
Preface

These are notes to accompany the second year core physics course PHYS2006 Clas-
sical Mechanics. They are not necessarily complete and arenot a substitute for the
lectures. Certain sections are “starred” (with a star at theend of the section name,
like this�): they contain material which is either revision or goes beyond the main
line of development of the course. You do not need to considersuch sections as part
of the syllabus.

Background Information

This course continues the mechanics started inEnergy and Matter, PHYS1013. It
also builds on the studyMotion and Relativity, PHYS1015. It relates to other physics
courses, especially in quantum mechanics and condensed matter. I will try to high-
light the importance of identifying symmetries to help withphysical understanding.
This should come up several times in the course.

In this course we will return to gravity and derive the important result that the
gravitational effect of a spherically symmetric object is the same as the effect of a
point mass, with the same total mass, at its centre. We then discuss Kepler’s laws of
planetary motion. This was an early triumph for Newtonian mechanics. To link the
observed effects of gravity on the Earth with the force governing celestial motion
was a stunning achievement.

We will actually begin, however, by considering the motion of systems of par-
ticles, allowing us to study problems such as rocket motion.We will then look
at rotational dynamics, applying Newton’s Laws to angular motion, encountering
angular velocity, angular momentum and, for systems of particles, the moment of
inertia. We will see some of the seemingly counterintuitiveeffects that arise in the
motion of spinning objects.

We normally use inertial coordinate systems. However, the rotation of the Earth
on its axis makes coordinate systems fixed to the Earth non-inertial. We’ll work
out the equation of motion in such a reference frame and see the effects that arise,
discussing especially the Coriolis term.

Finally, we consider oscillations and waves in systems of coupled oscillators.

Course Information

Prerequisites The course will assume familiarity with the first year physics and
mathematics core courses, particularly PHYS1013, PHYS1015, MATH1006/8 and
MATH1007.

Teaching Staff Prof. S. Moretti is the course coordinator and principal lecturer.
His office is Room 5043 in the School of Physics and Astronomy (building 46) and
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he can be contacted by email as stefano@soton.ac.uk or by telephone on extension
26829.

Course Structure The course comprises about 30 lectures, three per week. Each
week there is a one hour workshop where you work on a problem set. At the work-
shop you hand in answers for the previous week’s problem set and receive marked
answers from the problem set handed in the previous week. There are ten workshop
sessions.

Class Size and Organisation This is a core course for BSc and MPhys stu-
dents so all second year physicists attend. There are also some non-physics students.
Currently there are about 140+ students in total. For 2014/15 lectures are on Mon-
days (09:00 to 10:00) and Thursdays (10:00 to 12:00, a doubleslot with a break in
between). There is one problem class (workshop) each week for 11 weeks starting
from the first one on Tuesdays (09:00 to 10:00). This year the course is in the second
semester.

Course Materials A handout of printed notes is available (a copy is provided for
every student at the start of the course). These notes arenot necessarily complete,
however. A copy of the lecturer’s own notes is available fromthe School Office. You
may borrow those notes, using a sign-out system. The course has web pages at:

http://www.hep.phys.soton.ac.uk/courses/phys2006/

Study Requirements and Assessment Since it is part of your physics foun-
dation, this course’s orientation is towards problem solving, based on a small number
of principles. It is very important that you study the weeklyproblem sheets. They
count for 20% of the marks for the course.

The examination will contain two sections, section A with a number of short
questions (typically five) all of which must be answered, andsection B with four
questions from which you must answer two and only two. Section A carries 1/3
and section B carries 2/3 of the examination marks. The way the final mark for this
module is worked out is explained in the Student Handbook.

Student Assessment of the Course Informal feedback to the lecturer is al-
ways welcomed. Individual problems can usually be dealt with by the workshop
leaders, but if several people share a problem they may like to consult the lecturer
together. Students’ opinions are canvassed by a departmental questionnaire issued
around one third of the way through the course. The responsesare reviewed by the
School’s Syllabus Committee and the Staff Student Liaison Committee. There is
also a questionnaire at the end of the course, issued by the Faculty of Science.

Acknowledgements Special thanks to Prof. Jonathan Flynn who originally
wrote these notes and maintained and improved them up to May 1999 and to Prof.
Tim Morris who took over and updated them till May 2003.
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D Acheson, From Calculus to Chaos: an Introduction to Dynamics, Oxford Univer-
sity Press 1997

TL Chow, Classical Mechanics, John Wiley 1995
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Fowles and Cassiday’s book is full of examples and is the recommended text, al-

though it stops short of discussing one-dimensional crystal models. The treatment
of mechanics in Chow’s book parallels the course quite closely and has a mod-
ern viewpoint. Kibble or Marion and Thornton cover almost everything, but are
mathematically more sophisticated. French and Ebison (andFrench’s book on
Vibrations and Waves) have good physical explanations but don’t cover all the
material.

Acheson’s book is recommended as supplementary reading andfor general back-
ground. Although described by its author as “an introduction to some of the more
interesting applications of calculus,” this book is principally concerned with dy-
namics, how things evolve in time, and links quite well to some of the topics in
this course.

All others are useful to integrate.
Further, two good foundation books to always have at hand are
K F Riley and M P Hobson, Essential Mathematical Methods for the Physical Sci-

ences, Cambridge University Press, 2011
K F Riley and M P Hobson, Foundation Mathematics for the Physical Sciences,
Cambridge University Press, 2011

Syllabus

The numbers of lectures indicated for each section are approximate.
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Linear motion of systems of particles [5 lectures ]� centre of mass� total external force equals rate of change of total momentum(internal forces
cancel)� examples (rocket motion, . . . )

Angular motion [7 lectures ]� rotations, infinitesimal rotations, angular velocity vector� angular momentum, torque� angular momentum for a system of particles; internal torques cancel for cen-
tral internal forces� rigid bodies, rotation about a fixed axis, moment of inertia,parallel and per-
pendicular axis theorems, inertia tensor mentioned� precession (simple treatment: steady precession rate worked out), gyrocom-
pass described

Gravitation and Kepler’s Laws [7 lectures ]� law of universal gravitation� gravitational attraction of spherically symmetric objects� two-body problem, reduced mass, motion relative to centre of mass� orbits, Kepler’s laws� energy considerations, effective potential

Non-inertial reference frames [6 lectures ]� fictitious forces� motion in a frame rotating about a fixed axis, centrifugal andCoriolis terms —
apparent gravity, Coriolis deflection, Foucault’s pendulum, weather patterns

Normal modes [5 lectures ]� damped and forced harmonic oscillation, resonance (revision)� coupled oscillators, normal modes� boundary conditions and eigenfrequencies� beads on a string
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1
Motion of Systems of Particles

This chapter contains formal arguments showing (i) that thetotal external force act-
ing on a system of particles is equal to the rate of change of its total linear momentum
and (ii) that the total external torque acting is equal to therate of change of the total
angular momentum. Although you should ensure you understand the arguments, the
important point is the simple and useful general results which emerge.

1.1 Linear Motion

Consider a system ofN particles labelled 1;2; : : :;N with massesmi at positionsri.
Let the momentum of theith particle bepi . The total force acting and the total linear
momentum are

F = N

∑
i=1

Fi and P = N

∑
i=1

pi;
respectively. Summing the equations of motion,Fi = ṗi (Newton’s second law), for
all the particles immediately leads to

F = Ṗ:
To make this more useful, we divide up the forceFi on theith particle into the

external force plus the sum of all the internal forces due to the other particles:

Fi = Fext
i +∑

j 6=i

Fi j :
Here,Fi j is the force on theith particle due to thej th. The payoff for using this
decomposition is that the internal forces are related in pairs by Newton’s third law,

Fi j =�F ji ;
and therefore,

F = N

∑
i=1

�
Fext

i +∑
j 6=i

Fi j

�= N

∑
i=1

Fext
i + N

∑
i; j=1
i 6= j

Fi j :
The first term on the RHS is simply the total external force,Fext, and the second term
vanishes because the internal forces cancel in pairs. Thus we end up with the result:

Fext= Ṗ : (1.1)
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2 1 Motion of Systems of Particles� The total external force is equal to the rate of change of the total linear mo-
mentum of the system.� We used Newton’s third law to cancel the internal forces in pairs.� If the external force vanishes,Fext = 0, thenṖ = 0, soP is constant and we
can state:

The linear momentum of a system subject to
no net external force is conserved.

