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Abstract— This paper studies the mutual information transfer charac-
teristics of a novel low-complexity Bayesian Multiuser Detector (MUD)
proposed for employment in Space Division Multiple Access (SDMA)
aided Orthogonal Frequency Division Multiplexing (OFDM) systems.
The design of the Bayesian MUD advocated is based on extending
the optimum single-user Bayesian design to multiuser OFDM signals
modeled by a Gaussian mixture, rather than by a single Gaussian
distribution, when characterizing the conditional PDF of the received
signal. In order to reduce the complexity of the Bayesian MUD, we
introduce an a priori information threshold and then discard the low-
probability terms during the calculation of the extrinisic information
generated . The achievable complexity reduction as a function of different
threhold values is analyzed and the best tradeoff values are derived
with the aid of simulation. Both non-systematic and recursive systematic
convolutional codes are used for exchanging extrinsic information with
the MUD for the sake of achieving a turbo-detection aided iteration gain.
The convergence behavior of the proposed low-complexity Bayesian turbo
MUD is investigated using EXtrinsic Information Transfer (EXIT) chart
analysis and compared to that of Soft Interference Cancellation aided
Minimum Mean Square Error (SIC-MMSE) MUD schemes. As expected,
the simulation results show that the proposed low-complexity Bayesian
Turbo MUD outperforms the SIC-MMSE MUDs. A substantial benefit
of the proposed MUD is that it is potentially capable of supporting
up to three times higher number of users than the number of receiver
antennas. In this challenging multiuser scenario, the resultant channel-
matrix becomes rank-deficient, resulting in a linearly non-separable
detector output phasor constellation, when classic linear receivers tend
to exhibit a poor performance.

I. INTRODUCTION

During the past a few years, Space Division Multiple Access
(SDMA) has attracted substantial research efforts expended for the
sake of increasing the number of users supported. This is achieved
by allowing the users to communicate within the same time-slot and
frequency band, differentiating them with the aid of their unique user-
specific Channel Impulse Response (CIR) [1], [2]. In recent years,
Orthogonal Frequency Division Multiplexing (OFDM) has found its
way into a range of Wireless Local Area Network (WLAN) and
Broadcast standards. Combining the benefits of SDMA and OFDM
has the promise of achieving reliable wireless communications at
high data rates with the aid of efficient Multi-User Detector (MUD)
algorithms [2].

Following Berrou’s landmark paper on the turbo principle [3],
iterative detection has found applications in channel coding [4],
channel estimation, equalization [4] and multiuser detection [4]. The
conventional Minimum Mean Square Error (MMSE) algorithms can
be conveniently combined with the so-called interference Cancel-
lation (IC) [2], [4] technique to create attractive MUDs. However,
when supporting a higher number of users than the number of
receiver antennas, the channel matrix becomes rank-deficient and
hence the MMSE SDMA MUD falters. In this rank-deficient scenario
the phasors become linearly non-separable at the channel’s output and
only non-linear SDMA MUDs have the ability to perform adequately.
Hence in this contribution we propose a non-linear Bayesian turbo
MUD, which is capable of achieving an attractive tradeoff between
the attainable complexity reduction and the performance degradation
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imposed. Our advocated solution outperforms the linear turbo MMSE
MUD benchmarkers at the cost of a moderate complexity increase
[5].

The achievable performance of these MUDs will be investigated
using EXIT charts [6], which provide a convenient way of visualizing
the mutual information exchange between the inputs and outputs of
concatenated receiver components and hence allow us to predict their
achievable performance and to examine their convergence properties.
Although at a low number of interferes the extrinsic information
at the output of the proposed turbo Bayesian MUD may be non-
Gaussian distributed, nonetheless, the EXIT-chat technique succeeded
in predicting the achievable turbo performance of the system in
the context of SDMA OFDM using convolutional codes and BPSK
modulation.

Perfect Channel State Information (CSI) is assumed to be available
at the receiver, which will be substituted by a more realistic channel
estimator outlined for example in Chapter 16 of [2] in our future
work. Alternatively, a number of adaptive techniques may be used
for circumventing this problem [7]. Our results will demonstrate that
the proposed detector is capable of significantly outperforming the
MMSE MUD, especially in the so-called rank-deficient scenarios,
namely when the number of SDMA uplink users supported is higher
than the number of receiver antennas at the base station.

