaptive CSI Acquisition
According to Theorem 1, for the optimization problem (10),

with and
. Since , it is clear

that

(21)

Moreover, as ,

(22)

Substituting (21) and (22) into (16) yields . There-
fore, the smallest required time slot overhead is .
As discussed in Section III-B, an appropriate value of that
ensures the reliable CSI acquisition is adaptively determined by
Algorithm 1. By increasing the number of measurement vec-
tors , the required time slot overhead for reliable channel es-
timation can be reduced, since more measurement matrices and
sparse signals can increase .

C. Frequency-Domain Placement of Pilot Signals
Like any OFDM channel estimator, the proposed adaptive

channel estimation and feedback scheme only estimates the
channels at pilot subcarriers. Channels at data subcarriers
are usually acquired based on the estimated channels at pilot
subcarriers by using the off-the-shelf interpolation algorithms
[21]. Clearly the frequency-domain placement of pilot signals
ξ significantly influences the achievable performance of an

interpolation algorithm. Additionally, due to the frequency-do-
main correlation of wireless channels, the channels of adjacent
subcarriers exhibit strong correlation. Hence, two adjacent sub-
carriers both dedicated to the pilot may result in to be rank
deficient. We adopt the widely used uniformly-spacing pilot
placement with the spacing equal to the coherence bandwidth
[21], which can reduce the correlation between different virtual
angular domain channels, so that more diversity gain from the
multiple sparse channels can be achieved.

D. Performance Analysis of Proposed DSAMP Algorithm
1) Complexity: The computational complexity of the pro-

posed DSAMP algorithm (Algorithm 2) in each iteration mainly
depends on the following operations.
Signal proxy (line 7): The matrix-vector multiplication in-

volved has the complexity on the order of .
-norm operation (lines 8, 10, 13, 14, 16, 18, and 23): The

computational complexity is .
Identifying or Pruning (lines 8 and 10): The cost to locate

the largest entries of a size- vector is [24].
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TABLE I
COMPUTATIONAL COMPLEXITY TO ESTIMATE ONE SPARSE SIGNAL

LS operation (lines 9 and 11): LS solution has the computa-
tional complexity on the order of due to the
joint recovery of sparse signals [27].
Residual computation (line 12): The complexity of com-

puting the residual is .
Obviously the matrix inversion implemented in Algorithm

2 for LS operation contributes to most of the computational
complexity. Table I compares the complexity of the proposed
DSAMP algorithm, classical OMP algorithm, SP algorithm
[24], and SAMP algorithm, in terms of the number of required
complex multiplications in each iteration to estimate one sparse
signal. It is clear that the four algorithms have the same order
of computational complexity.
2) Stopping Criteria: For the conventional SAMP algorithm,

the iterative procedure stops when the residual is less than a
given threshold. By contrast, the proposed DSAMP algorithm
has two halting criteria, and meeting either of them will trigger
the termination of the iterative procedure. Regarding the first
halting criterion, when the average energy of the wireless chan-
nels at a certain virtual angular coordinate is lower than the noise
floor (lines 14 and 23), the iterative procedure stops. When the
residual of the current stage becomes larger than that of the pre-
vious stage (line 16), the second halting criterion is met and the
algorithm also terminates.
Due to , after coordinates accounting for the ma-

jority of the channel energy is achieved, the next iteration will
include a virtual angular coordinate that is dominated by the
AWGN. The energy of such a new coordinate is usually lower
than the noise floor. The first stopping criterion is designed to
detect this situation and to terminate the algorithm when an ap-
propriate number of virtual angular domain coordinates have
been tracked.
As for the second halting criterion, the DSAMP algorithm

is similar to the conventional SP algorithm in each stage with
the fixed sparsity level, which can guarantee the sparse signal
recovery with the exact sparsity level. The residual of the stage
with the exact sparsity level is usually smaller than that with the
incorrect sparsity level. Therefore, the DSAMP algorithm stops
at the stage when the smallest residual is reached, which tends
to be the stage associated with the exact sparsity level of the
channels in the virtual angular domain.