1.1.1 Centre of Mass

Define the centre of mass,R, by,

R = ∑N
i=1miri

∑N
i=1mi

= 1
M

N

∑
i=1

miri;
whereM = ∑mi is the total mass.

If the individual masses are constant, then the velocity of the centre of mass is
found from,

MṘ = N

∑
i=1

mi ṙi = P:
Furthermore, we just saw above thatFext= dP=dt. So we have the following results:

P = MṘ and Fext= MR̈ : (1.2)� In theabsenceof a net external force, the centre of mass moves with constant
velocity. This says (once again) that:

The linear momentum of a system subject to
no net external force is conserved.� If the net external force is non-zero, the centre of mass moves as if the total

mass of the system were there, acted on by the total external force.

It is often useful to look at the system of particles with positions measured rela-
tive to the centre of mass. Ifρρρi is the location of theith particle with respect to the
centre of mass then (see figure 1.1),

ri = R+ρρρi : (1.3)

1.1.2 Kinetic Energy of a System of Particles

Let’s look at the total kinetic energyT of the system using the decomposition in
equation (1.3).

T = N

∑
i=1

1
2

mi ṙ2
i = N

∑
i=1

1
2

mi(Ṙ+ ρ̇ρρi)2= N

∑
i=1

1
2

miṘ2+ N

∑
i=1

miρ̇ρρi �Ṙ+ N

∑
i=1

1
2

miρ̇ρρ2
i :



1.1 Linear Motion 3

CM

origin

i

i

r

R

ρ

Figure 1.1 Particle positions measured with respect to the Centre of Mass

The second term on the RHS vanishes since∑miρρρi = 0 and∑miρ̇ρρi = 0 by the defi-
nition of the centre of mass. This leaves,

T = 1
2

MṘ2+ N

∑
i=1

1
2

miρ̇ρρ2
i ;

which we write as,

T = 1
2

MṘ2+TCM : (1.4)

The total kinetic energy has one term from the motion of the centre of mass and
a second term from the kinetic energy of motion with respect to the centre of mass.
Since particle velocities are different when measured in different inertial reference
frames, the kinetic energy will in general be different in different frames. However,
TCM, the kinetic energy with respect to the center of mass is thesamein all inertial
frames and is an “internal” kinetic energy of the system (thesum ofTCM and the
potential energy due to the internal interactions is the total internal energy,U , as
used in thermodynamics). To prove this, note that a Galileantransformation from a
frameSto a frameS0 moving at velocityv with respect toSchanges particle positions
by:

ri ! r0i = ri �vt:
The centre of mass transforms similarly,

R = ∑miri

∑mi
! R0 = ∑mir0i

∑mi
= R�vt;

so that positions and velocities with respect to the centre of mass areunchanged:

ρρρ0
i = r0i�R0 = (ri �vt)� (R�vt) = ri �R = ρρρi

ρ̇ρρ0
i = ṙ0i� Ṙ0 = (ṙi �v)� (Ṙ�v) = ṙi � Ṙ = ρ̇ρρi

The decomposition of the kinetic energy in equation (1.4) can be useful in prob-
lem solving. For example, if a ball rolls down a ramp, you can express the kinetic
energy as a sum of one term coming from the linear motion of thecentre of mass plus
another term for the rotational motion about the centre of mass (the kinetic energy
of rotational motion is discussed further later in the notes).

System of Two Particles Now apply the kinetic energy expression in equa-
tion (1.4) to a system of two particles. Write the particle velocities asu1 = ṙ1 and
u2 = ṙ2, so that:

u1 = Ṙ+ ρ̇ρρ1 and u2 = Ṙ+ ρ̇ρρ2:



4 1 Motion of Systems of Particles

v v�u v+δv

time t time t +δt

m �δm m+δm

Figure 1.2 Motion of a rocket. We consider the rocket at two closely spaced instants of
time,t andt+δt.

Subtracting these two equations givesu1�u2 = ρ̇ρρ1� ρ̇ρρ2, while the centre of mass
condition states thatm1ρ̇ρρ1+m2ρ̇ρρ2 = 0. We can thus solve foṙρρρ1 andρ̇ρρ2:

ρ̇ρρ1 = m2(u1�u2)
m1+m2

; ρ̇ρρ2 = �m1(u1�u2)
m1+m2

:
Substituting these in the kinetic energy expression gives,

T = 1
2
(m1+m2)Ṙ2+ 1

2
m1m2

m1+m2
(u1�u2)2:

The quantitym1m2=(m1+m2) appearing here is called thereduced mass. We will
meet it again (briefly) in chapter 3 on Kepler’s laws.

1.1.3 Examples

Rocket Motion We can use our results for the motion of a system of particles
to describe so-called “variable mass” problems, where the mass of the (part of) the
system we are interested in changes with time. A prototypical example is the motion
of a rocket in deep space. The rocket burns fuel and ejects thecombustion products
at high speed (relative to the rocket), thereby propelling itself forward. To describe
this quantitatively, we refer to the diagram in figure 1.2 andproceed as follows.

We consider the rocket at two closely spaced instants of time. At timet the rocket
and its remaining fuel have massm and velocityv. In a short additional intervalδt
the rocket’s mass changes tom+ δm as it burns a mass�δm of fuel (note thatδm
is negativesince the rocket uses up fuel for propulsion) and the rocket’s velocity
changes tov+ δv. The exhaust gases are ejected with velocity�u with respect to
the rocket, which is velocityv�u with respect to an external observer. Hence, at
time t + δt we have a rocket of massm+ δm moving with velocityv+ δv together
with a mass�δm of gas with velocityv�u.

If the rocket is in deep space, far from any stars or planets, there is no gravita-
tional force or other external force on the system, so its overall linear momentum is
conserved. Therefore, we may equate the linear momentum of the system at timest
andt +δt,

mv = (m+δm)(v+δv)�δm(v�u):
Cancelling terms we find,

uδm+mδv+δmδv = 0:
We take the limitδt ! 0, so that theδmδv term, which is second order in infinitesi-
mal quantities, drops out, leaving:

u
dm
m

=�dv:



1.2 Angular Motion 5

If the rocket initially has velocityvi when its mass ismi, and ends up with velocity
v f when its mass ismf , we integrate this equation to find:

v f = vi +u ln

�
mi

mf

� : (1.5)

The fact that the increase in the rocket’s speed depends logarithmically on the ratio
of initial and final masses is the reason why rockets are almost entirely made up of
fuel when they are launched (the function lnx growsvery slowly with x). It also
explains why multi-stage rockets are advantageous: once you have burnt up some
fuel, you don’t want to carry around the structure that contained it, since this will
reduce the ratiomi=mf for the subsequent motion.

Rope Falling Onto a Table Here we’ll consider a system where an external
force acts. A flexible rope with mass per unit lengthρ is suspended just above a
table. The rope is released from rest. Find the force on the table when a lengthx of
the rope has fallen to the table.

Our system here is the rope. The external forces in the vertical direction are the
weight of the rope,ρag, acting downwards plus an upward normal forceF exerted
on the rope by the tabletop. We want to determineF .

The rope falls freely onto the table, so its downward acceleration isg. If we let
v= ẋ, this means that ˙v= g andv2 = 2gx.

Suppose that a lengthxof the rope has reached the table top after timet, when the
speed of the falling section isv. A short timeδt later, the length of rope on the table
is x+ δx and the speed of the falling section isv+ δv. The downward components
of the system’s total momentum at timest andt +δt are therefore:

p(t) = ρ(a�x)v;
p(t+δt) = ρ(a�x�δx)(v+δv):

Working to first order in small quantities,

δp= p(t +δt)� p(t) = ρ(a�x)δv�ρvδx:
Taking the limitδt ! 0, we find that the rate of change of momentum is,

dp
dt

= ρ(a�x)v̇�ρvẋ= ρ(a�x)g�2ρxg:
Therefore, equating the external force to the rate of changeof momentum gives,

ρag�F = ρ(a�x)g�2ρxg;
or finally,

F = 3ρxg:
1.2 Angular Motion

The angular equation of motion for each particle is

ri �Fi = d
dt

(ri�pi ):



6 1 Motion of Systems of Particles

The total angular momentum of the system and the total torqueacting are:

L = N

∑
i=1

ri �pi and τττ = N

∑
i=1

ri �Fi

As before we split the total force on each particle into external and internal parts.
We then make a corresponding split in the total torque:

τττ = N

∑
i=1

ri �Fext
i + N

∑
i=1

ri �∑
j 6=i

Fi j� τττext+τττint:
Recall that in the linear case, we were able to cancel the internal forces in pairs,

because they satisfied Newton’s third law. What is the corresponding result here? In
other words, when can we ignoreτττint? To answer this, decomposeτττint as follows,

τττint = r1� (F12+F13+ � � �+F1N)+r2� (F21+F23+ � � �+F2N)+ � � �= (r1�r2)�F12+(other pairs):
We have used Newton’s third law to obtain the last line.