The remainder of this contribution is organized as follows. In Sec-
tion II, a system model is introduced, which will be used in Section
III for studying a range of different turbo MUD strategies. Our system
performance results and EXIT chart analysis are presented in Section
IV, followed by our conclusions in Section V.

II. SYSTEM MODEL

The SDMA uplink (UL) transmission structure is portayed in
Fig.1. More specifically, each of the L simultaneous MSs employs a
convolutional encoder and a single UL transmission antenna, while
the BS’s UL receiver has a P -element antenna array. As seen in
Fig. 1, the set of complex-valued UL signals, xp[n, k], p ∈ 1, . . . , P
received from the P -element antenna array in the k-th subcarrier
of the n-th OFDM symbol is constituted by the superposition of the
independently faded signals corresponding to the L UL users sharing
the same frequency band, which are also corrupted by the Additive
White Gaussian Noise (AWGN) encountered at the array elements
[2]. The indices [n, k] have been omitted for notational convenience
during our forthcoming discourse, yielding [2]:

x = Hs + n = x̄ + n, (1)

where x is the (P ×1)-dimensional vector of the UL received signals,
s is the transmitted (L × 1)-dimensional signal vector generated
from the convolutional encoded bits, n is the (P × 1)-dimensional
noise vector and x̄ represents the noiseless component of x. Both
the complex-valued UL transmitted signal, sl of the l-th user, where
l ∈ 1, . . . , L and the AWGN process, np, at p-th antenna array
element, where p ∈ 1, . . . , P are assumed to exhibit a zero mean
and variances of σ2

l and 2σ2
n, respectively.

Furthermore, H is the Frequency Domain Channel Transfer Func-
tion (FDCHTF) matrix having a dimension of (P × L), constituted
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Fig. 1. Schematic of the turbo SDMA OFDM uplink scenario, where each of the L users is equipped with a convolutional channel code and a single transmit
antenna, while the BS’s receiver is assisted by a P -element antenna array followed by iterative processing.

by the set of channel transfer factors Hp,l, which describes the inde-
pendent, stationary and complex-Gaussian distributed fading process
between the reception array element p ∈ 1, . . . , P and the single
transmitter antenna associated with a particular user l, characterized
by a zero-mean and unit variance.

The a posteriori information Lm,p(sl) output by the turbo MUD is
derived by exploiting both the received signal vector x and the a priori
information Lm,a(sl) of all the L UL users, which is the interleaved
extrinsic information Lc,e(sl) generated by the channel decoders
for the bits received. Upon subtracting the a priori information
Lm,a(sl) from the a posteriori information Lm,p(sl), the extrinsic
information Lm,e(sl) output by the MUD is attained. After de-
interleaving Lm,e(sl) is forwarded to a bank of Soft-Input Soft-
Output (SISO) channel decoders as the a priori information Lc,a(sl),
in order to generate the a posteriori information Lc,p(sl) for carrying
out the decisions concerning the original source bits. The extrinsic
information Lc,e(sl) output by the l-th channel decoders, where
l ∈ 1, . . . , L, is generated by deducting the a priori information
Lc,a(sl) from the a posteriori output Lc,p(sl) and then interleaved,
before it is fed back to the MUD as the a priori information Lm,a(sl),
in order to complete a full iteration. The subscript l of the soft
information L in Fig.1 indicates that it belongs to sl. The usual
interleavers and de-interleavers separating the MUD and the channel
decoders render the distribution of information fed into the MUD
and channel decoders independent of each other, which improves
the benefits of the extrinsic information generated in terms of the
achievable iteration gain.

When employing BPSK modulation, the a posteriori information
of the l-th user’s transmitted bit sl generated by the SISO MUD is
expressed in terms of Log Likelihood Ratios (LLR) as:

Lm,p(sl) = ln
P (sl = +1|ŝl)

P (sl = −1|ŝl)

= ln
P (ŝl|sl = +1)

P (ŝl|sl = −1)
+ ln

P (sl = +1)

P (sl = −1)

= Lm,e(sl) + Lm,a(sl), (2)

where the a posteriori information seen in Fig. 1 is given by the sum
of the extrinsic information and a priori information. More explicitly,
Lm,e(sl) in Eq.(2) is the extrinsic information which is fed into the
channel decoder of Fig. 1 after de-interleaving, while the second term
denoted by Lm,a(sl) represents the a priori information related to the
interleaved encoded bits sl. Since no a priori information is available
for the MUD during the first iteration, we have Lm,a(sl) = 0. During
the following iterations, the a priori information of the MUD is
generated by interleaving the extrinsic information of the channel
decoder, gained by subtracting its a priori information Lc,a(sl) from
its a posteriori information Lc,p(sl), as depicted in Fig.1.

