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Abstract— An adaptive minimum symbol error rate (MSER) linear
multiuser detector (MUD) is proposed for direct sequence code divi-
sion multiple access (DS.CDMA) systems employing multilevel pulse-
amplitude modulation (A -PAM) scheme, Based on a kernel density es-
timation for approximating the symbol error rate (SER) from training
data, a least mean squares (LMS) style stochastic gradient algorithm
called the least SER {LSER) is developed for training linear MUDs.
Computer simulation is used to investigate the performance of this
LSER MUD.

[. INTRODUCTION

DS-CBMA [I] constitutes an attractive multiuser scheme
that allows users to transmit at the same carrier frequency in
an uncoordinated manner. However, this creates multiuser
interference (MUI) which, if not controlled, can seriously
degrade the quality of reception. A variety of MUDs have
been proposed for combating MUI {1]1-[10]. Multi bits per
symbol modulation schemes can better utilize precise band-
width. In this paper, we consider DS-CDMA systems which
employ AM-PAM modulation scheme. Within the class of lin-
ear MUDs, the MMSE detector [5].[10] is popular, as it of-
ten performs adequately and has simple adaptive implemen-
tation. However, it is well known that in general the MMSE
solution is not the minimum bit error rate (MBER) solution.

For a binary modulation scheme, it has been demonstrated
that a linear detector that minimizes the bit error rate (BER)
can outperform the MMSE detector considerably at least in
certain situations and adaptive LMS style MBER algorithms
can be derived [11]}-[13]. The stochastic gradient algorithm
of [11] is referred to as the approximate MBER (AMBER),
while the stochastic gradient algorithm of [123,[13] is called
the least BER (LBER). The AMBER algorithm has simpler
computational requirement but the LBER algorithm is known
10 have better performance in terms of convergence speed
and steady state BER misadjustment [12],[13].

In this paper, we extend the LBER MUD to DS-CDMA
systems with M-PAM symbol constellation. We first derive
the SER of the linear detector for a known system. The
MBSER linear detector can be obtained by minimizing the
SER. Using a kernel density approximation of the SER from
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training data, a stochastic gradient algorithm call the LSER is
developed for training linear detector. Three versions of the
L.SER algorithm are presented, each in turn having simpler
complexity. The simplest version has a complexity similar
to that of the very simple AMBER algorithm. The AMBER
algorithm can alsc be extended to the M -PAM case, and we
refer to the resulting algorithm as the AMSER. In simula-
tion, we compare the performance of the LSER linear detec-
tor with that of the AMSER one.
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Fig. I. Discrete-time model of down-iink synchronous CDMA.

II. SYSTEM MODEL

The down-link synchronous DS-CDMA system with N
users and L chips per symbol is depicted in Fig. 1, where
si(k) denotes the k-th symbol of user 4, which is assumed to
take the value from the symbol set

S={s=20-M~1,1<1< M}, 1)

the unit-length signature sequence for user ¢ is €;

[ei1 -+ - €:,2]7, and the channel impulse response (CIR) is
np—1 )
H(Z) = Z h,i:f.'_z . @
=0
The received signal sampled at chip rate is given by:
s(k)
s(k—1)
r(k) = (k) + n(k) =P +n(k), 3
s(k—D+1)

where s(k) = [s1(k) - s (k)] is the symbol vector of NV
users at k, D is the intersymbol interference span which de-
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peads on ny, and L, n{k) = [ni(k)- - ny(k)]7 is the Gaus-
sian noise sample vector with E[n(k)n7 (k)] = 21, and the
L »x DN system matrix P has the form

CA 0 .- 0
p=g| O ©A )
: . -0
0 .- 0 CA
with the I, x DL CIR matrix H given by
kg hy h’nh~i
h,(] hl hnh—l
H = )
hy hy Ry -1
(&)

the user code matrix given by C = [€; - - - €] and the diag-
onal user signal amplitude matrix A = diag{A4;--- Anx}.

