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Outline

o Receiver beamforming for space division multiple

access enabled multiuser communication systems

o Existing state-of-the-art minimum bit error rate

beamforming with on-line least bit error rate algorithm

o On-line Gaussian mixture density estimator for

adaptive minimum bit error rate beamforming

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Motivations
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o Space division multiple access: receiver
equipped with L-element antenna array to
support M single-antenna transmitters

m classical view: maximise response at de-
sired user direction and place nulls at
interferers’ directions, must L ≥M

o Standard beamforming is minimum mean
square error (MMSE)

m Least mean square algorithm

o State-of-the-art minimum bit error rate
(MBER), can be L < M

m Least bit error rate algorithm

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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System Model

o M single-transmit-antenna users transmit on same carrier, receiver is
equipped with L-element antenna array, channels are non-dispersive

o Received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is

x(k) = P b(k) + n(k) = x̄(k) + n(k)

o n(k) = [n1(k) n2(k) · · ·nL(k)]T is noise vector, and system matrix

P = [A1s1 A2s2 · · ·AMsM ] = [p1 p2 · · ·pM ]

o si is steering vector of source i, Ai is i-th non-dispersive channel tap,
pi is ith column of channel matrix P

o User i is desired user, and transmitted symbol vector b(k) =
[b1(k) b2(k) · · · bM (k)]T with QPSK symbol set

bm(k) ∈ {b[1] = +1+j, b[2] = −1+j, b[3] = −1−j, b[4] = +1−j}, 1 ≤ m ≤M

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Beamforming Receiver

o Beamformer output with weight vector w = [w1 w2 · · ·wL]T for user i

y(k) = wHx(k)

m Choose appropriate w ⇒ y(k) is a sufficient statistic for estimating
bi(k), i.e. error probability of estimate b̂i(k) based on y(k) is small

o Minimum mean square error: minimise mean square error E
{∣∣̂bi(k)−

bi(k)
∣∣2} ⇒ on-line least mean square algorithm

m Use single sample to form ‘instantaneous’ MSE, and stochastic gradi-
ent descent minimisation of instantaneous MSE leads to LMS

o Minimum bit error rate: minimise error probability of b̂i(k)⇒ on-line
least bit error rate algorithm

m Use single-sample Gaussian to form ‘instantaneous’ PDF, and stochas-
tic gradient descent to ‘minimise’ single-sample based error rate

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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MMSE versus MBER
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o Three-element antenna array bermforming receiver for four-user system

m SIR2 = SIR3 = 0dB and SIR4 = −6 dB: desired user 1 and interferers 2

and 3 have equal power, but interferer 4 has 6 dB more power

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Adaptive Minimum Bit Error Rate

o Due to symmetric distribution, signal can be shifted to 1st quadrant

ys(k) = y(k) + awHpi = wH
(
x(k) + api

)
with a =

(
1− sgn

(
biR

(k)
))

+
(
1− sgn

(
biI

(k)
))

j

o Probability density function of ys(k) is a large unknown Gaussian
mixture on signal space, which depends on weight vector w

o Bit error rate of beamformer with w, PE(w), is a sum of error Q-
functions ⇒ minimising PE(w) leads to MBER solution

o If off-line, block of training data can be used to estimate this unknown
PDF, leading to estimate of BER P̂E(w) ⇒ approximate MBER

o On-line requires adaptation sample by sample, and LBER algorithm

m is on-line single Gaussian density estimator based adaptive MBER⇒
stochastic single sample can be seriously influenced by noise

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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OGMDE-AMBER

o To reduce noise influence while keeping sample-by-sample adaptation ca-
pability with low complexity, we propose OGMDE-AMBER

o On-line Gaussian mixture density estimator consists of small number of
N Gaussians with means λi, kernel widths ρi and mixing weights ηi

m Place a Gaussian kernel on new sample ys(k), and merge it with
nearest existing mixture component

m Update mean, kernel width and mixing weight of this newly merged
mixture component

m Update means, kernel widths and mixing weights of rest mixture
components

o Only the error Q-function associated with newly merged mixture com-
ponent contains new information ys(k)

m Adaptive MBER then has similar sample-by-sample adaptation

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Learning Curves
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m Learning curves of LMS, LBER and OGMDE-AMBER (N = 4), averaged over 100

runs for 4-user 3-element antenna array system, where SNR = 17 dB, SIR2 = SIR3 = 0 dB

and SIR4 = −6 dB, while initial weight vector was set to MMSE solution

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Learning Curves
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m Learning curves of LMS, LBER and OGMDE-AMBER (N = 4), averaged over 100

runs for 4-user 3-element antenna array system, where SNR = 17 dB, SIR2 = SIR3 = 0 dB

and SIR4 = −6 dB, while initial weight vector was set to [0.0 + 0.1j 0.1 + 0.0j 0.1 + 0.0j]T

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/
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Conclusions

o Many applications require to adapt underlying process’s proba-
bility density function sample-by-sample, with low complexity

o Adaptive minimum bit error rate linear beamforming receiver
for supporting space division multiple access is an example

o We have proposed a novel on-line Gaussian mixture density es-
timator aided adaptive MBER beamformer

o Future work will extend this OGMDE-AMBER to nonlinear
beamforming receiver assisted SDMA systems

o The proposed on-line Gaussian mixture density estimator can
readily be applied to other applications

http://www.ecs.soton.ac.uk
http://www.ieee-wcci2014.org/