III. TURBO MUDS

In this section, several turbo MUDs will be introduced. The
conventional MMSE MUD minimizing the complex-valued MSE

between the estimated and ideal noiseless received signal will be
presented first, which employs soft interference cancellation. This
is referred as the Complex-valued MMSE (CMMSE) [5] MUD. For
BPSK scenarios, the so-called real-valued MMSE (RMMSE) [8] may
also be applied for enhancing the achievable performance of the
system, which will be outlined below. Finally, we will investigate
the novel low-complexity Bayesian MUD and demonstrate that it
outperforms the linear benchmark employed.

For the linear turbo MUDs employing soft interference cancel-
lation, such as the CMMSE and RMMSE schemes, the symbol
¯̂s
(i)

l(MMSE) of the l-th user estimated during the i-th decoding iteration
can be written as follows [5]:

ŝ
[i]
l = s̄

[i]
l + v

[i]
l w

[i]
l

H · (x − Hs̄[i]), (3)

where the superscript [i] denotes i-th decoding iteration. v
[i]
l is the a

priori variance of ŝ
[i]
l given by [5]:

v
[i]
l = 1 − |s̄[i]

l |2, (4)

s̄
[i]
l is the l-th user’s a priori mean value and all the values s̄

[i]
l , l =

1 . . . L of the L users constitute the mean vector s̄[i] of i-th decoding

iteration. Furthermore, w
[i]
l

H
is the Hermitian of the l-th column of

the array weight matrix W[i] employing the CMMSE or the RMMSE
criterion. For notational simplicity, we have omitted the superscript
[i] from s̄l, vl, wl and W during our forthcoming discourse.

A. Turbo CMMSE Multiuser Detection

The CMMSE MUD is one of the most popular linear MUD
algorithms, which minimizes the Complex-valued MSE (CMSE)
metric for the l-th user expressed as:

JCMSE(wl) = E[|ŝ[i]
l − sl|2], (5)

where ŝ
[i]
l and sl are generally complex-valued.

The closed-form CMMSE array weight vector is expressed as [5]:

wl,CMMSE = (HVHH + 2σ2
nIP )−1hl (6)

assuming that σ2
l = 1, where V = diag[v1 . . . vL], IP is a (P ×P )-

dimensional identity matrix, and hl is the l-th column of the FDCHTF
matrix H.

B. Turbo RMMSE Multiuser Detection

For BPSK transmission, only the real part of the estimated signal is
required, therefore directly minimizing the real-valued MSE (RMSE)
between the estimated signal and desired signal will remove the
unnecessary constraint imposed on the array weight matrix of the
CMMSE MUD characterized in Eq.6 and hence will provide signif-
icant performance improvements. The cost function of the RMMSE
algorithms is formulated as [8]:

JRMSE(wl) = E[|ŝ[i]
l,R − sl|2], (7)

where ŝ
[i]
l,Ris the real part of the estimated signal ŝ

[i]
l during the i-th

decoding iteration.



Applying the real-valued vertical concatenation matrix method of
[8], we attain the vertically concatenated RMMSE weight vector in
the form of: assuming that σ2

l = 1, where hl is the l-th column of
the FDCHTF matrix H and the subscript c of the matrices indicates
the vertical concatenation, defined as:

U
¯ c =

( �[U
¯
]

�[U
¯
]

)
, (8)

with U
¯

indicating an arbitrary matrix. While �[U
¯
] and �[U

¯
] denote

real and imaginary parts, respectively. Once the vertically concate-
nated RMMSE weight vector wl,RMMSE,c has been derived, the
RMMSE weight vector wl,RMMSE can be derived by finding the
inverse of the operator in Eq.(8).

