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example of a ring

Suppose we have something like a hoola hoop, that is a thin hoop or ring that rotates about the central axis perpendicular
to the hoop. What's the moment of inertia in terms of the total mass M of the hoop and its radius R?
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solution

This problem is so simple, we can think about it in terms of discrete masses.

I = Emrrf (1.34)

but all the 75 's are the same and equal to R. So we can factor out the radii,

I = R’Em.‘ (1.35)

But ) "™ is just the total mass M. Therefore

IThoop = MR? (1.36)
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example of a disk

Now we know the moment of inertia of a ring, let's calculate what it is for a digk of uniform density that rotates about the
central axis perpendicular to the disk, Call the total mass of the disk M, and its radius R.
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solution
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The trick here is to think of the disk as a collection of a bunch of concentric rings. Call the mass per unit area of the disk

o . Then we have a bunch of rings, the inner radius of one of these rings is r and outer radius r+dr.

Then the mass of this ring dm is the surface 44 times o . So

dm = odd . (1.37)
But dA is just the circumference times dr,d 4 = 2xr dr. So

dI = dmr? = oy dr 2 (1.38)

Now we want to integrate dJ over all radii to get I so

R R R R%
[ = f di = f rlrr 2 dr = aﬂxf rPdr = c2r=— (1.39)
o 0

i n
Let's write 7 in terms of M and R:
c = :JF (1.40)
So finally we get
Tyi &= %MR’ (1.41)

http://stravinsky.ucsc.edu/josh/5A/book/rotation/node15.html

29/106/2003



solution Page 2 of 2

Joshun Deutsch
Wed Jan 22 17:07:34 PST 1997

http://stravinsky.ucsc.edu/josh/5SA/book/rotation/node15.himl 29/10/2003



example of a spherical shell Page 1 of |

el t ) I [ ] previen
Next: solution Up: The moment of inertia Previous: solutjon

example of a spherical shell

Calculate the moment of inertia of a spherical shell of mass M and radius R that rotates through an 2xis that goes throught
the center of the sphere.
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solution

So now that you've seen how to make a disk out of a bunch of hoops, we could instead make a spherical shell out of a
bunch of then also. It's kind of like a technigue in pottery where you slowly add little rings of clay of different sizes, until
you have a beautiful vase! Oh shut up!

So we can do that here too. Pottery and physics meet. On the other hand I was never good much at pottery. You get the
size of a ring off by a factor of two and it ends up looking like a moldy lump of clay. The same is true of the math
involved in this example. I could go through and do it, but it's a bt tedious. There's a much much more elegant way of
calculating the moment of inertia in this example. It requires you to think a lot more, but it requires you to write a lot
less.

It uses the symmetry of sphere. Let's write things out in terms of discrete masses because it's egsier to understand

I= Zm.'rf (1.34)

Ifwcrotamcaboutthezaxis,ﬂienr,'isthedismncchetweenthepointandthezaxis,sor? = !?+?,-2.So

I = Em.‘x?+y3 (1.42)
i

We could instead compute what I'll call I

I = ) mis} (1.43)
i
or
Iy = Em,’yf (1.44)
Because of the symmetry of a sphere we can replace x by y and nothing should change so
I = I, (1.45)
I could also calcluate
I, = Em.-z,? (1.46)
>

That should also be the same as I, again because of symmetry. There is nothing special about the choice of axis. We
could call x y, y z, and z x, and we'd get the same answers.

Now lets caleulate 8f; = I, + Iy, + I, That's

Em;&r,’- +Em.‘yf +Em.‘z3 = Em;(r? +y}+21) (1.47)
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= R2. So we can pull that out of the sum and then we

But since we have a sphers, we know that £7 +y,?+z,?
MR3.Bul = I.+1, = 21,.5

just have a sum over the 1 ; 's which just equals M. So 3,

(1.48)

2
Lipen = EMR’
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example of a solid sphere

What's the moment of inertia of a solid sphere through an axis that passes through its center? The sphere is of uniform
density.
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Now we have the moment of inertia of a spherical shell, we can sum up all these shells to get what it is for solid sphere,
This is a lot like the example of the disk.

So what's the mass dm of a shell of inner radius r and outer radius r+dr? Call the density p. Thendm = pdV.
What's the volume dV?1It's the surface area of a sphere of radius r times dr. The surface area of a sphere is 417230

dm = pixeldr (1.49)
And from the last example, thatd] = (23} dm #3. So the moment of inertia is

R R 5
I= fa"f = fgn"m'lr'2 = f E[P*"'TI)JWQ = Eﬂ‘l-rf ridr = E‘hp-ﬂ—-
3 3 g7 3 °5

o

(1.50)
Let's write pin terms of the M and R. The volume  sphere is 22 R® , so0
M
= — 1.51
Plugging that in to the formula for 7
3 M RS
I = — .
?krg-‘:rRa 5 (1 52)
or
2 2
I.Iphen = EMR (1.53]
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