E. Performance Bound of Channel Estimation
By omitting , , and ξ in (11) for simplicity, the variance of

the channel estimation can be expressed as

(23)

Consider the CRLB for the estimation problem associated with
(9) given the true channel and the support set . Again for
notational simplicity, , , and in , , and
are omitted. Since the distribution of is , the
conditional probability density function (PDF) of given is

(24)

where is the power of the effective noise. The element at the
-row and -column of the Fisher information matrix

associated with this estimation problem is

(25)

where . Therefore, we have

(26)
Let be the eigenvalues of the matrix

. It is clear that

(27)

which can be calculated after the pilot signals, the geometrical
structure of the BS antenna array, and the support set of the
channel vectors in the virtual angular domain are given.
However, the support set is ‘random’ since the channel vec-

tors in practice are random and the elements of the measurement
matrix obey the i.i.d. . Thus we should consider the
‘expectation’ of the CRLB defined by

(28)

For the matrix with the elements of obeying
the i.i.d. , its eigenvalues obey the following
joint distribution [28]

(29)
Consequently, the expectation of the CRLB can be written as

(30)
Since the computation of (30) can be highly complex, in prac-
tice we adopt the performance of the oracle LS estimator as the
performance bound in the simulation study.

F. Adaptive Pilot Design and Required Time Slot Overhead for
Closed-Loop Channel Tracking
For the simplicity of analysis, the true support set and the

sparsity level of the virtual angular domain channels are as-
sumed to have been acquired by the CS based adaptive CSI ac-
quisition. Clearly, if is known, the smallest time slot over-
head for CSI acquisition can be reduced to .
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Fig. 4. The selection of threshold in Algorithm 2 given
and : (a) estimated PDFs of and ; and
(b) MSE performance of the DSAMP algorithm as the function of .

With the known , by exploiting the arithmetic-harmonic
means inequality [27], (27) can be further expressed as

(31)
where the equality holds if and only if .
This indicates that should be a diagonal matrix
with identical diagonal elements to approach the lower bound.
In particular, for with ,

(32)

and the lower bound of (32) is attained if is a unitary
matrix scaled by the factor . This has inspired us to design
the pilot signal matrix as , where

is a unitary matrix. With this non-orthogonal
pilot matrix, the lower bound of (32) is attained, i.e.,

.

G. Selection of Thresholds for Algorithms 1 and 2
1) in Algorithm 2: Consider the case that for the stage

of in Algorithm 2, the final estimated support set,
denoted as , is the proper superset of the true support set
, i.e., . This case implies that includes the sup-

port index associated with the noise. Define the test statistic as
with (lines 13 and 14 in Algo-

rithm 2 ). Two complete hypotheses for the case are defined
as: , indicating , and , indicating . Further-
more, denote the PDFs of under and as
and , respectively. By using the ksdensity func-
tion of MATLAB, we can obtain the estimated PDFs according
to Monte-Carlo simulations, since the closed-form expressions
are difficult to obtain.
Fig. 4(a) depicts the estimated PDFs of and

with typical values of and , given
and . Fig. 4(b) provides the MSE performance of

Algorithm 2 as the function of , which indicates that
achieves good MSE performance given typical values of

and . Following a similar procedure, suitable values of
for different SNRs can be obtained.
2) in Algorithm 1: Consider the test statistic

(line 6 in Algorithm

Fig. 5. The selection of threshold in Algorithm 1 given ,
, and : (a) estimated PDF of ; and (b)

and as the functions of .

1 with iteration index omitted) and the two complete hy-
potheses and , where indicates that the support
set of is correct, and is complementary to .