C. low-complexity Bayesian turbo Multiuser Detection

When the a priori information concerning the likelihood of all the
legitimate Nb = 2L number of BPSK modulated L-user bit sequences
becomes available, the joint PDF of the antenna array’s output x and
the transmitted BPSK modulated bits b̆

(j)
l ∈ {±1}, j ∈ 1, . . . , Nb of

user l at the output of the convolutional encoder can be expressed as
the superposition of all the conditional Gaussian PDFs positioned at
the legitimate noiseless outputs corresponding to sl = +1 and sl =
−1, multiplied by the j-th legitimate signal vector’s probabilities,
respectively, which can be expressed as :

P (x, sl = +1) =
∑

∀j:s
(j)
l

=+1

P (s(j)) e

(
− (‖x−x̄j‖)2

2σ2
n

)
, (9)

P (x, sl = −1) =
∑

∀j:s
(j)
l

=−1

P (s(j)) e

(
− (‖x−x̄j‖)2

2σ2
n

)
. (10)

The entire set of Nb = 2L number of legitimate vectors of the L
users is partitioned into two subset corresponding to sl = +1 and
sl = −1 according to these two equations. In Eq.9 and Eq.10, 2σ2

n

is the variance of the noise, while x̄j , j ∈ 1, . . . , Nb constitutes the
noiseless received signal vectors, where the Gaussian PDFs seen in
Eq.9 and Eq.10 are centered. The Euclidian distance measured from
their noiseless center to the received signal vector is used as the metric
of quantifying their corresponding probability. Furthermore, P (s(j))
is the a-priori information to be defined more explicitly below. All
the other notations are defined as before.

Provided that the convolutional encoded bits of all the L users are
independent, the probability P (s(j)) can be expressed as :

P (s(j)) =
L∏

l=1

P (s
(j)
l ), j ∈ 1, . . . , Nb, (11)

where P (s
(j)
l ) represents the probabilities of either P (s

(j)
l = 1) or

P (s
(j)
l = 0), depending on the l-th user’s bit at the j-th bit position,

j ∈ 1, . . . , Nb = 2L within the L-user transmitted symbol vector,
which is the a-priori information provided by the l-th user’s SISO
channel decoder.

Based on our above discourse concerning the joint PDF of the
received signal vector and the lth user’s transmitted bit, we will ouline
here the philosophy of the Bayesian turbo MUD advocated. Let us
use the conditional likelihood of the received signal vector as that
of the estimated bit decision concerning the lth user’s transmitted bit
according to Eq.2. Then we have:

Lm,p(sl) = ln
P (sl = +1|x)

P (sl = −1|x)

= ln
P (x, sl = +1)

P (x, sl = −1)

= ln

∑
∀j:s

(j)
l

=+1
P (s(j)) e

(
− (‖x−x̄j‖)2

2σ2
n

)

∑
∀j:s

(j)
l

=−1
P (s(j)) e

(
− (‖x−x̄j‖)2

2σ2
n

) . (12)

Fig. 2. Complexity reduction radio of the low-complexity Bayesian MUD
when supporting L = 6 users

where all the notations have been define before. Eq.12 will lead to
the maximum-likelihood solution.

In order to further reduce the complexity of the Bayesian turbo
MUD, we introduce the a priori LLR threshold value ThrLLR. Be-
fore invoking the a priori probability vector for calculating Lm,p(sl),
preprocessing of the a priori information is carried, as follows:

P (sl = +1) =




1 if Lm,a(sl) > ThrLLR;
0 if Lm,a(sl) < −ThrLLR;
1
2
(tanh(Lm,a(sl)

2
) + 1) else,

(13)

where l ∈ 1, . . . , L.
Let us now observe Eq.12 again. Once the a priori information

Lm,a(sl) associated with a specific user l has an absolute value
higher than ThrLLR, half the number of the 2(L−1) PDF terms
in both the numerator and denominator will become zero, when
calucating Lm,a(sl′), l

′ �= l. Hence the total number of calculations
required by all the L users is nearly halved. If the absolute value of
the a priori information associated with another user is higher than
ThrLLR as well, the complexity imposed will be further halved.
Hence the complexity associated with using this threshold can be
expressed as:

CLC ≈ COriginal · (1 − 1

2
P (|Lm,a(sl)| > ThrLLR))L, (14)

where COriginal is the original complexity of the Bayesian MUD,
which can be seperated into two parts, namely the calculation of the
legitimate channel output states and the addition of the Gaussian
PDFs . The computation of the legitimate channel output states
requires 2 ∗ 2LP (2L − 1) operations, while the addition of the
Gaussian PFDs requires 2L(6P +1) operations, plus 2L exp function
evaluations, when considering a single transmitted bit. When the
Gaussian distribution assumption is applied to the PDF of the LLRs,
Lm,a(sl) can be considered to be normally distributed with a mean
of µ = sl · σ2

LLR/2 and a variance of σ2
LLR [6]. Then following a

number of steps we can derive:

P (|Lm,a(sl)| > ThrLLR) = Q

[
ThrLLR − 1

2
σ2

LLR

σLLR

]
(15)

+Q

[
ThrLLR + 1

2
σ2

LLR

σLLR

]
.