The linear detector for user ¢ takes the form:

y(ky = w'r(k) = j(k) + e(k) (6)

where w fwy - --wg]T is the detector weight vector,
e(k) is Gaussian with zero mean and variance w” we2, and
(k) = wPE(k). Denote the N, = MV possible com-
binations of [sT(k} s7(k — 1)---sT(k — D + )] as s;,
1 < j < N,. The noise-free received signal vector (k) only
takes value from the set R = {r; = Ps;, 1 € j < N,},
which can be divided into M subset depending on the value
of s;(k):

N
Simitarly, (k) can only take value from the set YV = {y; =
wTst, 1 € j§ < N,}, which can be partitioned into Af
subset depending on the value of 5;{k):

Ri={r’ eR|si(k)=5)},1<1<M.

V= eVlsk)=a) 1<I<M.  (®

Let

g  =w'P=wT[p;ps-- pon| =01 -gpn]. (9

Then
1

-1 N
9k) =3 girans;lk —d).
d=0 j=1
Among the DN terms in (10), the term g, s;{k) is the desired
signal and the rest of the DN — 1 terms are residual interfer-
ences. Thus, the decision thresholds are 0, +-2g;, - -+, £{ M~
2)gi, and the decision is made according to:

(10)

s1,  ylk) < (s1+ 1()9i
sy _ ) sty (s~ Dgi <plk) < (s + 1),
Sf.(k)“ for J:Q,"',M—l, (ll)
sary (k) > {(sar — Dge-

2813

gls-)  gtsh

Fig. 2. Hlustration of the symmetric distribution of ; around g;s;.

III. THE MSER LINEAR DETECTOR

It is srraightforward to see that Vi, = Y + 24, for
[ =1,---,M — 1. We will assume that V., and Y, are
linearly separable. This assumption is necessary for a linear
detector to work. We further point out that the distribution of
Y, is symmetric around the symbol point g;s;., as illustrated
in Fig. 2. These properties allow us to consider just one sub-
set Y in the detivation of the SER for the linear detector (6).
The conditional probability density function (p.d.f.) of y(k)
given s;(k) = 5, is

i
o LS (2
3 ) — —_—
y\ s Nopv 2o, vVwiw o 2U%wTw

12
where Ny, = N, /M is the number of points in }4. Follow-
ing [14], it can be shown Ihag the SER of the user ¢ linear
detector with weight vector w is

N,
L M
Pr(w) =v5~ >R Usw) (13
El j:]-
where . o )
Qlz) = ﬁjx exp (:;J—) dy. (14)
W _ e ~1
figtwy = 29l as

opvVwiw

and v = {2M — 2)/M. The gradient of Pg{w) with respect
tow is

~

VPp(w)= ——————o———x

= (w) NepV2mo,WwTw
!
e (~(y§’ ~ gilsi = 1))2) .
2T

s 2oiwiw
(Z/;” - gilsr — 1)) )
(——?W——w—rj +pi(si—1)]. (16

A steepest-descent or simplified conjugate gradient algo-
rithm [13], {14] can be used to minimize the SER expression
(13) to arrive at the MSER solution. It is computationally
advantageous to normalize w to a unit-length after each it-
eration as w = w/vw?w. Computational requirements
can further be simplified by considering the subset ) with
{ =1+ M/2, whichresultsin 5, — 1 = 0.



