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Outline

o Overview of existing density estimation methods

o Proposed sparse kernel density estimator:

m Convert unsupervised density learning into constrained regression

by adopting Parzen window estimate as desired response

m Unsupervised orthogonal forward regression based on D-optimality

experimental design to determine structure

m Multiplicative nonnegative quadratic programming to calculate

kernel weights

o Empirical investigation and performance comparison
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Overview of Existing Density Estimators

o Parametric Gaussian mixture model, GMM

m Nonlinear optimisation by EM algorithm to determine all parameters

m Need to determine number of components

o Non-parametric Parzen window estimator, PWE

m Extremely simple and accurate, non-sparse with high test complexity

m Need to determine kernel width

o Sparse kernel density estimators by making some weights zeros

m SVM, estimating in CDF space with EDF as desired response

m Reduced set density estimator, RSDE, (Girolami and He, 2003), sim-
ilar to SVM with different criterion

m Need to determine kernel width

http://www-mobile.ecs.soton.ac.uk
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Existing Sparse Estimators (continue)

o Select SKDEs by orthogonal forward regression

o Estimating in CDF space with EDF as desired response

m Selection by minimising training MSE (Choudhury, 2003)

m Selection by minimising leave-one-out MSE with local regularisa-
tion, LOO-MSE-LR, (Chen et al, 2004)

m Need to determine kernel width, ad hoc mechanisms to ensure nonneg-
ative and unity constraints for kernel weights (increase computation)

o Estimating in original PDF space with PWE as desired response

m Selection by LOO-MSE-LR and MNQP algorithm for kernel weights,
LOO-MSE-LR+MNQP, (Chen et al, 2008)

m Need to determine kernel width

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Problem Formulation

o Given a realisation sample DN = {xk}N
k=1, drawn from unknown density

p(x), provide a kernel density estimate

p̂(x;βN , ρ) =
N∑

k=1

βkKρ(x,xk)

subject to: βk ≥ 0, 1 ≤ k ≤ N , and βT
N1N = 1

o Unsupervised learning, no desired response yk = p(xk) for estimator

o Parzen window estimate p̂(x;1N/N, ρPar):

m Place a “conditional” unimodal PDF KρPar(x,xk) at each xk and
average over all samples with equal weighting

m Kernel width ρPar has to be determined via cross validation

m Remarkably simple and accurate but non-sparse

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Regression-Based Approach

o View PW estimate as “observation” of true density contaminated by
some “observation noise” and use it as desired response

p̂(x;1N/N, ρPar) =
N∑

k=1

βkKρ(x,xk) + ε(x)

o Let yk = p̂(xk;1N/N, ρPar) at xk ∈ DN , this model is expressed as

yk = ŷk + ε(k) = φT (k)βN + ε(k)

where φ(k) = [Kk,1 Kk,2 · · ·Kk,N ]T with Kk,i = Kρ(xk,xi), ε(k) = ε(xk)

o This is standard regression model, which over DN can be written as

y = ΦβN + ε

where Φ = [φ1 φ2 · · ·φN ] with φk = [K1,k K2,k · · ·KN,k]T , ε =
[ε(1) ε(2) · · · ε(N)]T , y = [y1 y2 · · · yN ]T

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Orthogonal Decomposition

o An orthogonal decomposition of regression matrix is Φ = WA, where

W = [w1 w2 · · ·wN ]

with orthogonal columns satisfying wT
i wj = 0, if i 6= j, and

A =


1 a1,2 · · · a1,N

0 1
. . .

...
...

. . . . . . aN−1,N

0 · · · 0 1


o Regression model can alternatively be expressed as

y = WgN + ε

where new weight vector gN = [g1 g2 · · · gN ]T satisfies AβN = gN

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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D-Optimality Based Construction

o D-optimality criterion: select Ns-term SKDE such that determinant of
resulting subset design matrix, det

(
ΦT

Ns
ΦNs

)
, is maximised

o Note

log
(
det

(
ΦT Φ

))
= log

(
det

(
WT W

))
=

N∑
i=1

log
(
wT

i wi

)
Selected Ns terms corresponding to Ns largest eigenvalues of ΦT Φ

o Unsupervised procedure depending on DN = {xk}N
k=1 only

o Fast algorithm of modified Gram-Schmidt orthogonalisation procedure
can be used to select Ns kernels using D-optimality based OFR

o Ns � N , resulting very sparse kernel density estimate

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Proposed Algorithm

o Fast algorithm based on D-optimality criterion selects Ns significant
kernels, ΦNs

o Kernel weight vector βNs
is calculated using multiplicative non-

negative quadratic programming to solve constrained nonnegative
quadratic programming

min
βNs

{ 1
2βT

Ns
BNs

βNs
− vT

Ns
βNs

}

s.t. βT
Ns

1Ns
= 1 and βi ≥ 0, 1 ≤ i ≤ Ns,

where BNs = ΦT
Ns

ΦNs is selected subset design matrix, vNs = ΦT
Ns

y

o Since Ns � N , MNQP algorithm requires little extra computation and
it may set some kernel weights to (near) zero, further reduce model size

http://www-mobile.ecs.soton.ac.uk
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Simulation Set Up

o For density estimation, N -sample training set for estimation, and test
set of Ntest = 10, 000 samples for calculating L1 test error