Now, if the internal forces act along the lines joining the particle pairs, then all
the terms(ri�r j)�Fi j vanish andτττint = 0. Thusτττint = 0 for centralinternal forces.
Examples are gravity and the Coulomb force.

With this proviso we obtain the result,

N

∑
i=1

ri �Fext
i = d

dt

N

∑
i=1

ri �pi ;
which is rewritten as,

τττext= L̇ :� This result applies when we use coordinates in an inertial frame (one in which
Newton’s laws apply).� Note that we used both Newton’s third law and the condition that the forces
between particles were central in order to reach our result.

1.2.1 Angular Motion About the Centre of Mass

We will now see that taking moments about the centre of mass also leads to a simple
result. To do this, look at the total angular momentum using the centre of mass
coordinates:

L = N

∑
i=1

ri�mi ṙi = N

∑
i=1

(R+ρρρi)�mi(Ṙ+ ρ̇ρρi)= N

∑
i=1

R�miṘ+ N

∑
i=1

R�miρ̇ρρi + N

∑
i=1

ρρρi�miṘ+ N

∑
i=1

ρρρi�miρ̇ρρi:
The second and third terms on the RHS vanish since∑miρρρi = 0 and∑miρ̇ρρi = 0 by
the definition of the centre of mass. This leaves,

L = R�MṘ+ N

∑
i=1

ρρρi�miρ̇ρρi;
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which we write as,
L = R�MṘ+LCM : (1.6)

The total angular momentum therefore has two terms, which can be interpreted as
follows. The first arises from the motion of the centre of massabout the origin of
coordinates: this is called theorbital angular momentum and takes different values
in different inertial frames. The second term,LCM, arises from the angular motion
about (relative to) the centre of mass (think of the example of a spinning planet
orbiting the Sun): this is thesamein all inertial frames and is anintrinsic or spin
angular momentum (the proof of this is like the one given forTCM, the kinetic energy
relative to the CM, below equation (1.4) on page 3).

Finally, we take the time derivative of the last equation to obtain,

dLCM

dt
= dL

dt
�R�MR̈ = τττext�R�Fext= N

∑
i=1

ri �Fext
i � N

∑
i=1

R�Fext
i= N

∑
i=1

(ri�R)�Fext
i= N

∑
i=1

ρρρi �Fext
i � τττext

CM:
So we’ve found two results we can use when considering torques applied to a

system:

τττext= L̇ and τττext
CM = L̇CM : (1.7)� These two equations say you can take moments either about theorigin of an

inertial frame, or about the centre of mass (even if the centre of mass is itself
accelerating).� Furthermore, in either case:

The angular momentum of a system subject to
no external torque is constant.

1.3 Commentary

In deriving the general results above we assumed the validity of Newton’s third law,
so that we could cancel internal forces in pairs. We also assumed that the forces were
central so that we could cancel internal torques in pairs. The assumption of central
internal forces is very strong and we know of examples, such as the electromagnetic
forces between moving particles, which arenot central.

All we actually require is the validity of the results in equations (1.1) and (1.7).
It is perhaps better to regard them as basic assumptions whose justification is that
their consequences agree with experiment.

For the puzzle associated with the electromagnetic forces mentioned above, the
resolution is that you have to ascribe energy, momentum and angular momentum to
the electromagnetic field itself.
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2
Rotational Motion of Rigid
Bodies

2.1 Rotations and Angular Velocity

A rotation R(n̂;θ) is specified by an axis of rotation, defined by a unit vectorn̂
(2 parameters) and an angle of rotationθ (one parameter). Since you have a direction
and a magnitude, you might suspect that rotations could be represented in some way
by vectors. However, rotations through finite angles arenotvectors, because they do
not commute when you “add” or combine them by performing different rotations in
succession. This is illustrated in figure 2.1

Infinitesimalrotationsdo commute when you combine them, however. To see
this, consider a vectorA which is rotated through an infinitesimal angledφ about
an axisn̂, as shown in figure 2.2. The change,dA in A under this rotation is a
tiny vector from the tip ofA to the tip ofA+dA. The figure illustrates thatdA is
perpendicular to bothA and n̂. Moreover, ifA makes an angleθ with the axisn̂,
then, in magnitude,jdAj= Asinθdφ, so that as a vector equation,

dA = n̂�Adφ:
This has the right direction and magnitude.

If you perform a second infinitesimal rotation, then the change will be some
newdA0 say. The total change inA is thendA+dA0, but since addition of vectors

BF
F F B

F

B B

rotate 90 degrees about z axis then 180 degrees about x axis

rotate 180 degrees about x axis then 90 degrees about z axis

Figure 2.1 Finite rotations do not commute. A sheet of paper has the letter “F” on the front
and “B” on the back (shown light grey in the figure). Doing two finite rotations in different
orders produces a different final result.

9
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ω

φ

θ

d

+

ˆ

A A   dA

dA

n

Figure 2.2 A vector is rotated through an infinitesimal angle about an axis.

commutes, this is the same asdA0+dA. So, infinitesimal rotationsdo combine as
vectors.

Now think of A as denoting a position vector, rotating around the axis with
angular velocitydφ=dt = φ̇, with the length ofA fixed. This describes a particle
rotating in a circle about the axis. The velocity of the particle is,

v = dA
dt

= n̂�A φ̇:
We can define the vectorangular velocity,

ωωω = φ̇ n̂;
and then,

dA
dt

= ωωω�A : (2.1)

It’s not necessary to think ofA as a position vector, so this result describes the rate
of change of any rotating vector of fixed length.

2.2 Moment of Inertia

We will consider the rotational motion ofrigid bodies, where the relative positions of
all the particles in the system are fixed. Specifying how one point in the body moves
around an axis is then sufficient to specify how the whole bodymoves. The idea of a
rigid body is clearly an idealisation. Real bodies are not rigid and will deform, how-
ever slightly, when subject to loads. Their constituents are also subject to random
thermal motion. Nonetheless there are many situations where the deformation and
any thermal motion can be ignored.
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ˆ

i
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n

ω

n

r

v

L

Figure 2.3 Rigid body rotation about a fixed axis.

The general motion of a rigid body with a moving rotation axisis complicated,
so we will specialise to afixedaxis at first. We can extend our analysis tolaminar
motion, where the axis can move, without changing its direction: an example is
given by a cylinder rolling in a straight line down an inclined plane. We will later
discuss precession, where the axis itself rotates.

For a rigid body rotating about a fixed axis, what property controls the angular
acceleration produced by an external torque? The property will be the rotational
analogue of mass (which tells you the linear acceleration produced by a given force).
It is known as themoment of inertia, sometimes abbreviated (in these notes anyway)
asMoI.

To find out how to define the MoI, look at the kinetic energy of rotation. Let
ωωω = ωn̂, so thatn̂ specifies the rotation axis. Letmi be the mass of theith particle in
the body and letRi be the perpendicular distance of theith particle from the rotation
axis. The geometry is illustrated in figure 2.3. Since the body is rigid, Ri is a fixed
distance for eachi andω is the same for all particles in the body. The kinetic energy
is

T = ∑
i

1
2

miv
2
i = ∑

i

1
2

miR
2
i ω2 = 1

2
Iω2;

where the last equality allows us to define the MoI about the given axis, according
to,

I �∑
i

miR
2
i :

The contribution of an element of mass toI grows quadratically with its distance
from the rotation axis. Note the analogy between1

2mv2 for the kinetic energy of a
particle moving with speedv and1

2Iω2 for the kinetic energy of a body with moment
of inertiaI rotating with angular speedω.

If the position vectorri of theith particle is measured from a point on the rotation
axis, thenvi = ωωω�ri andvi = jωωω�ri j= Riω. This is an application of the result in
equation (2.1) for the rate of change of a rotating vector.

The moment of inertia is one measure of the mass distributionof an object. Other
characteristics of the mass distribution we have already met are the total mass and
the location of the centre of mass.
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For a continuous mass distribution, simply replace the sumsover discrete parti-
cles with integrals over the mass distribution,

I = Z
body

R2dm= Z
body

R2ρd3r :
Here, dm= ρd3r is a mass element,ρ is the mass density andd3r is a volume
element.

