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306 Chapter 8 MECHANICS OF RIGID BODIES: PLANAR MOTION

where ¢, is defined as shown in Figure 8.2.1. Equations 8.2.2 can also be obtained by
taking the components of

v, = @ X 1 (8.2.3)
where @ = ka.
Let us calculate the kinetic energy of rotation of the body. We have
1 1
Hdu = M Wﬂ;ncm = IAM Sﬂwﬂwv EN = l.muem Awwﬁv
1 2 b4 7 g
where
I = M 3@..#%. = M ._S.‘nk..u + m\wv (8.2.5)

The quantity I, defined by Equation 8.2.5, is called the moment of inertia about the
z-axis,

To show how the moment of inertia further entets the picture, let us next calculate
the angular momentum about the axis of rotation. Becaunse the angular momentum of a
single particle is, by definition, r, X m,v,, the z-component is

(8.2.6}

where we have made use of Equations 8.2.2. The total z-compoenent of the angular mo-
mentum, which we shall call L_, is then given by summing over all the particles, namely,

L, =2 mrio = Lo (8.2.7)
1

m(y; — %) = m@f + yfle = mrie

In Section 7.2 we found that the rate of change of angular momentum for any system is

equal to the total moment of the external forces. For a hody constrained to rotate about
a fixed axis, taken here as the z-axis, then

_dL, _ d{lw)

M=% = Ta

where N, is the total moment of all the applied forces about the axis of rotation (the com-

ponent of N along the z-axis). If the body is rigid, then I, is constant, and we can write

dw

N_ =1, ’

The analogy hetween the equations for translation and for rotation about a fixed axis is

shown in the following table:

(8.2.8)

(8.2.9)

Translation along x-axis Rotation about z-axis

Linear momentum p, = mo, Anpular momentum L, = Lo
Force F = mo, Torque N, = Lo
Kinetic energy T = jmo?  Kinetic energy T = 31,02

Thus, the moment of inertia is analogous to mass; it is 4 measure of the rotational inertia
of a body relative to some fixed axis of rotation, just as mass is a measure of translational
inertia of a body.
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Figure 8.3.1 Coordinates for calculating the moment of inertia of a rod (a) ahout one end
and {b} about the center of the rod.

8.3 _ CALCULATION OF THE MOMENT OF INERTIA

In calculations of the moment of inertia % m,r? for extended bodies, we can replace the
summation by an integration over the body, just as we did in calculation of the center of
mass. Thus, we may write for any axis

’ 1= % re dm (8.3.1)
where the element of mass dm is given by a density factor multiplied by an appropriate
differential (volume, area, or length), and r is the perpendicular distance from the ele-
ment of mass to the axis of rotation !

In the case of a composite body, it is clear, from the definition of the moment of

inertia, that we may write
I=I,+1,+. (83.2)

where I, I,, and so on, are the moments of inertia of the various parts about the par-
ticular axis chosen.
Let us calculate the moments of inertia for some important special cases.

Thin Rod

For a thin, uniferm rod of length & and mass m, we have, for an axis perpendicular to the
rod at one end (Figure 8.3.1a),
@ 1 1
= 2 = —pad == 2
I h. x2p dx gpa® = yma

The last step follows from the fact that m = pa.

(8.3.3)

I Chapter 9, when we discuss the rotational motion of three-dimensional _uo@.ﬁ.m. the distance between the
mass element dm and the axis of rotation will be designed r, to remind us that the relevant distance is the one
perpendicular to the axis of rotation.






= Jann T (I O

VV=wXr, {8.2.3)
where w = kw.
Let us caleulate the kinetic energy of rotation of the body. We have
1 i 1
Tou= M Smul = IAM Eaﬂwv w? = =] @2 (8.2.4}
T 2 2195 2
where

L= 2emrt = 2 mad + yh) (8.2.5)

The quantity I,, defined by Equation 8.2.5, is called the moment of inertia about the
Z-axis.