Furthermore, the a priori mutual information of I(A,MUD) avail-
able for the MUD and calculated between the a priori information
and the bipolar bits will be a function of a single parameter, namely
that of the LLR variance of σ2

LLR [6],



System Parameters

SDMA
Number of users 2, 4, 5, 6 ,8
Number of receiver
antennas 2
Channel impulse 3-path SWATM
response symbol-invariant [2 p.78]
OFDM
Number of subcarriers 128
Length of cyclic prefix 32
Modulation BPSK
Channel Coding
Type NSC, RSC
Code rate 1/2
Constraint Length 4
Turbo interleaver
block length 20480
Decoder type Approximate Log MAP [4]

TABLE I
PARAMETERS FOR THE SIMULATIONS.

I(σLLR) = 1 −
∫ ∞

−∞

e

(
−(x−σ2

LLR/2)2

2σ2
LLR

)

√
2πσLLR

· log2 (1 + e−x)dx. (16)

Since the function I(σLLR) is monotonically increasing, it is
invertible. Therefore, the complexity reduction ratio CLC

COriginal
will

be a function of the LLR threshold ThrLLR and that of the a
priori mutual information I(A,MUD) of the MUD. Fig.2 portrays
the 3-D complexity reduction ratio, when supporting L = 6 users.
As expected, this ratio is a monotonically increasing function of
the threshold ThrLLR, while a monotonically decreasing function
of the a priori mutual information I(A,MUD) of the MUD. This
implies that we have to set the value of ThrLLR as low as possible
without inflicting any significant performance degradation in order
to obtain the best possible complexity reduction. The simulated
results of Section IV will provide us with further insight on the best
tradeoff value of ThrLLR between maintaining a low complexity and
imposing a performance degradation.

IV. SIMULATION RESULTS

In this section, the attainable performance of the proposed low-
complexity Bayesian turbo MUD is investigated in comparison to
the other two linear turbo MMSE MUDs outlined in Section III. The
EXIT chart technique is employed as our semi-analytical convergence
testing tool. Our system parameters are summarized in Table I. Each
user has a different random interleaver. We will demonstrate that the
low-complexity Bayesian turbo detector outperforms the two linear
turbo MMSE MUDs employed as benchmarkers.

In Fig.3, we plot both the associated EXIT charts along with
the associated simulated detection trajectories of the low-complexity
Bayesian turbo receiver associated with different threshold values,
when supporting L = 6 users, and employing a half-rate, constraint-
length-4 Non-Systematic Convolutional (NSC) encoder for each UL
user. The lines characterize the EXIT curves of the proposed low-
complexity Bayesian turbo detector in conjunction with different
threshold values, indicating that the system’s performance is nearly
remain virtually unimpaired, when the threshold values are higher
than ThrLLR = 4. The simulated detection trajectories in conjunc-
tion with different threshold values are also shown in Fig.3 using lines
marked with arrows. This also indicates that the best tradeoff value
of the LLR threshold is around ThrLLR = 4. The iterative detection
process commences from the origin of Fig.3, which represents the
absence of a-priori information for the MUD. Then the decoding
trajectory traverses to the MUD’s EXIT curve in Fig.3, indicating
that valuable LLR information was generated by the MUD. The
resultant extrinsic information is forwarded to the channel decoders
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Fig. 3. EXIT charts and simulated trajectories of the low-complexity
Bayesian MUD with different threshold values for P = 2 receiver antennas
and L = 6 users

of Fig.1 and hence the detection trajectory reaches the EXIT curve
of the channel decoder, which demonstrates that further extrinsic
information is obtained from the SISO channel decoder assisted by
the a-priori information gleaned from the MUD. During its further
evolution, the trajectory traces up to the MUD’s EXIT curve again,
as a result of exploiting the extrinsic information extracted from the
channel decoder, which is fed back to the MUD and so forth. In other
words, the trajectory evolves in this manner within the open detection
tunnel between the EXIT curves of the MUD and the channel decoder,
until it reaches the intersection of the curves if the threshold is large
enough. The simulated detection trajectories when the threshold equal
to 4 or larger closely follow the behaviour predicted by the EXIT
curves.
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Fig. 4. EXIT charts of different turbo MUDs for P = 2 receiver antennas
and L = 6 users

In order to plot the EXIT curves for the iterative multi-user com-
munication system in a 2-D plane, the average of all the users’ mutual
information was used. If the average Channel Impulse Response
(CIR) and SNR of each user is similar, then this may be judiciously
exploited for the sake of employing EXIT analysis.