It is sometimes convenient to use theradius of gyration, k, defined by

I �Mk2 :
A single particle of mass equal to the total mass of the body atdistancek from the
rotation axis will have the same moment of inertia as the body.

Now look at the componentLn in the direction of the rotation axis of the (vector)
angular momentum about some point on the axis (see figure 2.3). This is obtained
by summing all the contributions of momenta perpendicular to the axis times the
perpendicular separation from the axis,

Ln = ∑
i

Ri(miRiω) = Iω :
The subscriptn labels the rotation axis. Note that the angular momentum of the ith
particle isLi = ri �mivi, and the component of this in the direction ofn̂ is,

n̂ � (ri �mivi) = n̂ � (ri�mi(ωωω�ri)) = miR
2
i ω;

which is just what appears in the sum givingLn.
If n̂ is a symmetry axis thenLn is the only non-zero component of the total angu-

lar momentumL. However, in general,L need not lie along the axis, or equivalently,
L need not be parallel toωωω.

Taking components of the angular equation of motion,τττ = dL=dt along the axis
gives,

τn = dLn

dt
= Iω̇ = I φ̈;

if φ measures the angle through which the body has rotated from some reference
position.

2.3 Two Theorems on Moments of Inertia

2.3.1 Parallel Axis Theorem

ICM = Moment of Inertia (MoI) about axis through centre of mass (CM)

I = MoI about parallel axis at distanced from axis through CM

The parallel axis theorem states:

I = ICM +Md2 ;
whereM is the total mass. To prove this result, choose coordinates with thez-axis
along the direction of the two parallel axes, as shown in figure 2.4. Then,

I = N

∑
i=1

mi(x2
i +y2

i ):
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CM axis
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dnew axis CM axis

y

x

i

Figure 2.4 Parallel axis theorem. In the right hand figure, we are looking vertically down
in thez direction.

x

y

z

mi

Figure 2.5 Perpendicular axis theorem for thin flat plates.

We can also choose thex-direction to run from the new axis to the CM axis. Then,

xi = d+ρix and yi = ρiy

whereρix andρiy are coordinates with respect to the CM. The expression forI be-
comes:

I = N

∑
i=1

mi((d+ρix)2+ρ2
iy) = N

∑
i=1

mi(ρ2
ix +ρ2

iy +d2+2dρix):
The last term above contains∑miρix which vanishes by the definition of the CM.
The remaining terms giveICM andMd2 and the result is proved.

2.3.2 Perpendicular Axis Theorem

This applies for thin flat plates of arbitrary shapes, which we take to lie in thex-y
plane, as shown in figure 2.5. LetIx, Iy andIz be the MoI about thex, y andz axes
respectively. The perpendicular axis theorem states:

Iz = Ix+ Iy :
The proof of this is very quick. Just observe that since we have a thin flat plate, then

Ix = N

∑
i=1

miy
2
i and Iy = N

∑
i=1

mix
2
i :

But

Iz = N

∑
i=1

mi(x2
i +y2

i );
and the result is immediate.

In both these results we have assumed discrete distributions of point masses. For
continuousmass distributions,simply replace the sums by integrations. For example,

Iz = N

∑
i=1

mi(x2
i +y2

i )�! Z (x2+y2)dm:
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F N(M+nm)g θ

ω

v

Figure 2.6 Wheel rolling down a slope.

2.4 Examples

Moment of Inertia of a Thin Rod Find the moment of inertia of a uniform thin
rod of length 2a about an axis perpendicular to the rod through its centre of mass.
Also find the moment of inertia about a parallel axis through the end of the rod.

Let ρ be the mass per unit length of the rod and letx measure position along
the rod starting from the centre of mass (so�a� x � a). For an element of the
rod of lengthdx the mass isρdx and the moment of inertia of the element isρx2dx.
Therefore the total moment of inertia is given by the integral:

ICM = Z a�a
ρx2dx= 2

3
ρa3:

The total mass ism= 2ρa, and therefore,

ICM = 1
3

ma2:
Applying the parallel axis theorem, the moment of inertia about one end of the rod
is,

Iend= ICM +ma2 = 4
3

ma2:
Spoked Wheel A wheel of radiusa comprises a thin rim of massM andn spokes,
each of massm, which may be considered as thin rods terminating at the centre of
the wheel. If the wheel rolls without slipping down a plane inclined at angleθ to the
horizontal, as depicted in figure 2.6, what is the linear acceleration of its centre of
mass?

We will apply the angular equation of motion about the centreof mass (see
equation (1.7) on page 7), and the linear equation of motion (see equation (1.2)
on page 2) in a direction parallel to the sloping plane. If theangular velocity of the
wheel isω, then the no-slip conditionsays that its speed isv= aω. Choose directions
so thatω andv are both positive when the wheel rolls downhill.

The angular equation of motion applied to the wheel about itscentre of mass
saysτext

CM = ICM ω̇. The external torque comes from the frictional forceF acting up
the sloping plane at the point of contact with the wheel. Using the result above for
the MoI of a rod (remembering that the rod length is nowa instead of 2a), we find,

ICM = Ma2+ n
3

ma2:
The angular equation of motion then gives,

Fa= (Ma2+ n
3

ma2)ω̇:
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The component of the linear equation of motion in a directiondown the plane gives,�F +(M+nm)gsinθ = (M+nm)aω̇:
We now eliminateF and solve foraω̇, which gives the linear acceleration as,

aω̇ = 3(M+nm)gsinθ
6M+4nm

:
Alternatively, since the normal reaction (N in figure 2.6) and frictional forces

on the wheel do no work, we can apply the conservation of the kinetic plus (grav-
itational) potential energy. Applying our result in equation (1.4) on page 3 for the
kinetic energy of a system, we find:

1
2
(M+nm)v2+ 1

2
ICMω2� (M+nm)gxsinθ = const;

wherex is the distance moved starting from some reference point. Using v= ẋ= aω
and differentiating with respect to time gives

1
3
(6M+4nm)ẋẍ= (M+nm)gsinθ ẋ;

which leads to the same result as before for the accelerationaω̇ = ẍ.

2.5 Precession

Spinning bodies tend toprecessunder the action of a gravitational torque. We’ll
work out the steady precession rate for a spinning top. Figure 2.7 shows a top sup-
ported at a fixed pivot point. We will apply the angular equation of motionτττ= dL=dt
about the pivot. As drawn, the torque about the pivot due to the weight of the top
points into the paper. Hence, the angular momentumL of the top must change by
moving into the paper. If the top is spinning very fast about its axis, thenL is, to a
very good approximation, aligned with the top’s axis. So, the top will tend to turn
bodily, orprecessaround a vertical axis. It may help to think of the torqueτττ pushing
the tip ofL around.

We can calculate the precession frequency quite easily. Assume thatL is large so
that the total angular momentum of the top is given entirely by the spin, and ignore
any contribution due to the slow precession of the top about the vertical axis. The
torque is given by,

τττ = r�F;
wherer is the vector from the pivot to the top’s centre of mass andF = mg is the
top’s weight. In magnitude,

τ = mgrsinα;
where the top’s axis makes an angleα with the vertical.

If the top precesses through an infinitesimal angledφ about the vertical axis, then
the magnitude of the change inL is,

dL= Ldφsinα:
If φ̇ = ωp is the precession angular velocity, then,

dL
dt

= Lωpsinα:
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Figure 2.7 A spinning top will precess under gravity.

Applying the equation of motion, taking the magnitude of both sides, gives:

mgrsinα = Lωpsinα:
The sinα terms cancel and the final answer comes out independent of theangle
which the top makes with the vertical. The precession angular velocity is given by,

ωp = mgr
L

:
A full treatment of the motion of a top is complicated. Steadyprecession is a

special motion: in general the top tends to nod up and down, ornutate, as it pre-
cesses.

2.6 Gyroscopic Navigation

A gyrocompass is a spinning top mounted in a frame so that its axis is constrained
to be horizontal with respect to the Earth, see figure 2.8. As the Earth turns, the axis
turns with it, causing the end of the axis labelledA in the figure to be raised upwards
and the endB to be pushed down (as seen from a fixed frame not attached to the
Earth). This means that there is a torque on the gyroscope which is perpendicular
to the spin angular momentumL and points between the North and West when the
compass is oriented as in the figure.