To show how the moment of inertia further enters the picture, let us next calculate
the angular momentirm about the axisfof rotation. Because the angular momentum of a
single particle is, by definition, r, X m,v,, the z-component is

m g — k) = maxk + ye = mrie (8.2.6)
where we have made use of Equations 8.2.2. The total z-component of the angular mo-
mentum, which we shall call L., is then given by summing over all the particles, namely, =~

L, =2 mrie = Lo 82.7)
1

In Section 7.2 we found that the rate of change of angular momentum for any system is
equal to the total moment of the external forces. For a body constrained to rotate about
a fixed axis, taken here as the z-axis, then

N, = 7 7t (8.2.8)
where N_ is the total moment of all the applied forces about the axis of rotation (the com-
ponent of N along the z-axis). If the body is rigid, then I, is constant, and we can write

N, =17 (8.2.9)

The analogy between the equations for translation and for rotation about a fixed axis is
shown in the following table:

Translation along x-axis Rotation about z-axis

Linear momentum Pr = Mo, Angular momentumn L = ILw
Force F. = mo, Jorque N, = Le
Kinetic energy T = imv®  Kinetic energy Tpe = 31,02

Thus, the moment of inertia is analogous to mass; it is a measure of the rotational inertia

of a body relative to some fixed axis of rotation, Just as mass is a measure of translational
inertia of a body.
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Figure 8.3.1 Coordinates for calculating the moment of inertia of a rod {a) about one end
and (b) about the center of the rod.

8.3| CALCULATION OF THE MOMENT OF INERTIA

In calculations of the moment of inertia % m,r? for extended bodies, we can replace the
summation by an integration over the body, just as we did in calculation of the center of
mass. Thus, we may write for any axis

S I H.ﬁwm dm (8.3.1)

where the element of mass dm is given by a density factor multiplied by an appropriate
differential (volume, area, or length), and r is the perpendicular distance from the ele-
ment of mass to the axis of rotation.!

In the case of a composite body, it is clear, from the definition of the moment of
inertia, that we may write

I=0L+I,+... (8.3.2)

where I, I, and so on, ave the"inoments of inertia of the various parts about the par-
ticular axis chosen.
Let us calculate the moments of inertia for some important special cases.

Thin Rod &

For a thin, uniform rod of length 2 and mass m, we have, for an axis perpendicular to the
rad at one end (Figure 8.3.1a),

R
¢ 1 1
I = .‘.o x¥p dx = mbau = m:Sm (8.3.3)

The last step follows from the fact that m = pa.

! In Chapter 9, when we discuss the rotational motion of three-dimensional bodies, the distance between the
mass element dm and the axis of rotation will be designed r, to remind us that the relevant distance is the one
perpendieular to the axis of rotation.
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If the axis is taken at the center of the rod (Figure 8.3.1b), we have

al2 1 1
= 2 == .
I, g.leﬁ x2p dx 1o pas Hm_sﬁm (8.3.4)
Hooptr Cylindrical Shell

In the case of a thin circular hoop or cylindrical shell, for the central, or symmetry, axis
all particles lie at the same distance from the axis. Thus,

I

axis

= ma?

(8.3.5)

where g is the radius and m is the mass.

Circular Disc or Cylinder

To caleulate the moment of inertia of a uniform circular disc of radius ¢ and mass m, we
shall use polar coordinates. The element of mass, a thin ring of radius r and thickness dr,
is given by

dm = p2xr dr (8.3.6}

where p is the mass per unit area. The moment of inertia about an axis through the cen-
ter of the disc normal to the plane faces (Figure 8.3.2) is obtained as follows:
at 1

a2
s = ﬁ rip 2y dr = m.a.hM = —~mat

5 (8.3.7)

The last step results from the relation m = para®.
Clearly, Equation 8.3.7 also applies to a uniform right-circular eylinder of radius a

and mass m, the axis being the central axis of the cylinder.
Sphere

Let us find the moment of inertia of a uniform solid sphere of radius @ and mass m about
an axis (the z-axis) passing through the center. We shall divide the sphere into thin cir-