Under , .
However, under , the closed-form expression of is
difficult to derive. Similar to Fig. 4, Fig. 5(a) provides the
estimates of the PDF with typical values of and
, given , and . According

to Neyman-Pearson criterion [23], an appropriate threshold
should minimize the probability of false alarm given the

probability of miss. Fig. 5(b) depicts the simulated probability
of false alarm and the miss probability
of Algorithm 1 as the functions of , where is
used in the simulation. The results of Fig. 5(b) indicate that

minimizes both and given
typical values of and . Similarly, appropriate values of
for different SNRs can be obtained.

V. SIMULATION RESULTS

Massive MIMO system with the ULA of antennas
and was considered. The spatial angle spread varied
from 10 to 20 [4], [16], and thus the effective sparsity level
in the virtual angular domain was in the range of 8 to 14.
In the simulations, , , ,
and , while the channels in the virtual angular do-
main exhibited the spatially common sparsity over time
blocks. The length of the guard interval was 64, which indicates
that the system can combat the maximum delay spread of
[20], and thus we adopted [10]. The threshold parame-
ters, in Algorithm 1 and in Algorithm 2, were selected ac-
cording to Section IV-G. Specifically, we set to 0.06, 0.02,
0.01, 0.008, and 0.005, while to 0.08, 0.03, 0.0.09, 0.003, and
0.001, respectively, at the SNR of 10dB, 15dB, 20dB, 25dB and

. The oracle LS estimator and the CRLB were used
as the benchmarks for the CS based adaptive CSI acquisition
and the following closed-loop channel tracking, respectively.
The time slot overhead employed in the closed-loop channel
tracking scheme was set to the estimated sparsity level obtained
by the CS based adaptive CSI acquisition stage. The joint OMP
(J-OMP) based CSI acquisition scheme [15] was also adopted
for comparison.
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Fig. 6. Performance comparison of different CS algorithms as functions of the
sparsity level given , and : (a) MSE
performance, and (b) computational complexity.

Fig. 6 compares theMSE performance and complexity of four
CS algorithms under various sparsity levels . In the simula-
tions, sparse signals with the length of had
the common sparsity, the measurement dimension was ,
and , while measurement matrices were mu-
tually independent with elements obeying the i.i.d .
Note that the conventional OMP and SP algorithms require
as the priori information. Fig. 6(a) shows that the DSAMP al-
gorithm achieves the best MSE performance and it approaches
the oracle LS estimator for 2. This is because the
DSAMP algorithm jointly estimates sparse signals by ex-
ploiting the common sparsity. Moreover, Fig. 6(b) shows that
the complexity of the DSAMP algorithm is slightly higher than
those of its counterparts, but all the four CS algorithms have the
same order of complexity.
We defined the sparse signal detection probability as the prob-

ability of correctly acquiring the support set of sparse signal
(channel). Fig. 7 compares the detection probabilities as func-
tions of the measurement dimension achieved by the SMV,
MMV, and GMMV in noiseless scenario. In the simulation,
the length of multiple sparse signals was with the
common sparsity level , and the DSAMP algorithm
was employed to recover sparse signals. In particular, the SMV
recovers single sparse signal from single measurement matrix,
and the MMV jointly recovers sparse signals with the mul-
tiple identical measurement matrices, where the elements of
the measurement matrix obey the i.i.d. . By contrast,
the GMMV recovers sparse signals with mutually indepen-
dent measurement matrices in parallel, where the elements of
the measurement matrices also obey the i.i.d. . From
Fig. 7, it is clear that the joint processing of multiple sparse sig-
nals with the common support set and diversifyingmeasurement
matrices significantly enhance the performance of sparse signal
recovery. For example, to obtain the detection probability of one

2The DSAMP algorithm suffers from certain performance loss, compared to
the oracle LS estimator in the noisy scenario with . For ,
the case of (line 9) and (line 13) may repeatedly
appear due to noise, resulting in the failure of the backtracking function of lines

. For , the case of can lead to a poor LS
estimation (line 9) due to . Also see [22].

Fig. 7. Comparison of the sparse signal detection probabilities of the SMV,
MMV and the proposed GMMV as functions of .