1V. ADAPTIVE MSER LINEAR DETECTOR

To derive an adaptive MSER algorithm, it is more conve-
nient to write down the p.d.f. of (k) explicitly

(17
M N

P(w) =157 ZZQ (frs(w)) -

=1 j=1

M Ny

S e

lljl

—( — g2

py(ys) = 20’2WTW

271'0,,\/

and express the SER altematively as
(18)

As the p.d.f. of y(k) is unknown, a kemel density estimate
[15] can be constructed from data samples. Given a block of
K training samples {r(k), s;(k)}. a kernel density estimate
of the p.d.f. (17) is given by

. 1 —(ys — y(k))z)
1) = —————— exp | —————
Pyyie) K 2npavwTw ; P ( 2p2wlw
(19)
where the radius parameter p,, is related to #,,. from this
estimated p.d.f., the estimated SER is given by
. 1 X .
=~y 2
Pa(w) =g kgla(fk(w)) @0
where (k) — (k) — 1)
: y(k) — gi(sik) —
fulw) = —— , 1)
(W) PRV 7

4; = wTp;, and p; an estimate of p;. With VPg(w), the
block-data adaptive steepest-descent or conjugate gradient
algorithm can be derived.

Using a single-sample estimate of py(y,), a sample-by-
sample stochastic gradient adaptive algorithm can be derived,
which is referred to as the LSER. Three versions of the LSER
algorithm are presented, each involving a different level of
approximation.

Version 1. Notice that p; is the convolution of H with the
code vector ¢; = clA Assume that a separate channel
estimate h{k) = [ho(k) h1(k) - b, -1(k)]T is provided,
which can then be used to caleulate & (k) = w7 (k)p:(k).
Using a re-scaling after each update to ensure w7 (k)w(k) =
1, the stochastic gradient at k is

VPE(w(k),k)= \/% nx
- (_(y(k) —m(;;)%(sl-(k) —1) ){(y(k) — i(k)x

(si{k) — DIw(k) — v(k) + (s:(RK) - 1)pi(k)}.  (22)

The weight updating equation is then given by

wk+1) =wlk)+p (-VPE(W(k)’ k)) (23)

where 1 is an adaptive step size.
Version 2. At k, use a moving average update for g; (k)
yik)

si(k)

where ) < A < 1 is a step size. Using a re-scaling after
each update to ensure wT {k)w{k) = 1 and further assuming
that g; does not depend on w leads to a simplified stochastic

gradient
2
=0 (e - it

oxp (_
(si(k) = 1))w(k) — r(k)}. (25)
The weight updating equation has the same form as (23).

Version 3. In this version of the LSER, further simplifica-
tions are made. Specifically, a one-sample kemel density es-

timation Oi
2m 2 ( )
\/_ ]

is used, and p? is assumed to be independent of w. The
simplified stochastic gradient at k is thus given by

gi(k) = (1= Mgk — 1) + A—=% (24)

V By (w(k), k) = ﬁlﬂp x

(y(k) — Gu(k)(sak) —

—(ys — y(k))?

f’y(ﬂs» k)= 202
n

(26)

VPp{w(k), k) =

2y (OB IPY

The move average (24) is used to update §; (k). Notice that,
for this version, a weight normalization is not necessary. The
weight updating equation is given by

wik+1) =wlk)—

2y (B BIEE O )

For a comparison purpose, we also extend the AMBER
algorithm [11] to the A -PAM case. The resulting AMSER
algorithm has the form

wik +1) = w(k) + ple(r)sgn(é(k))r(k) 29
where the error function é(k) is given by
e J(k)
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mmse solution
—— mser solution

Fig. 3. Symbol error rate comparison of the MMSE and MSER linear de-
tectors for user 1 of Example |. SNR: =SNRs.

gi(k) is updated using the moving average (24), and the in-
dication function [ () is defined by:

1, %(‘%(Si(k)—“l-l-‘?’,.si(k)?é__ju'_i_l,
=91 Essk+l-rsk)#M-1,
0, otherwise.

(3D
The adaptive gain ;2 and the nonnegative threshold 7 are the
two alporithm parameters. In terms of computational re-
quirements, the versions | and 2 of the LSER are more com-
plex than the AMSER, while the version 3 of the LSER has
a similar complexity to the AMSER.