From the angular equation of motion,τττ = dL=dt, this torque will tend to pushL
towards the North. IfL points between North and West, the torque again tries to line
up L with the North-South axis. The gyrocompass will thus tend tooscillate with
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Figure 2.8 A gyrocompass.

its spin direction oscillating about the N-S axis. If you apply some damping, then it
will tend to settle down with its spin along the N-S line.

2.7 Inertia Tensor �
Now let’s look at the moment of inertia in more detail. So far when we’ve consid-
ered the MoI for a body rotating around a fixed axis, we’ve always looked at the
componentLn of the angular momentumL along the direction of the axiŝn. Now
let’s look atall the components ofL. From the definition of angular momentum we
have,

L = N

∑
i=1

ri �pi = N

∑
i=1

ri �mi(ωωω�ri) = N

∑
i=1

mi(ri�ri ωωω�ωωω�ri ri);
where we have usedpi = mivi = miωωω� ri andωωω = ωn̂. We also applied a standard
result for the vector triple product,ri � (ωωω� ri) = ri�riωωω�ωωω�riri . Rewrite this as a
matrix equation giving the components ofL in terms of the components ofωωω (the
summations run overi = 1; : : : ;N):0@Lx

Ly

Lz

1A = 0@∑mi(y2
i +z2

i ) �∑mixiyi �∑mixizi�∑miyixi ∑mi(z2
i +x2

i ) �∑miyizi�∑mizixi �∑miziyi ∑mi(x2
i +y2

i )1A0@ωx

ωy

ωz

1A= 0@ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

1A0@ωx

ωy

ωz

1A :
This is given more succinctly as,

L = Iωωω;
whereI is the matrix, known as theinertia tensorwhich acts onωωω to give L. Re-
membering thatωωω = ω n̂, our old results are recovered from,

T = 1
2

n̂TI n̂ω2 and Ln = n̂TI n̂ω;
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so we can define
In� n̂TI n̂

as the moment of inertia about the axisn̂. This corresponds to what we calledI
earlier, when we didn’t make explicit reference to the rotation axis we were using.
Here we are thinking of a matrix notation, son̂T means the transpose ofn̂, which
gives a row vector.

The resultL = Iωωω shows quite clearly that although the angular momentum
depends linearly onωωω it doesnothave to be parallel toωωω. One important place where
this matters is wheel balancing on cars. A wheel is unbalanced precisely whenL and
ωωω are not parallel. Then, as the wheel rotates withωωω fixed, L describes a cone so
dL=dt 6= 0. Therefore a torque must be applied and you feel “wheel wobble.” This is
corrected by adding small masses to the wheel rim to adjustI to makeL andωωω line
up. In general, sinceI is a symmetric matrix, it can be diagonalised. This means it is
always possible to choose a set of axes in the body for whichI has non zero elements
only along the diagonal. If you rotate the body around one of theseprincipal axes,
L andωωω will be parallel.

2.7.1 Free Rotation of a Rigid Body — Geometric Description �
Consider the rotational motion of a rigid body moving freelyunder no forces (or, a
rigid body falling freely in a uniform gravitational field sothat there are no torques
about the CM; or, a rigid body freely pivoted at the CM).

If there are no torques acting, the total angular momentum,L, must remain con-
stant. It is convenient to choose axes fixed in the body, aligned with its principal
axes of inertia. These body axes are themselves rotating, soin these coordinates the
components ofL along the axes may change (see chapter 4 on rotating coordinate
systems). However,jLj is still fixed, so thatL�L = L2 = const. Expressed in the
body coordinates, this reads:

L2 = I2
1ω2

1+ I2
2ω2

2+ I2
3ω2

3:
Furthermore, since there is no torque, the rotational kinetic energy is fixed,T =
const. Expressed in the body coordinates, this second conservation condition reads:

2T = I1ω2
1+ I2ω2

2+ I3ω2
3:

The components of the angular velocity simultaneously satisfy two different equa-
tions. These equations specify two ellipsoids andωωω must lie on the line given by
their intersection.

Suppose that all three principal moments of inertia are unequal, as is the case for,
say, a book or a tennis racket. We’ll takeI1 < I2 < I3. Now, start spinning the object
with angular velocity of magnitudeω aligned along theI1 axis. Angular momentum
conservation says that the maximum magnitude of the component of ωωω along the
I2 axis in the subsequent motion isωI1=I2, while kinetic energy conservation says
the maximum magnitude of this component isω

p
I1=I2. SinceI1 < I2, we find that

the maximum component allowed by kinetic energy conservation is bigger, so that
the kinetic energy ellipsoid liesoutsidethe angular momentum ellipsoid along the
I2 axis. Likewise, sinceI1 < I3, the kinetic energy ellipsoid liesoutsidethe angular
momentum ellipsoid in theI3 direction. Therefore, the intersection of the two ellip-
soids comprises just two points, along the positive and negative I1 directions. This
is enough to tell you that rotation about theI1 axis is stable — see figure 2.9(a).
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Figure 2.9 Free rotation of a rigid body. The diagrams show the (first octants of the)
kinetic energy and angular momentum ellipsoids for the freerotation of a rigid body with
all three principal moments of inertia different,I1 < I2 < I3. In (a) the rotation is stable with
ωωω pointing along theI1 direction. In (b) the two ellipsoids intersect in a line, showing that
rotation about theI2 axis is unstable. In (c) the rotation is stable withωωω pointing in theI3
direction.
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Figure 2.10 Curves showing the time variation of angular velocity for a freely rotating
object. The curves all lie on the ellipsoid of constant kinetic energy, and each one is given
by the intersection of this ellipsoid with a similar ellipsoid of constant (magnitude of) angular
momentum. On the left the full curves are shown, while on the right, parts of the curves on
the “back” of the kinetic energy ellipsoid are hidden. The closed loops around theI1 andI3
axes show that the rotation is stable about these two axes.

A similar argument holds if you start with the angular velocity lined up along
the I3 axis, although in this case the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid, with the intersection only at twopoints along the positive
and negativeI3 axes. Thus, rotation about the axis with the largest moment of inertia
is also stable — see figure 2.9(c).

The final case we consider is where the initial angular velocity is aligned along
the I2 axis. Now, sinceI2 > I1, the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid in theI1 direction, but, sinceI2 < I3, the angular momentum
ellipsoid lies inside the kinetic energy ellipsoid in theI3 direction. This means that
there is a whole line of points where the two ellipsoids intersect — see figure 2.9(b).
In turn, this tells you that rotation about the axis with intermediate moment of inertia
is unstable: any small misalignment can be amplified and the object will be observed
to “tumble” as it spins. It is easy to demonstrate this for yourself by throwing a book
in the air, spinning it about each of its three principal axesin turn.

These three cases are illustrated in figure 2.9. Figure 2.10 shows the time varia-
tion of ω for the freely rotating body: each continuous curve shows the time variation
of the components ofω. The curves all lie on the surface of the ellipsoid of constant
kinetic energy, and each curve is given by the intersection of this ellipsoid with an
ellipsoid of constant angular momentum.
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3
Gravitation and Kepler’s Laws

In this chapter we will recall the law of universal gravitation and will then derive
the result that a spherically symmetric object acts gravitationally like a point mass
at its centre if you are outside the object. Following this wewill look at orbits under
gravity, deriving Kepler’s laws. The chapter ends with a consideration of the energy
in orbital motion and the idea of an effective potential.

3.1 Newton’s Law of Universal Gravitation

For two particles of massesm1 andm2 separated by distancer there is a mutual force
of attraction of magnitude

Gm1m2

r2 ;
whereG= 6:67�10�11m3kg�1s�2 is thegravitational constant. If F12 is the force
of particle 2 on particle 1 and vice-versa, and ifr12 = r2� r1 is the vector from
particle 1 to particle 2, as shown in figure 3.1, then the vector form of the law is:

F12= �F21= Gm1m2

r2
12

r̂12 ;
where the hat (̂ ) denotes a unit vector as usual. Gravity obeys the superposition
principle, so if particle 1 is attracted by particles 2 and 3,the total force on 1 is
F12+F13.

The gravitational force is exactly analogous to the electrostatic Coulomb force
if you make the replacements,m! q,�G! 1=4πε0 (of course, masses are always

m1

m2

r12
F12

F21

r1

r2 m r

F

Figure 3.1 Labelling for gravitational force between two masses (left) and gravitational
potential and field for a single mass (right).
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positive, whereas chargesq can be of either sign). We will return to this analogy
later.