Fig. 8. MSE performance of different channel estimation and feedback
schemes as functions of the time overhead and SNR.

with , the MMV requires , but the proposed
GMMV only needs , which indicates a reduction of ap-
proximately 35% in the required time slot overhead. Even the
GMMV with outperforms the MMV with .
Fig. 8 compares the MSE performance of the J-OMP scheme

[15] with fixed , the DSAMP algorithm with fixed , and the
CS based adaptive CSI acquisition scheme (Algorithm 1), where

was considered. The oracle LS estimator with the known
support set of the sparse channel vectors was adopted as the per-
formance bound. From Fig. 8, it can be seen that the J-OMP
based CSI acquisition scheme performs poorly. By contrast, the
proposed DSAMP algorithm is capable of approaching the or-
acle LS performance bound when . However, there
still exists a significant performance gap between the DSAMP
algorithm and the oracle LS estimator for . This is be-
cause the unreliable sparse signal recovery may occur when the
time slot overhead is insufficient, which degrades the MSE
performance. Fortunately, the proposed CS based adaptive CSI
acquisition scheme can adaptively adjust to acquire the robust
channel estimation. Observe from Fig. 8 that the proposed CS
based adaptive CSI acquisition scheme approaches the oracle
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Fig. 9. Distributions of adaptively selected time slot overhead by the CS based adaptive CSI acquisition scheme for different sparsity levels and SNRs.

LS performance bound even for . Note that for Algo-
rithm 1, we only plot the MSE associated with , be-
cause Algorithm 1 actually determines an appropriate
adaptively.
Fig. 9 depicts the distributions of the adaptively determined

time slot overhead by the CS based adaptive CSI acquisition,
given different sparsity level and SNRs. In Algorithm 1,
was set to 8. The results of Fig. 9 show that the proposed scheme
can adaptively determine an appropriate according to . As
pointed out in Section II-D, to reliably acquire CSI, the required
in conventional schemes can be as large as .

By exploiting the spatially common sparsity and temporal cor-
relation of massive MIMO channels, the proposed scheme can
effectively estimate the channels associated with hundreds of
antennas at the BS with a dramatically reduced time slot over-
head. Considering at for example, our
scheme only uses a time slot overhead of to acquire
CSI at the BS, which represents a reduction in the required
by about 92%, compared to conventional schemes.
Fig. 10 plots the distributions of the acquired sparsity level
by the proposed CS based adaptive CSI acquisition scheme,

under the same settings of Fig. 9. The results of Fig. 10 show
that the proposed scheme can accurately acquire the true spar-
sity level . Note that the acquired may be smaller than

at low SNR. This is because some virtual angular domain
coordinates whose channel energy is lower than the noise floor
may be discarded by the DSAMP algorithm. Because we set the
time slot overhead to in the closed-loop channel tracking,
Fig. 10 also provides the probability distributions of the time
slot overhead used in the closed-loop channel tracking stage. As
expected, the required time slot overhead in this stage is smaller
than the time slot overhead actually used in the CS based adap-
tive CSI acquisition stage, which is confirmed by comparing
Fig. 10 to Fig. 9.
Fig. 11 compares the MSE and required average time slot

overhead of the CS based adaptive CSI acquisition with

those of the closed-loop channel tracking for different at
. The initial overhead was set for the CS

based adaptive CSI acquisition. It is clear that benefiting from
the accurately estimated sparsity level information provided by
the CS based adaptive CSI acquisition, the closed-loop channel
tracking enjoys the better MSE performance with a smaller
required time slot overhead. For , the required by the
CS based adaptive CSI acquisition and following closed-loop
channel tracking are 20.43 and 14.02, respectively. Since the
acquired CSI by the CS based adaptive CSI acquisition is
utilized to adaptively adjust the pilot signal for enhancing
performance, the closed-loop channel tracking approaches the
CRLB, as can be seen in Fig. 11. Also note that for the CS based
adaptive CSI acquisition, the ratio increases slightly as

