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Abstract— A guided stochastic search algorithm, known as
the repeated weighted boosting search (RWBS), offers an effec-
tive means for solving the difficult single-objective optimisation
problems with non-smooth and/or multi-modal cost functions.
Compared with other global optimisation solvers, such as the
genetic algorithms (GAs) and adaptive simulated annealing,
RWBS is easier to implement, has fewer algorithmic parameters
to tune and has been shown to provide similar levels of
performance on many benchmark problems. This contribution
develops a novel Pareto RWBS (PRWBS) algorithm for multiple
objective optimisation applications. The performance of the
proposed PRWBS algorithm is compared with the well-known
non-dominated sorting GA (NSGA-II) for multiple objective
optimisation on a range of benchmark problems, and the results
obtained demonstrate that the proposed PRWBS algorithm
offers a competitive performance whilst retaining the benefits
of the original RWBS algorithm.

I. INTRODUCTION

In the work [1], a guided stochastic search or meta-
heuristic algorithm, referred to as the repeated weighted
boosting search (RWBS), was proposed to solve the complex
optimisation problems with non-smooth and/or multi-modal
cost functions. The advantages of RWBS [1] include ease
of implementation, very few number of tuning parameters,
and capable of achieving the levels of performance com-
parable with many standard benchmark techniques, such
as the genetic algorithms (GAs) [2], [3] and the adaptive
simulated annealing [4], [5]. RWBS is essentially a multi-
start search technique [6], where the local optimisation mech-
anism is based on an iterative, adaptive, weighted convex
combination. In conjunction with a reflection operator, the
convex combination generates new solutions in a manner
similar to the simplex method. The adaptive weight update
process is a modified boosting technique [7]. A number of
applications have been reported using the RWBS, which
cover the diverse fields of machine learning, chaotic system
stabilisation, image and signal processing as well as wireless
communication designs [1], [8]–[18].

Although the RWBS algorithm has proved to be a very
useful optimisation tool for diverse applications, its orig-
inal form proposed in [1] is restricted to single-objective
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optimisation problems. This contribution proposes a novel
extension to the original RWBS for the use in multiple-
objective optimisation problems where no objective prefer-
ence structure is available. The resulting algorithm maintains
a set of Pareto-optimal solutions for subsequent inspection
by the designer, similar to the well-known non-dominated
sorting genetic algorithm (NSGA-II) [19]. The performance
of the resulting algorithm, referred to as the Pareto-RWBS
(PRWBS) algorithm, is assessed using some well-known
benchmark problems. In comparison with the state-of-the-
arts NSGA-II algorithm, the proposed PRWBS is shown
to offer a promising level of performance in solving these
multiple-objective optimisation problems whilst retaining the
attractive properties of the original RWBS version.

The generic multiple-objective problem considered in this
contribution is described as follows:

min
u∈U

f(J1(u), J2(u), · · · , JN (u)) (1)

where u = [u1 u2 · · ·un]T ∈ Rn is the n-dimensional
vector of bounded decision variables to be optimised, U
denotes the feasible set of u, Ji(u) is the i-th objective
function, N is the number of objective functions, and f is
the objective preference function which may or may not be
present. Evaluation of the objective functions may be analytic
or procedural, and the cost functions are not necessarily
continuous or differentiable.

If a priori information regarding the relative importance
of the different optimisation objectives is available, the
multiple-objective optimisation problem (1) can be reformu-
lated as a single-objective one, using a simple weighting
method. Techniques which operate in this manner can be
termed ‘non-Pareto methods’ as they search for solutions to
surrogate problems. However, if preference information is
not available or the nature of the Pareto-frontier is of direct
interest, then the optimisation algorithm must generate a set
of Pareto-optimal solutions. Ideally, the solutions should be
well distributed across the Pareto-frontier1. These methods
can be termed ‘Pareto methods’. The solution set can then
be used to consider which solution is most appropriate for
the particular problem and to implicitly infer some relative
importance of the objectives. Several methods have been pro-
posed to adapt common population based stochastic search
techniques to generate Pareto-optimal sets [20].

1What is meant by ‘well distributed’ is often problem specific, but a
reasonably uniform distribution over the Pareto-frontier may be deemed
desirable.