Since gravity acts along the line joining the two masses, it is acentral forceand
thereforeconservative(any central force is conservative — why ?). For a conser-
vative force, you can sensibly define apotential energy differencebetween any two
points according to,

V(r f )�V(ri) = �Z r f

ri

Fd�r:
The definition is sensible because the answer depends only onthe endpoints and not
on which particular path you used. Since onlydifferencesin potential energy appear,
we can arbitrarily choose a particular point, sayr0, as a reference and declare its
potential energy to be zero,V(r0) = 0. If you’re considering a planet orbiting the
Sun, it is conventional to setV = 0 at infinite separation from the Sun, sojr0j =
∞. This means that we can define a gravitational potential energy by making the
conventional choice that the potential is zero when the two masses are infinitely
far apart. For convenience, let’s put the origin of coordinates at particle 1 and let
r = r2� r1 be the position of particle 2. Then the gravitational force on particle 2
due to particle 1 isF = F21 = �Gm1m2 r̂=r2 and the gravitational potential energy
is,

V(r) =�Z r

∞
F�dr0 = �Z r

∞
(�Gm1m2

r 02 )dr0 = �Gm1m2

r
:

(The prime( 0 ) on the integration variable is simply to distinguish it fromthe point
where we are evaluating the potential energy.) It is also useful to think of particle
1 setting up a gravitational field which acts on particle 2, with particle 2 acting as
a test mass for probing the field. Define thegravitational potential, which is the
gravitational potential energy per unit mass, for particle1 by (settingm1 = m now),

Φ(r) =�Gm
r

:
Likewise, define thegravitational fieldg of particle 1 as the gravitational force per
unit mass:

g(r) = �Gm
r2 r̂ :

The use ofg for this field is deliberate: the familiarg= 9:81ms�2 is just the magni-
tude of the Earth’s gravitational field at its surface. The field and potential are related
in the usual way:

g =�∇∇∇Φ:
Gravitational Potential Energy Near the Earths’ Surface If you are think-
ing about a particle moving under gravity near the Earth’s surface, you might set the
V = 0 at the surface. Here, the gravitational force on a particleof massm is,

F =�mgk̂;
where k̂ is an upward vertical unit vector, andg = 9:81ms�2 is the magnitude of
the gravitational acceleration. In components,Fx = Fy = 0 andFz = �mg. Since
the force is purely vertical, the potential energy is independent ofx andy. We will
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measurezas the height above the surface. Applying the definition of potential energy
difference between heighth and the Earth’s surface (z= 0), we find

V(h)�V(0) =�Z h

0
Fzdz= �Z h

0
(�mg)dz= mgh:

Choosingz= 0 as our reference height, we setV(z=0) = 0 and find the familiar
result for gravitational potential energy,

V(h) = mgh Gravitational potential energy
near the Earth’s surface

Note that since the gravitational force acts vertically, onany path between two given
points the work done by gravity depends only on the changes inheight between the
endpoints. So, this force is indeed conservative.

3.2 Gravitational Attraction of a Spherical Shell

The problem of determining the gravitational attraction ofspherically symmetric
objects led Newton to invent calculus: it took him many yearsto prove the result.
The answer for a thin uniform spherical shell of matter is that outside the shell the
gravitational force is the same as that of a point mass of the same total mass as
the shell, located at the centre of the shell. Inside the shell, the force is zero. By
considering an arbitrary spherically symmetric object to be built up from thin shells,
we immediately find that outside the object the gravitational force is the same as that
of a point with the same total mass located at the centre.

We will demonstrate this result in two ways: first by calculating the gravitational
potential directly, and then, making full use of the spherical symmetry, using the
analogy to electrostatics and applying Gauss’ law.

3.2.1 Direct Calculation

We consider a thin spherical shell of radiusa, mass per unit areaρ and total mass
m= 4πρa2. Use coordinates with origin at the center of the shell and calculate the
gravitational potential at a pointP distancer from the centre as shown in figure 3.2.

We use the superposition principle to sum up the individual contributions to the
potential from all the mass elements in the shell. All the mass in the thin annulus
of width adθ at angleθ is at the same distanceR from P, so we can use this as our
element of mass:

dm= ρ2πasinθadθ = m
2

sinθdθ:
The contribution to the potential from the annulus is,

dΦ =�Gdm
R

= �Gm
2

sinθdθ
R

:
Now we want to sum all the contributions by integrating overθ from 0 toπ. In fact,
it is convenient to change the integration variable fromθ to R. They are related using
the cosine rule:

R2 = r2+a2�2arcosθ:
From this we find sinθdθ=R= dR=(ar), which makes the integration simple. If
r � a the integration limits arer�a andr +a, while if r � a they area� r anda+ r .
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Figure 3.2 Gravitational potential and field for a thin uniform spherical shell of matter.

We can specify the limits for both cases asjr�aj andr +a, so that:

Φ(r) =�Gm
2ar

Z r+ajr�ajdR= ��Gm=r for r � a�Gm=a for r < a
:

We obtain the gravitational field by differentiating:

g(r) =��Gmr̂=r2 for r � a
0 for r < a

:
As promised, outside the shell, the potential is just that ofa point mass at the centre.
Inside, the potential is constant and so the force vanishes.The immediate corollaries
are:� A uniform or spherically stratified sphere (so the density isa function of the

radial coordinate only) attracts like a point mass of the same total mass at its
centre, when you are outside the sphere;� Two non-intersecting spherically symmetric objects attract each other like two
point masses at their centres.

3.2.2 The Easy Way

Now we make use of the equivalence of the gravitational forceto the Coulomb force
using the relabelling summarised in table 3.1. We can now apply the integral form
of Gauss’ Law in the gravitational case to our spherical shell. The law reads,Z

S
g�dS = �4πG

Z
V

ρmdV
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Coulomb force Gravitational force

charge q mass m
coupling 1=(4πε0) coupling �G
potential V potential Φ
electric field E =�∇∇∇V gravitational field g =�∇∇∇Φ
charge density ρq mass density ρm

Gauss’ law ∇∇∇�E = ρq=ε0 Gauss’ law ∇∇∇�g =�4πGρm

Table 3.1 Equivalence between electrostatic Coulomb force and gravitational force.

m1

r1

r2

R

F �F

r

m2

ρρρ1

ρρρ2

CM

Figure 3.3 Coordinates for a two-body system.

which says that the surface integral of the normal componentof the gravitational
field over a given surfaceS is equal to(�4πG) times the mass contained within that
surface, with the mass obtained by integrating the mass density ρm over the volume
V contained byS.

The spherical symmetry tells us that the gravitational fieldg must be radial,
g = gr̂. If we choose a concentric spherical surface with radiusr > a, the mass
enclosed is justm, the mass of the shell, and Gauss’ Law says,

4πr2g= �4πGm

which gives

g =�Gm
r2 r̂ for r > a

immediately. Likewise, if we choose a concentric sphericalsurface inside the shell,
the mass enclosed is zero andg must vanish.

3.3 Orbits: Preliminaries

3.3.1 Two-body Problem: Reduced Mass

Consider a system of two particles of massesm1 at positionr1 andm2 at r2 inter-
acting with each other by a conservative central force, as shown in figure 3.3. We
imagine these two particle to be isolated from all other influences so that there is no
external force.

Express the positionri of each particle as the centre of mass locationR plus a
displacementρρρi relative to the centre of mass, as we did in equation (1.3) in chapter 1
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on page 2.
r1 = R+ρρρ1; r2 = R+ρρρ2:

Now change variables fromr1 andr2 to R andr = r1� r2. Since the only force
acting is the internal force,F = F12=�F21, between particles 1 and 2, the equations
of motion are:

m1r̈1 = F; m2r̈2 = �F:
From these we find, settingM = m1+m2,

MR̈ = m1r̈1+m2r̈2 = 0;
which says that the centre of mass moves with constant velocity, as we already know
from the general analysis in section 1.1.1 (see page 2). For the new relative displace-
mentr, we find,

r̈ = r̈1� r̈2 = � 1
m1

+ 1
m2

�
F = m1+m2

m1m2
F;

which we write as,
F = µr̈ ; (3.1)

where we have defined thereduced mass

µ� m1m2

m1+m2
:

For a conservative forceF there is an associated potential energyV(r) and the
total energy of the system becomes

E = 1
2

MṘ2+ 1
2

µṙ2+V(r):
This is just an application of the general result we derived for the kinetic energy
of a system of particles in equation (1.4) on page 3 — we already applied it in the
two-particle case on page 3. Likewise, whenF is central, the angular momentum of
the system is

L = M R� Ṙ+µr� ṙ;
which is an application of the result in equation (1.6) on page 7. You should make
sure you can reproduce these two results.