L1 =
1

Ntest

Ntest∑
k=1

∣∣p(xk)− p̂(xk; βNs
, ρ)

∣∣
Kullback-Leibler divergence was also approximated for 1 or 2-D cases

DKL(p|p̂) =

∫
Rm

p(x) log
p(x)

p̂(xk; βNs
, ρ)

dx

Experiment was repeated Nrun random runs

o For two-class classification, p̂(x;βNs
, ρ|C0) and p̂(x;βNs

, ρ|C1), two
class conditional PDF estimates, were estimated, and Bayes’ decision

if p̂(x; βNs
, ρ|C0) ≥ p̂(x; βNs

, ρ|C1), x ∈ C0

else, x ∈ C1

}
was then applied to test data set

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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One-Dimension Example

o True density was mixture of Gaussian and Laplacian distributions

p(x) =
1

2
√

2π
e−

(x−2)2

2 +
0.7
4

e−0.7|x+2|

N = 100 and Nrun = 1000

o Performance comparison in terms of KL divergence, L1 test error and
number of kernels required, quoted as mean ± standard deviation

estimator KL divergence L1 test error kernel no.

GMM (12.074± 7.885)× 10−2 (2.511± 0.904)× 10−2 5± 0

PWE (8.090± 5.198)× 10−2 (2.011± 0.621)× 10−2 100± 0

Previous (8.657± 5.122)× 10−2 (2.010± 0.649)× 10−2 5.2± 1.2

proposed (8.308± 3.931)× 10−2 (1.945± 0.644)× 10−2 4.6± 0.8

SKDE: Previous (LOO-MSE-LR+MNQP), proposed (D-optimality+MNQP)

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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One-D Example (continue)

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Two-Dimension Example

o True density was mixture of five Gaussian distributions

p(x, y) =
5∑

i=1

1
10π

e−
(x−µi,1)2

2 e−
(y−µi,2)2

2

with means (µi,1, µi,2): (0,−4), (0,−2), (0, 0), (−2, 0) and (−4, 0). N =
500 and Nrun = 100

o Performance comparison in terms of KL divergence, L1 test error and
number of kernels required, quoted as mean ± standard deviation

estimator KL divergence L1 test error kernel no.

GMM (3.392± 0.870)× 10−2 (3.675± 0.672)× 10−3 8± 0

PWE (3.422± 0.548)× 10−2 (3.620± 0.439)× 10−3 500± 0

Previous (3.664± 0.920)× 10−2 (3.610± 0.502)× 10−3 13.2± 2.9

proposed (3.474± 1.298)× 10−2 (3.236± 0.558)× 10−3 7.9± 0.8

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Two-Class Two-Dimension Example

o http://www.stats.ox.ac.uk/PRNN/: two-class classification problem
in two-dimensional feature space

o Training set contained 250 samples with 125 points for each class, test
set had 1000 points with 500 samples for each class, and optimal Bayes
test error rate based on true probability distribution was 8%

o Performance comparison in terms of test error rate and number of kernels

method p̂(•|C0) p̂(•|C1) test error rate

GMM 2 components 2 components 9.0%

PWE 125 kernels 125 kernels 8.0%

Previous SKDE 6 kernels 5 kernels 8.0%

Proposed SKDE 2 kernels 2 kernels 8.0%

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Two-class Two-D Example (continue)

Decision boundary of (a) GMM estimate, and (b) proposed SKD estimate, where

circles and crosses represent class-1 and class-0 training data, respectively

(a) (b)

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Six-Dimension Example

o Density to be estimated was mixture of three Gaussian distributions

p(x) =
1

3

3∑
i=1

1

(2π)6/2

1

det1/2 |Γi|
e−

1
2 (x−µi)

T Γ−1
i (x−µi)

µ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T , Γ1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0}

µ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T , Γ2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

µ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T , Γ3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

o N = 600, performance comparison over Nrun = 100 runs

method L1 test error kernel number

GMM estimator (1.7428± 0.2852)× 10−5 8± 0

PW estimator (3.5195± 0.1616)× 10−5 600± 0

Previous SKDE (3.1134± 0.5335)× 10−5 9.4± 1.9

Proposed SKDE (2.7823± 0.2271)× 10−5 8.4± 0.9

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Titanic Data Set

o http://ida.first.fhg.de/projects/bench/benchmarks.htm: two-
class three-dimensional Titanic data set

o 100 realisations, each realisation contained 150 training samples and 2051
test data samples

o Two-class data samples are imbalanced, with class-0 training samples
approximately twice of class-1 training samples

o Performance comparison in terms of test error rate and number of kernels

method kernel no. p̂(•|C0) + p̂(•|C1) test error rate in %

GMM 8± 0 23.86± 3.22

PWE 150± 0 22.48± 0.43

Proposed SKDE 7.8± 4.4 22.34± 0.34

http://www-mobile.ecs.soton.ac.uk
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Conclusions

o A regression-based sparse kernel density estimator has

been proposed

m Density learning is converted into constrained regres-

sion using Parzen window estimate as desired response

m Unsupervised orthogonal forward regression based on

D-optimality experimental design to determine structure of

kernel density estimate

m Multiplicative nonnegative quadratic programming

is used to calculate associated kernel weights

o Effectiveness of proposed sparse kernel density estimator has

been demonstrated using simulation
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