There are two main aspects to designing an efficient al-
gorithm for Pareto-optimisation. Firstly, the algorithm needs
to embody a mechanism which drives solutions towards the
Pareto-frontier and, secondly, there needs to be a mechanism
which ensures a good distribution of solutions across the
frontier. Typically, a form of Pareto-ranking or Pareto-sorting
is used to guide the optimisation towards the frontier [20].
These techniques effectively modify the cost value or fitness
value for a solution depending on its performance relative to
other solutions in the set, in contrast to the absolute notion
of optimality used in conventional optimisation. Solutions
which are ‘non-dominated’ or mildly dominated (i.e. only
dominated by a limited number of other solutions) are
attributed a higher fitness or lower cost than those which are
strongly dominated. This promotes the generation of more
non-dominated solutions. Distribution of solutions across
the Pareto-frontier is commonly achieved using ‘sharing’ or
‘niche’ methods [20], [21]. Sharing methods distribute an
individual’s fitness depending on how many solutions are
nearby it2, thus encouraging spread. A difficulty with these
sharing techniques is that the user must define the so-called
‘sharing parameter’ [20]. In general, manual fixing of the
sharing parameter requires knowledge of the objective func-
tion and adds to the tuning complexity of the optimisation
algorithm. In contrast, a distance based measure is used in
[19] which is completely parameterless.

II. PARETO RWBS FOR MULTIPLE OBJECTIVE PROBLEMS

The detailed RWBS algorithm can be found in [1], which
contains three algorithmic parameters: the population size Ps,
the number of generations in the repeated search Ng, and the
number of iterations in the weighted boosting search (WBS)
NB. As the RWBS is a population-based stochastic search
method, it can be readily adapted to the Pareto-optimisation
case by a number of modifications. These include the ad-
dition of a Pareto-ranking process and a mechanism which
encourages distribution as well as the modified elitism pro-
cess that retains a larger set of solutions between generations,
instead of the single point in the original algorithm.

Specifically, all the population members are ranked rela-
tively, in terms of Pareto-dominance, according to the ‘fast-
non-dominated-sort’ procedure proposed in [19]. To encour-
age a good spread across the Pareto-frontier, the resulting
Pareto-ranking of the i-th population member, Ri, and the
mean distance from all the other points, Di, as well as
a scaling parameter, Pr, are used to compute a distance
and ranking adjusted cost for the ith population member
according to

Ĵi =
PrRi

Di
, 1 ≤ i ≤ Ps. (2)

In the original RWBS algorithm for single-objective opti-
misation, the elitism process only retains the single best
solution to the next generation. This elitism process must be
modified so that a larger set of solutions is retained. In other

2Sharing can take place either in the decision space or the fitness space,
although in some cases decision space sharing is preferable [22].

words, in order to identify a suitable set of Pareto-optimal
solutions, a record of potential solutions must be retained
during each generation. To achieve this, the elitism process is
extended so that a larger proportion of the current population
is kept between each generation. This introduces another new
parameter, Pe, known as the ‘elitism count’, which specifies
how many population members are kept between generations.

The proposed PRWBS algorithm is constructed as follows.
Specify the following algorithmic parameters: the population
size Ps, the number of generations in the repeated search Ng,
the number of iterations in the WBS NB, the Pareto-ranking
scaling Pr, and the elitism count Pe.

⃝ Outer Loop : generations for g = 1 : Ng

– Pareto generation initialisation: Initialise the population
by setting u(g)

i = u(g−1)
best,i for 1 ≤ i ≤ Pe, and randomly

generating the rest of the population members u(g)
i for

Pe +1 ≤ i ≤ Ps, where
{
u(g−1)

best,i

}Pe

i=1
denotes the set of

the ‘best’ Pe solutions found in the previous generation.
If g = 1, u(g)

i , 1 ≤ i ≤ Pe, are also randomly chosen.
– Weighted boosting search initialisation: Assign the ini-

tial weights δi(0) = 1
Ps

, 1 ≤ i ≤ Ps, for the population.
Calculate the cost function values for each point of the
population set and for each objective function

Ji,o = Jo

(
u(g)

i

)
, 1 ≤ o ≤ N, 1 ≤ i ≤ Ps. (3)

– Inner Loop : weighted boosting search for t = 1 : NB

• Step 1: Pareto Boosting
1) Perform Pareto Ranking, Distance Measure

and Cost Mapping for the current population{
u(g)

i , Ji,o, 1 ≤ o ≤ N
}Ps

i=1
. Specifically,

a) Calculate the Pareto-ranking for each mem-
ber of the population:

{Ri}Ps
i=1 =FastNonDominatedSort

{
Ji,o,

1 ≤ i ≤ Ps, 1 ≤ o ≤ N
}
, (4)

using the method proposed in [19].
b) For each member of the population, com-

pute the mean Euclidean distance to all the
other points in the decision variable space:

Di =
1
Ps

∑
j ̸=i

∥u(g)
i −u(g)

j ∥, 1 ≤ i ≤ Ps. (5)

c) Compute the distance and ranking adjusted
costs Ĵi, 1 ≤ i ≤ Ps, according to (2).