Since the center of massR moves with constant velocity we can switch to an
inertial frame with origin atR, so thatR = 0. Then we have:

E = 1
2

µṙ2+V(r);
L = µr� ṙ: (3.2)

The original two-body problem reduces to an equivalent problem of a single body
of massµ at position vectorr relative to a fixed centre, acted on by the forceF =�(∂V=∂r) r̂.

It’s often the case that one of the masses is very much larger than the other, for
example:

mSun � mplanet;
mEarth � msatellite;

mproton � melectron:
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If m2�m1, thenµ= m1m2=(m1+m2)�m1 and the reduced mass is nearly equal to
the light mass. Furthermore,

R = m1r1+m2r2

m1+m2
� r2

and the centre of mass is effectively at the larger mass. In such cases we treat the
larger mass as fixed atr2 � 0, with the smaller mass orbiting around it, and setµ
equal to the smaller mass. This is sometimes called the “fixedSun and moving planet
approximation.” We will use this approximation when we derive Kepler’s Laws.
We will also ignore interactions between planets in comparison to the gravitational
attraction of each planet towards the Sun.

3.3.2 Two-body Problem: Conserved Quantities

Recall that gravity is a central force: the gravitational attraction between two bodies
acts along the line joining them. In the formulation of equations 3.2 above, this
means that the gravitational force on the massµacts in the direction�r and therefore
exerts no torque about the fixed centre. Consequently, the angular momentum vector
L is a constant: its magnitude is fixed and it points in a fixed direction. SinceL =
r�p (wherep = µṙ), we see thatL is always perpendicular to the plane defined by
the position and momentum of the massµ. Alternatively stated, this means thatr
andp must always lie in the fixed plane of all directions perpendicular toL, and can
therefore be described using plane polar coordinates(r;θ), with origin at the fixed
centre.

For completeness we quote the radial and angular equations of motion in these
plane polar coordinates. We set the reduced mass equal to theplanet’s massm and
write the gravitational force asF = �kr̂=r2, wherek = GMm andM is the Sun’s
mass. The equations become (the reader should exercise to reproduce the following
expressions):

r̈ � r θ̇2 = � k
mr2

radial equation;
1
r

d
dt

(r2θ̇) = 0 angular equation:
The angular equation simply expresses the conservation of the angular momentum
L = mr2θ̇.

The second conserved quantity is the total energy, kinetic plus potential. All
central forces are conservative and in our two-body orbit problem the only force
acting is the central gravitational force. We again setµ equal to the planet’s massm
and write the gravitational potential energy asV(r) =�k=r . Then the expression for
the constant total energy becomes, using plane polar coordinates,

E = 1
2

mṙ2+ 1
2

mr2θ̇2�k=r:
In section 3.5 on page 33 we will deduce a good deal of information about the orbit
straight from this conserved total energy.

3.3.3 Two-body Problem: Examples

Comet A comet approaching the Sun in the plane of the Earth’s orbit (assumed
circular) crosses the orbit at an angle of 60� travelling at 50kms�1. Its closest ap-
proach to the Sun is 1=10 of the Earth’s orbital radius. Calculate the comet’s speed
at the point of closest approach.
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Take a circular orbit of radiusre for the Earth. Ignore the attraction of the comet
to the Earth compared to the attraction of the comet to the Sunand ignore any com-
plications due to the reduced mass.

The key to this problem is that the angular momentumL = r�p = r�mv of the
comet about the Sun is fixed. At the point of closest approach the comet’s velocity
must be tangential only (why?), so that,jr�vj= rminvmax:
At the crossing point, jr�vj = revsin30�:
Equating these two expressions gives,

rminvmax= 0:1revmax= 1
2

rev;
leading to

vmax= 5v= 250kms�1:
Cygnus X1 Cygnus X1 is a binary system of a supergiant star of 25 solar masses
and a black hole of 10 solar masses, each in a circular orbit about their centre of
mass with period 5:6days. Determine the distance between the supergiant and the
black hole, given that a solar mass is 1:99�1030kg.

Here we apply the two-body equation of motion, equation (3.1) from page 26.
Labelling the two massesm1 andm2, their separationr and their angular velocityω,
we have,

Gm1m2

r2 = m1m2

m1+m2
rω2:

Rearranging and using the periodT = 2π=ω, gives

r3 = G(m1+m2)T2

4π2= 6:67�10�11m3kg�1s�2� (10+25)�1:99�1030kg� (5:6�86400s)2

4π2= 27:5�1030m3;
leading tor = 3�1010m.

3.4 Kepler’s Laws

3.4.1 Statement of Kepler’s Laws

1. The orbits of the planets are ellipses with the Sun at one focus.

2. The radius vector from the Sun to a planet sweeps out equal areas in equal
times.

3. The square of the orbital period of a planet is proportional to the cube of the
semimajor axis of the planet’s orbit (T2 ∝ a3).
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Figure 3.4 Geometry of an ellipse and relations between its parameters. In the polar and
cartesian equations for the ellipse, the origin of coordinates is at thefocus.

3.4.2 Summary of Derivation of Kepler’s Laws

We will be referring to the properties of ellipses, so figure 3.4 shows an ellipse and its
geometric parameters. The parameters are also expressed interms of the dynamical
quantities: energyE, angular momentumL, mass of the SunM, mass of the planet
m and the universal constant of gravitationG. The semimajor axisa is fixed by the
total energyE and the semi latus rectuml is fixed by the total angular momentumL.

In general the path of an object orbiting under an inverse square law force can
be any conic section. This means that the orbit may be an ellipse with 0� e<
1, parabola withe= 1 or hyperbola withe> 1. With the definition that the zero
of potential energy occurs for infinite separation, the total energy of the system is
negative for an elliptical orbit. When the total energy is zero the object can just
escape to infinite distance, where it will have zero kinetic energy: this is a parabolic
orbit. For positive energy, the object can escape to infiniteseparation with finite
kinetic energy: this gives a hyperbolic orbit. Figure 3.5 illustrates the possible orbital
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hyperbola

e = 0e < 1
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Figure 3.5 Different conic sections, showing possible orbits under aninverse square law
force. The figure is drawn so that each orbit has the same angular momentum (samel ) but
different energy (the mass of the orbiting object is held fixed).

shapes.

2nd Law This is the most general and is a statement of angular momentum con-
servation under the action of thecentralgravitational force. The angular equation of
motion gives:

r2θ̇ = L
m

= const:
This immediately leads to,

dA
dt

= 1
2

r2θ̇ = L
2m

= const :
The 2nd law is illustrated in figure 3.6. An orbiting planet moves along the arc
segmentsABandCD in equal times, and the two shaded areas are equal.

Orbit equation The first and third laws are arrived at by finding the equation for
the orbit. The fact that the orbits are ellipses isspecificto an inverse square law for
the force, and hence the first and third laws are also specific to an inverse square law
force.

Proceed as follows, starting from the radial equation of motion (with k= GMm),

r̈� r θ̇2 =� k
mr2

:
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A
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D

Figure 3.6 Illustration of Kepler’s 2nd Law. An orbiting planet moves along the arc seg-
mentsAB andCD in equal times, and the two shaded areas are equal.

(i) Eliminate θ̇ using angular momentum conservation,θ̇ = L=mr2, leading to a
differential equation forr alone:

r̈� L2

m2r3 = � k
mr2

:
(ii) Use the relation

d
dt

= θ̇
d
dθ

= L
mr2

d
dθ

;
to obtain derivatives with respect toθ in place of time derivatives. This gives
a differential equation forr in terms ofθ.

(iii) To obtain an equation which is easy to solve, make the substitutionu= 1=r ,
to obtain the orbit equation:

d2u
dθ2 +u= mk

L2 :
1st Law The solution of the orbit equation is

1
r
= mk

L2 (1+ecosθ);
which for 0� e< 1 gives an ellipse, with semi latus rectuml = L2=mk. This is the
first law.

In figure 3.7 we show the orbit of a hypothetical planet aroundthe Sun with
semimajor axis 1:427�109km (the same as Saturn) and eccentricitye= 0:56 (bigger
than for any real planet — Pluto has the most eccentric orbit with e= 0:25). The
figure also shows how the planet’s distance from the Sun, speed and angular velocity
vary during its orbit.