increases. Hence the MSE performance of the CS based
adaptive CSI acquisition improves slightly as the true sparsity
level increases.
Fig. 12 provides the MSE performance comparison for dif-

ferent channel estimation and feedback schemes, given
and various SNRs. Both the J-OMP based CSI acquisition

scheme [15] and the DSAMP algorithm used the fixed .
For the CS based adaptive CSI acquisition scheme,
was considered. The required average time slot overheads for
the proposed scheme are also marked in Fig. 12. Again, it is
clear that the proposed CS based adaptive CSI acquisition stage
(Algorithm 1), which uses the DSAMP algorithm with fixed
to adaptively determine an appropriate time slot overhead, out-
performs the J-OMP based CSI acquisition scheme andDSAMP
algorithm with a reduced time slot overhead requirement. By
utilizing the accurately estimated channel sparsity information
provided by the CS based adaptive CSI acquisition scheme,
the closed-loop channel tracking stage can adaptively adjust the
pilot signal to approach the CRLB with a further reduced time
slot overhead. Specifically, the proposed scheme can reliably
acquire the CSI of this massive MIMO system, approaching the
CRLB, with an average time slot overhead .
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Fig. 10. Distributions of the acquired sparsity level by the CS based adaptive CSI acquisition scheme (which is then used as the time slot overhead for the
proposed closed-loop channel tracking scheme) for different sparsity levels and SNRs.

Fig. 11. MSE performance comparison of the CS based adaptive CSI acqui-
sition stage and closed-loop channel tracking stage for different sparsity levels

at , where the required for each case is indicated.

Fig. 13 compares the downlink bit error rate (BER) perfor-
mance with zero-forcing (ZF) precoding, where the precoding
is based on the estimated CSI corresponding to Fig. 12 under the
same setup. In the simulations, the BS simultaneously served 16
users using 16-quadrature amplitude modulation signaling, and
the effective noise in CSI acquisition was only introduced in the
downlink channel. It can be observed that the proposed channel
estimation and feedback scheme outperforms its counterparts,
and its BER performance is capable of approaching that of the
CRLB.

VI. CONCLUSIONS
An adaptive channel estimation and feedback scheme has

been proposed for FDD massive MIMO, which achieves robust
and accurate CSI acquisition at the BS, while dramatically re-
ducing the overhead for channel estimation and feedback. The

Fig. 12. MSE performance comparison of different channel estimation and
feedback schemes for various SNRs and true sparsity level , where
the required average time slot overhead for each case is indicated.

10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

 

 

J−OMP [15], Fixed Time Overhead, G=15
DSAMP, Fixed Time Overhead, G=15
CS based Adaptive CSI Acquisition, G

0
=13

Closed−Loop Channel Tracking
CRLB of Closed−Loop Channel Tracking

Fig. 13. Downlink BER performance with ZF precoding, where the CSI at the
BS is acquired by different channel estimation and feedback schemes.
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proposed scheme consists of two stages, the CS based adaptive
CSI acquisition and the following closed-loop channel tracking.
By exploiting the spatially common sparsity of massive MIMO
channels within the system bandwidth, the CS based adaptive
CSI acquisition can acquire the high-dimensional CSI from a
small number of non-orthogonal pilots. The closed-loop channel
tracking, which exploits the spatially common sparsity of mas-
siveMIMO channels over multiple consecutive time blocks, can
effectively utilize the acquired CSI in the first stage to approach
the CRLB. We have generalized the MMV to the GMMV in
CS theory and provided the CRLB of the proposed scheme,
which enlightens us to design the non-orthogonal pilot for dif-
ferent stages of the proposed scheme. Simulation results have
confirmed that our scheme can reliably acquire the CSI of mas-
sive MIMO systems, specifically, approaching the performance
bound with an adaptively determined time slot overhead.
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