2) Find ibest = arg min
1≤i≤Ps

Ĵi, and denote u(g)
best =

u(g)
ibest

.
3) Normalise the distance and ranking adjusted

cost values:

J̄i =
Ĵi

Ps∑
j=1

Ĵj

, 1 ≤ i ≤ Ps.



4) Compute a weighting factor β(t) according to

η(t) =
Ps∑
i=1

δi(t − 1)J̄i, β(t) =
η(t)

1 − η(t)
.

5) Update the weights for 1 ≤ i ≤ Ps

δi(t) =
{

δi(t − 1)β(t)J̄i for β(t) ≤ 1,

δi(t − 1)β(t)1−J̄i for β(t) ≤ 1,

and normalise them:

δi(t) =
δi(t)

Ps∑
j=1

δj(t)
, 1 ≤ i ≤ Ps.

• Step 2: Pareto Parameter Update
1) Construct the (Ps+1)-th point using the formula

uPs+1 =
Ps∑
i=1

δi(t)u
(g)
i .

2) Construct the (Ps+2)-th point using the formula

uPs+2 = u(g)
best +

(
u(g)

best − uP s+1

)
.

3) For these two new points, compute their ob-
jective function values: Ji,o, 1 ≤ o ≤ N and
i = Ps + 1, Ps + 2.

4) For i = 1 : 2
i) Perform Pareto Ranking, Distance Measure

and Cost Mapping for
{
u(g)

j , Jj,o, 1 ≤ o ≤
N

}Ps+2−(i−1)

j=1
, the enlarged population, to

yields
{
Ĵj

}Ps+2−(i−1)

j=1

ii) Find jworst = arg max
1≤j≤Ps+2−(i−1)

Ĵj , and

remove u(g)
jworst

from the population
This removes the two ‘worst’ points, and keeps
the population size to Ps.

– End of Inner loop Choose the Pe best solutions,{
u(g)

best,i

}Pe

i=1
:

For i = 1 : Pe

i) Perform Pareto Ranking, Distance Measure
and Cost Mapping for the population{
u(g)

j , Jj,o, 1 ≤ o ≤ N
}Ps−(i−1)

j=1
to yields{

Ĵj

}Ps−(i−1)

j=1

ii) Find jbest = arg min
1≤j≤Ps−(i−1)

Ĵj , set u(g)
best,i =

u(g)
jbest

, and remove u(g)
jbest

from the population

⃝ End of outer loop This yields the solution set
{
u(Ng)

i

}Ps

i=1

III. NUMERICAL EXPERIMENTS

The performance of the proposed PRWBS algorithm was
compared with the NSGA-II algorithm on several test prob-
lems. The NSGA-II is a well-known state-of-the-art multiple-
objective optimisation algorithm which has been shown to
produce very good results on a wide range of problems [19].
The NGSA-II algorithm used utilised real-coding, binary

tournament selection, binary crossover with probability 0.9,
polynomial mutation with probability 1

n , and non-dominated
sorting in conjunction with a crowding operator.

SCH function: The one-dimensional ‘SCH’ function was
taken from [19], which exhibits a convex Pareto-frontier:{

J1(u) = u2,
J2(u) = (u − 2)2. (6)

The decision variable u ∈ [−1, 1]. The following algorithmic
parameters were used for the PRWBS: Ps = 25, NB = 10,
Ng = 100, Pe/Ps = 0.8, and Pr = 10, which were found
to produce the best results based on trial and error. The
population size and the number of generations for the NSGA-
II were 30 and 50, respectively, and they were also tuned
using trial and error to provide the best performance.

The results obtained for this test function are illustrated in
Fig. 1, which shows the resulting objective space solutions.
In this figure and all the other objective-space based figures
in this section, red dot markers indicate the feasible solu-
tions generated by multiple Monte-Carlo (MC) simulations
based on random sampling in the decision space which help
to visually locate the Pareto-frontier, blue smaller asterisk
markers indicate the candidate solutions generated by the
NSGA-II, and black larger asterisk markers the candidate
solutions generated by the PRWBS. It is noted from Fig. 1
that the PRWBS algorithm is capable of finding solutions
across the Pareto-frontier. However, the distribution of the
solutions found by the PRWBS is inferior to that of the
NSGA-II, as it is less uniform across the Pareto-frontier.
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Fig. 1. Objective space performance comparison of the NSGA-II and
PRWBS on the convex test problem of SCH function (6), where red dot
markers indicate the feasible solutions generated by MC simulation, blue
smaller asterisk markers indicate the candidate solutions generated by the
NSGA-II, and black larger asterisk markers the PRWBS candidate solutions.