V. SIMULATION RESULTS

Example 1. This was a two-user system employing 4-PAM
modulation with 4 chips per symbol. The two code se-
quences were (+1,+1,—-1,—1) and (+1,—1,—1,+1), re-
spectively, and the CIR at chip rate was

H(z)=08+02z3, (32)

The two users had equal signal power, that is, the user | sig-
nal to noise ratio SNR; was equal to SNR of user 2, Fig. 3
compares the SER performance of the MMSE linear detector
with that of the MSER one for user 1, given a range of SNR;.

Convergence performance of the LSER and AMSER al-
gorithms were investigated given SNR; = 30 dB. For the
version 1 of the LSER, the receiver was assumed to know
the CIR h, and the two algorithm parameters were chosen to
be y1 = 0.001 and pp, = 1.5¢0,,. For the versions 2 and 3, the
same p = 0.001 and p, = 1.50, were used with A = (.02
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Fig 4. Leaming curves of the four stochastic gradient adaptive MSER

algorithms for user 1 of Example 1, given SNR; =SNRp = 30 dB.

for moving average updating of §;(k}. Only the versions 1
and 2 employed a weight ncrmalization after each updating.
The AMSER had a same A = 0.02 with the two algorithm
parameters given by p+ = 0.001 and 7 = 0.4. Fig. 4 depicts
the convergence performance of these four stochastic gradi-
ent adaptive algorithms, where the results were averaged on
100 runs, It can be seen that for this example the very sim-
plified version 3 of the LSER algorithm was only slightly
inferior to the full LSER algorithm of version 1, and it had
better performance than the AMSER algorithm in terms of
convergence rate and steady-state SER misadjustment.

Example 2. This was a d-user system employing 4-
PAM modulation with 8 chips per symbol, The four
code sequences were (+1,+1,+1,+1,-1,~1,—1,-1),
(+11_19+1,'1:_1:+1:H1,+1)1 (+1)+1!_11_11_17
-1,+1,4+1) and (+1,-1,-1,+1,-1,+1,+1,-1}, re-
spectively, and the CIR was

H(z)=09+0227. (33)

The 4 users had equal signal power. Fig. 5 shows the SERs
of the MMSE and MSER linear detectors for user 1. Notice
that in this case the MMSE detector did not result in linearly
separable subsets Vy, 1 <! < 4, and its SER curve exhibited
a floor. However, the MSER detector produced a linearly
separable result and hence had better performance.

With SNR; = 36 dB, leamning curves of the LSER and
AMSER algorithms for user 1 are depicted in Fig. 6, where
the results were averaged over 10 runs. For the version
1 of the LSER, again the receiver was assumed to know
the CIR h, and the two algorithm parameters were set to

= 0.0001 and p,, = 50,,. For the versions 2 and 3, the
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Fig. 5. Symbal error rate comparison of the MMSE and MSER linear de-
tectors for user | of Example 2. SNR;, 1 < @ < 4, are identical.

same g = 0.0001 and p, = 50, together with A = 0.002
were used. Ouly the versions 1 and 2 employed a weight nor-
malization after each updating. The AMSER had A = 0.002,
4= 0.0001 and 7 = 0.6. It can be seen that the three ver-
sions of the LSER algorithm had similar convergence perfor-
mance, which were better than that of the AMSER algorithm.

V1. CONCLUSIONS

A stochastic gradient MSER adaptive algorithm has been
derived for DS-CDMA systems with A -PAM modulation
scheme, The algorithm has been motivated from the ker-
nel density estimation of the SER as a smooth function of
training data, and three versions of this LSER algorithm have
been presented. The most simplified version of the algorithm
is computationally very simple, and a desired feature of this
stochastic gradient algorithm is that the amount of the weight
updating is a continuous and decreasing function of a soft
distance from the decision boundary. Simulation results in-
dicate that this adaptive LSER linear detector outperforms an
existing adaptive MSER detector called the AMSER.
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