In Fig.4, we plot the EXIT curves of employing different turbo
MUD schemes, including the CMMSE, the RMMSE and the pro-
posed low-complexity Bayesian detectors with ThrLLR = 4, when
supporting L = 6 users at Eb/N0 = 2dB and 6dB. At the abscissa
of unity, all the EXIT curves of the different MUDs recorded at a
given SNR value converge to the same point, coinciding with that
produced by the MUD for a single user. This reveals that all of
the three MUDs succeeded in completely eliminating the multiple
access interference, when perfect a-priori information was provided.
The Bayesian detector exhibits the highest ordinate value in Fig.4



at the abscissa of zero, followed by the RMMSE and then the
CMMSE scheme, providing the widest EXIT tunnel. Hence the
Bayesian detector has the lowest SNR convergence threshold and
fastest convergence rate, again, followed by the RMMSE and the
CMMSE detector. Fig.5 portrays the BER performance of these three
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Fig. 5. BER performance of the different MUDs for P = 2 receiver antennas
and L = 6 users

MUD algorithms parameterized by the SNR, which confirms the
predictions of our EXIT chart analysis. It is clearly seen in Fig.4
that when the SNR is higher than a certain threshold and the number
of iterations is sufficiently high, the achievable BER of each of the
three MUDs approaches the single-user-bound.
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Fig. 6. EXIT characteristics of the NSC and RSC channel decoders and that
of the low-complexity Bayesian MUD with thr = 4 for supporting different
number of users at Eb/N0 = 4dB, when employing P = 2 receiver antennas

Fig.6 allows us to compare the EXIT curves of different con-
volutional channel codes, namely that of the previously used NSC
code as well as that of the half-rate, constraint-length-4 Recursive
Systematic Convolutional (RSC) code to the corresponding EXIT
curve of the Bayesian MUD, when supporting different number of
users at Eb/N0 = 4dB. We can see in Fig.6 that all the curves
corresponding to the different numbers of users converge to the
same point, again, attaining a near-single-user performance. This
indicates that regardless of the number of users, all the multiple
access interference can be removed when perfect a-priori information
is available, namely, at the abscissa value of unity. The differences of
these curves supporting different numbers of users may be observed
both in terms of their different ordinate values at abscissa value
of zero and the sloping rates. The higher the number of users
supported, the lower ordinate starting points in Fig.6 and the steeper
their slopes. This is because supporting a higher number of users
imposes more interference at the MUD’s output, resulting in a lower
extrinsic mutual information improvement, when the same amount
of a-priori information is provided. More explicitly, Fig.6 suggests

that at Eb/N0 = 4dB, at least L = 8 users can be supported, since
there is an open EXIT-tunnel between the MUD’s and the channel
decoder’s EXIT curves. Let us briefly compare the different channel
codes adopted, namely the NSC and RSC code having the generator
polynomials of (15,17) and (13,6) expressed in terms of their octal
representation, respectively. We may conclude from Fig.6 that the
shapes of the EXIT curves associated with the NSC and RSC are
similar, although the NSC code has the potential of offering the
benefits of a slightly wider EXIT tunnel initially, at the cost of having
a lower ordinate value at the abscissa of zero. This implies having a
higher residual BER for the NSC code.

The best matching channel decoder for the MUD considered can
be found for example by using the Irregular Convolutional Codes
(IRCC) derived in [9].More explicitly, this procedure allows us to
shape the IRCC scheme’s EXIT characteristic so that it matches
that of the MUD and hence provides an open EXIT-tunnel at low
SNRs, thereafter it is capable of potentially supporting near-capacity
operation.

V. CONCLUSION

In conclusion, a novel low-complexity Bayesian turbo MUD was
proposed, which is capable of outperforming both the CMMSE and
the RMMSE turbo MUDs. We also demonstrated the accuracy of
EXIT charts, despite the non-Gaussian LLR-distribution recorded at
the output of the Bayesian MUD. The focus of our future work is
on the design of similar turbo receivers for high-throughput QAM
schemes using a variety of sophisticated channel decoders [4].
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