KUR function: The two-dimensional ‘KUR’ function was
again taken from [19], which has a non-convex Pareto-
frontier: 

J1(u) =
n−1∑
i=1

−10e−0.2
√

u2
i +u2

i+1 ,

J2(u) =
n∑

i=1

(
|ui|0.8 + 5 sin(u3

i )
)
,

(7)



where n = 2, u = [u1 u2]T, u1 ∈ [−5, 5] and u2 ∈ [−5, 5].
The algorithmic parameters used for the PRWBS were: Ps =
25, NB = 10, Ng = 100, Pe/Ps = 0.8 and Pr = 10, while
the population size and the number of generations for the
NSGA-II were 30 and 50, respectively. These parameters
were again chosen through trial and error. The results for
this test function are illustrated in Figs. 2 and 3.

Again, both the NSGA-II and PRWBS algorithms focus
on the the same convex region of the Pareto-frontier, as can
be seen from Fig. 2. A close-up of the objective space in
the region where the majority of the solutions are located
is illustrated in Fig. 2 (b), which reveals that the PRWBS
algorithm approaches the Pareto-frontier successfully and
the solutions are distributed across a similar region as the
NSGA-II candidate solutions. The distribution of the PRWBS
solutions across this region, however, is less uniform in
comparison with that of the NSGA-II results, as was also ob-
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Fig. 2. Comparison of full objective space performance (a) and close-up
objective space performance (b) for the NSGA-II and PRWBS on the non-
convex test problem of KUR function (7), where red dot markers indicate
the feasible solutions generated by MC simulation, blue smaller asterisk
markers indicate the candidate solutions generated by the NSGA-II, and
black larger asterisk markers the PRWBS candidate solutions.
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Fig. 3. Decision variable space comparison of the NSGA-II and PRWBS
on the non-convex test problem of KUR function (7), where the overlaid
contours represent the objective functions, blue smaller asterisk markers
indicate the candidate solutions generated by the NSGA-II, and red larger
asterisk markers the PRWBS candidate solutions.

served with the first test problem. The decision variable space
results, plotted in Fig. 3, and all the subsequent decision
variable space based figures should be interpreted as follows:
the overlaid contours represent the objective functions, and
blue smaller asterisk markers indicate the NSGA-II candidate
solutions, while red larger asterisk markers indicate the
PRWBS candidate solutions. From Fig. 3, it can be observed
that the Pareto-optimal solutions lie in a very small region
of the decision variable space and the PRWBS algorithm
has identified a very similar region to that of the NSGA-
II. However, the PRWBS solutions are slightly more spread
out in the decision space in comparison with the NSGA-
II solutions, indicating that there may be scopes for further
improvements in the Pareto-ranking and cost adjustment
process of the PRWBS.
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Fig. 4. Objective space performance comparison of the NSGA-II and
PRWBS on the multi-modal test problem (8), where red dot markers indicate
the feasible solutions generated by MC simulation, blue smaller asterisk
markers indicate the candidate solutions generated by the NSGA-II, and
black larger asterisk markers the PRWBS candidate solutions.
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Fig. 5. Decision variable space comparison of the NSGA-II and PRWBS
on the multi-modal test problem (8), where the overlaid contours represent
the objective functions, blue smaller asterisk markers indicate the candidate
solutions generated by the NSGA-II, and red larger asterisk markers the
PRWBS candidate solutions.

Multi-modal function: The performance of the two al-
gorithms in the case where the Pareto-frontier is multi-
modal was examined using the following two-dimensional
test function adopted from [22]:

J1(u) = u1,

g(u2) = 2.0 − e
−
(

u2−0.2
0.004

)2

− 0.8e
−
(

u2−0.6
0.4

)2

,

J2(u) = g(u2)
u1

,

(8)

where u = [u1 u2]T, u1 ∈ [0.1, 1] and u2 ∈ [0, 1].
Again, the following algorithmic parameters were used for
the PRWBS: Ps = 25, NB = 10, Ng = 100, Pe/Ps = 0.8
and Pr = 10, while the population size and the number
of generations of the NSGA-II were set to 30 and 50,
respectively. The results obtained for this test function are
illustrated in Figs. 4 and 5.

