Derivation of thesolution to theradial equation of motion: page 31 of thelecture notes

Start from
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with k = GMm. Then eliminaté using angular momentum conservatiéns L/mr?, leading
to a differential equation far alone:
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Use the relation
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to obtain derivatives with respect @an place of time derivatives, then set
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This leads to the following results
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The last step follows fromf) = u2L/m= L/mr2. Differentiating a second time we have
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From these values of i and8, we find that the radial equation of motion above transforms to
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upon multiplying both sides by?r?/L? = n?/u?L? and changing sign.
The solution of the orbit equation is
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which for any constane. As done in the lectures, if you replace the solution in the equation
immediately above you will see explicitely that the latter is satisfar anye. For 0<e< 1
the solution describes an ellipse with semi latus redtesri 2 /mk.