Figure 8.3.2 Coordinates for finding the

moment of inertia of a dise.
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Figure 8.3.3 Coardinates for finding
the moment of inertia of a sphere.

cular discs, as shown in Figure 8.3.3. The moment of inertia of a representative disc of
radius , from Equation 8.3.7, is ; y2 dm. But dm = pary? dz; hence,
21 - ;ﬁ_ 1 8
. = Zppytde=1| = 2o 222 dy = — grpa®
1 _3™PY dz 37 (a z2)2 dz 5 7Pe
The last step in Equation 8.3.8 should be filted in by the student. Because the mass m is
given by

(8.3.8)

m = mﬂnuﬁ (8.3.9)
we have
2
I = WS,EM

for a solid uniform sphere. Clearly also, I, = I, = I

(8.3.10)

Spherical Shell

The moment of inertia of a thin, uniform, spherical shell can be found very Edw_,% by
application of Equation 8.3.8. If we differentiate with respeet to g, namely,
- B
dl, = ~opatda
3
the result is the moment of inertia of a shell of thickness da and radius 4. The mass of
the shell is 47a2p da. Hence, we can write
2

I, = ngw

(8.3.11)

(8.3.12)
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for the moment of inertia of a thin shell of radius 2 and mass m. The. student should
verify this result by direct integration.

Shown in Figure 8.3.4 is a uniform chain of length { = 2aR and mass m = M/2 that is ini-
tially wrapped around a uniform, thin disc of radins R and mass M. One tiny piece of chain
initially hangs free, perpendicular to the horizontal axis. When the disc is released, the chain falls
and unwraps. The disc begins to rotate faster and faster about its fixed z-axis, without friction,
(2} Find the angular speed of the disc at the moment the chafn completely unwraps. (b) Solve
for the case of a chain wrapped around a wheel whose mass is the same as that of the dise, but
concentrated in a thin rim.

Solution:

(a) Figure 8.3.4 shows the disc and chain at the moment the chain unvrapped. The final
angular speed of the dise is @. Energy was conserved as the chain unwrapped. Because
the center of mass of the chain originally comcided with that of the dise, it fell a distance
1/2 = o R, and we have

Emw = =Iw® + Zmp?

B | e
b2

Solving for w? gives

i - mgl2) _ mgeR
[12)M/2) + (12)m)I R  [(1/2m + (1/2)m]R®
= &
"R
(b} .duww m_%o-:mﬂ of inertia of a wheel is I = MR2, Substituting this into the preceding equation
yie
2
L R—
T
Figure 8.3.4 Falling chain attached to disc, free to rotate. 2= R
about a fixed z-axis, +
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Even though the mass of the wheel is the same as that of the disc, its moment of inertia is
larger, because all its mass is concentrated along the rim. Thus, its angular acceleration and
final angular velocity are less than that of the disc.

Perpendicular-Axis Theorem for a Plane Lamina

Consider a rigid body that is in the form of a plane lamina of any shape. Let us place the
lamina in the xy plane (Figure 8.3.5). The moment of inertia about the z-axis is given by
I, = 2 m} + yi) = PEXTEDY my? (8.3.13)

i i

i

But the sum Z m,x} is just the moment of inertia 7 , about the y-axis, because z, is zero
for all particles. Similarly, E, m,y? is the moment of inertia I, about the x-axis, Equa-

tion 8,3.13 can therefore be written
L=1I+1I, (8.3.14)
This is the perpendicular-axis theorem. In words:

The tnoment of inertia of any plans lamina about an axis normal to the plane of the
lamina is equal to the sum of the moments of inertia about any two mutually perpendicu-
lar aves passing through the given axis and lying in the plane of the lamina,

As an example of the use of this theorem, let us consider a thin circular disc in the
xy plane (Figure 8.3.6). From Equation 8.3.7 we have
1
L= sma? =1 +1, (8.3.15)
In this case, however, we know from symmetry that I, = I y We must therefore have
1

I =1, = ma® (8.3.16)

z

Figure 8.3.6 Circular dise.

Figure 8.3.5 The perpendicular-axis
theorem for a lamina.