This optimisation problem has multiple modes, an attribute
which is known to cause difficulties for many multiple-
objective optimisation methods. The PRWBS algorithm
demonstrates the ability to identify a range of modes and, in
some regions of the Pareto frontier, outperforms the NSGA-II
algorithm, as can be seen in Fig. 4. Once again, a reasonable
area of the Pareto-frontier is identified by the PRWBS, but
the distribution of the solutions is less uniform than that of
the NSGA-II results. The relative positions of the candidate
solutions in the decision variable space, as depicted in Fig. 5,
are not as informative in this case, and it is difficult to infer
insight into the operation of the PRWBS or NSGA-II from
them. However, armed with a priori knowledge regarding
the true Pareto-optimal region of the decision space, it may
be possible to gain a deeper understanding, and this is an
interesting area for future research.

Discontinuous function: The following two-dimensional
test function is an example where the Pareto-frontier is
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Fig. 6. Objective space performance comparison of the NSGA-II and
PRWBS on the discontinuous test problem (9), where red dot markers
indicate the feasible solutions generated by MC simulation, blue smaller
asterisk markers indicate the candidate solutions generated by the NSGA-
II, and black larger asterisk markers the PRWBS candidate solutions.

discontinuous [22]:
J1(u) = u1,

g(u2) = 1 + 10u2,

J2(u) = g(u2)
(
1 −

(
J1(u)
g(u2)

)α

−J1(u)
g(u2)

sin
(
2πqJ1(u)

))
,

(9)

where α = 2, q = 4, u = [u1 u2]T, u1 ∈ [0, 1] and u2 ∈
[0, 1]. The algorithmic parameters, Ps = 50, NB = 20, Ng =
100, Pe/Ps = 0.8 and Pr = 10, were found empirically for
the PRWBS. The PRWBS required larger Ps and NB for
this problem, most likely due to the challenging nature of
the problem. This two-objective optimisation problem has a
discontinuous Pareto-frontier, an attribute which is known
to challenge multiple-objective optimisation techniques. The
NSGA-II used the same settings as in the previous problems.
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Fig. 7. Decision variable space comparison of the NSGA-II and PRWBS
on the discontinuous test problem (9), where the overlaid contours represent
the objective functions, blue smaller asterisk markers indicate the candidate
solutions generated by the NSGA-II, and red larger asterisk markers the
PRWBS candidate solutions.



The results obtained for this test function are illustrated in
Figs. 6 and 7.

It is observed from Fig. 6 that the PRWBS converges
towards four of the primary Pareto-optimal regions, while
the NSGA-II algorithm only identifies three of the regions
in this particular simulation. The performance of the NSGA-
II algorithm within the three regions located by the algorithm
is, however, superior to that of the PRWBS for these three
regions, in terms of solution distribution. Fig. 7 also offers
some intuition regarding the performance of the two algo-
rithms. In this case, the PRWBS is observed to identify a
larger area of the Pareto-frontier, in the form of four modes
compared with the three modes identified by the NSGA-II,
but the solutions of the PRWBS are located further from the
frontier than the NSGA-II solutions.

IV. CONCLUSIONS AND FUTURE WORK

A Pareto RWBS algorithm has been proposed for multiple-
objective optimisation problems by providing the origi-
nal single-objective RWBS algorithm with a Pareto-ranking
scheme combined with a sharing process. The resulting
PRWBS algorithm performs on par with the NSGA-II al-
gorithm which is a well-known state-of-the-art multiple-
objective GA, in terms of identifying the Pareto-frontier,
while retaining the attractive properties of the original RWBS
algorithm, namely, simplicity, ease of implementation and
small number of tuning parameters.

More specifically, the PRWBS algorithm has been shown
to converge reliably towards the Pareto-frontier in a range of
test problems with various challenging attributes. The algo-
rithm is observed to be capable of identifying a large area of
the Pareto-frontier in each case, comparable with the NSGA-
II algorithm. In particular, for the test case of discontinuous
Pareto-frontier, the PRWBS provides a superior performance,
in terms of locating more discontinuous regions of the Pareto-
frontier. The results presented has therefore demonstrated
that the PRWBS algorithm offers clear potential as a flexible,
high-performance multiple-objective optimisation technique.
There are scopes, however, to further improve the algorithm,
both in terms of the distribution of its solutions along the
Pareto-frontier, and the accuracy of the solutions in terms of
their distances to the Pareto-frontier.

A future work for improving the performance of the
PRWBS in this regard would be selective combining. The
PRWBS algorithm generates a single new member by
weighting all the candidates. An alternative approach would
be to use a selection operator to select which members are
used in a set of convex combinations at each stage, similar
to the way a GA proceeds. This would create a number
of new individuals in each generation. It is hypothesised
that this approach would help to improve the algorithm’s
performance in terms of the accuracy to which the Pareto-
frontier is located.
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