3rd Law Start with the 2nd law for the rate at which area is swept out,

dA
dt

= L
2m

;
and integrate over a complete orbital periodT, to giveT = 2mA=L, whereA= πab
is the area of the ellipse. Substituting forb in terms ofa gives the third law:

T2 = 4π2

GM
a3 :
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Figure 3.7 On the left is shown the orbit of a hypothetical planet aroundthe Sun with
distance scales marked in units of 109km. The planet has the same semimajor axisa=
1:427�109km as Saturn, and hence the same period,T = 10760days. The eccentricity is
e= 0:56. The three graphs on the right show the planet’s distance from the sun, speed and
angular velocity respectively as functions of time measured in units of the orbital periodT.

Kepler’s Procedure � The solution of the orbit equation givesr as a function of
θ, but if you’re an astronomer, you may well be interested in knowing θ(t), so that
you can track a planet’s position in orbit as a function of time. You could do this
by brute force by combining the angular equation of motion,r2θ̇ = L=m, with the
equation giving the orbit,l=r = 1+ecosθ, and integrating. This gives a disgusting
integral which moreover leads tot as a function ofθ: you have to invert this, by a
series expansion method, to getθ as a function oft. This is tedious, and requires
you to keep many terms in the expansion to match the accuracy of astronomical
observations. Kepler himself devised an ingenious geometrical way to determine
θ(t), and his construction leads to a much neater numerical procedure. I refer you to
the textbook by Marion and Thornton1 for a description.

1J B Marion and S T Thornton,Classical Dynamics of Particles and Systems, 3rd edition, Harcourt
Brace Jovanovich (1988) p261



3.5 Energy Considerations: Effective Potential 33

3.4.3 Scaling Argument for Kepler’s 3rd Law

Suppose you have found a solution of the orbit equation, ¨r � r θ̇2 = �k=mr2, giving
r andθ as functions oft. Now scale the radial and time variables by constantsα and
β respectively:

r 0 = αr; t 0 = βt:
In terms of the new variablesr 0 andt 0, the left hand side of the orbit equation be-
comes,

d2r 0
dt02 � r 0�dθ

dt0�2 = α
β2 r̈�αr

� θ̇
β

�2 = α
β2 (r̈� r θ̇2);

while the right hand side becomes,� k
mr02 = 1

α2

�� k
mr2

�:
Comparing the two sides, you can see that we will have a new solution in terms of
r 0 andt 0 providedβ2 = α3. But this says precisely that if you have orbits of similar
shape, the periodT and semimajor axisa (characterising the linear size of the orbit)
will be related byT2 ∝ a3, which is Kepler’s third law.

To find the constant of proportionalityand show that the orbits are conic sections,
you really have to solve the orbit equation. However, the scaling argument makes
clear how the third law depends on having an inverse-square force law.

3.5 Energy Considerations: Effective Potential

Since the gravitational force is conservative, the total energyE of the orbiting body
is conserved. WritingV(r) for the gravitational potential energy for a moment (so
that we can substitute different forms for the potential energy if necessary), we find

E = 1
2

mṙ2+ 1
2

mr2θ̇2+V(r):
Since we know that angular momentum is also conserved (the force is central), we
can eliminatėθ usingr2θ̇ = L=m, to leave,

E = 1
2

mṙ2+ L2

2mr2
+V(r) :

This is just the energy equation you would get for a particle moving in one dimension
in aneffective potential

U(r) = L2

2mr2
+V(r) :

The effective potential contains an additionalcentrifugal term, L2=2mr2, which
arises because angular momentum has to be conserved. We can learn a good deal
about the possible motion by studying the effective potential without having to solve
the equation of motion forr .

In our case, replacingV(r) by the gravitational potential energy and usingl =
L2=mk, the effective potential becomes (see figure 3.8)

U(r) = kl
2r2� k

r
:
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Figure 3.8 Effective potentialU(r) = kl=2r2� k=r for motion in an inverse-square law
force.

The allowed motion must have ˙r2� 0, so the energy equation says

E �U(r) = kl
2r2 � k

r
:

If we choose a value for the total energyE, we can then draw a horizontal line at this
value on the graph ofU(r), and we know that the allowed motion occurs only where
theU(r) curve liesbelowour chosen value ofE.

The minimum possible total energy (for a given angular momentum) is given by
the minimum of the curve ofU(r). In this situationr is constant at

rc = l = L2=mk;
so the orbit is a circle and the total energy isE = �k=2l = �mk2=2L2.

If �k=2l < E < 0, you can see that the motion is allowed for a finite range of
r , rp � r � ra. This is the case of an elliptical orbit with perihelionrp and aphelion
ra. You can find the values ofrp andra by finding the roots of the equationE =
kl=2r2�k=r .

If E = 0, you see that there is a minimum value forr , but that escape to infinity
is just possible. This is the case of a parabolic orbit. ForE > 0, escape to infinity
is possible with finite kinetic energy at infinite separation. This is the case of a
hyperbolic orbit.

Orbits in a Yukawa Potential We found that the orbits produced by an inverse-
square law attractive force were ellipses, where the planetrepeatedly traced the same
path through space. Now consider a force given by the Yukawa potential,

V(r) = �αe�κr

r
(α > 0;κ > 0):
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Figure 3.9 Left: effective potentialU(r) = L2=2mr2�αe�κr=r with m= 1,α= 1,κ= 0:24
and L = 0:9. The inset showsU(r) at larger where it has a local maximum (note the
differences in scale, particularly for the value ofU). Right: rosette orbit of a particle with
this effective potential.

Such a potential describes, for example, the force of attraction between nucleons in
an atomic nucleus. Of course, in that situation, the problemshould be treated quan-
tum mechanically, but for now, let’s just look at classical orbits under the influence
of this potential.

The effective potential is,

U(r) = L2

2mr2
� αe�κr

r
:

To be specific, work in dimensionless units, settingm= 1, α = 1, κ = 0:24 and
choosingL = 0:9. The shape of the resulting effective potential as a function of r is
shown in the left hand part of figure 3.9.

If the total energyE is negative but greater than the minimum ofU(r), then
motion is allowed between a minimum and maximum value of the radiusr . On the
right hand side of figure 3.9 is the trajectory of a particle starting at(x;y) = (3;0)
with (vx;vy) = (0;0:3) (so thatL = 0:9). Here the particle’s (dimensionless) energy
is�0:117 and the motion is restricted to the region 0:486� r � 3, where 0:486 and 3
are the two solutions of the equationU(r) =�0:117.

Note that ifκ = 0, the Yukawa potential reduces to the same form as the stan-
dard gravitational potential. So, ifκr remains small compared to 1 we expect the
situation to be a small perturbation relative to the gravitational case. In our example,
for the “rosette” orbit on the right of figure 3.9, this is the case, and you can see
that the orbit looks like an ellipse whose orientation slowly changes. This is often
denoted “precession of the perihelion” and is typical of theeffect of small perturba-
tions on planetary orbits, for example those due to the effects of other planets. In
fact, observed irregularities in the motion of Uranus led tothe discovery of Neptune
in 1846. The orientation of the major axis of the Earth’s orbit drifts by about 104
seconds of arc each century, mostly due the influence of Jupiter. For Mercury, the
perihelion advances by about 574 seconds of arc per century:531 seconds of this
can be explained by the Newtonian gravitational interactions of the other planets,
while the remaining 43 seconds of arc are famously explainedby Einstein’s general
relativity.

The effective potential shown in figure 3.9 displays anotherinteresting property.
At large r the L2=2mr2 dominates the exponentially falling Yukawa term, soU(r)
becomes positive. In our example,U(r) has a local maximum nearr = 20. If the
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Figure 3.10 Orbital trajectories for a planet around two equal mass stars.

total energy is positive, but less than the value ofU at the local maximum, there
are two possibilities for orbital motion. For example, ifE = 0:0003, we find either
0:451� r � 16:31 or r � 36:48. Classically these orbits are distinct, and a particle
with E= 0:0003 which starts out in the inner region can never surmount the “barrier”
in U(r) and so will never be found inr � 36:48. In quantum mechanics, however, it
is possible for a particle to “tunnel” through such a barrier, so that an initially bound
particle has a (small) finite probability of escaping to large r . This is the case for a
process like alpha decay.

3.6 Chaos in Planetary Orbits �
We have shown that a single planet orbiting the Sun follows a simple closed elliptical
path. You might think that adding one more object to the system would make the
equations more complicated, but that with patience and effort you might be able to
figure out a solution for the trajectories. In fact, such a “three body problem” is
notoriously intractable, and, even today, analytic solutions are known only in a few
special cases.

In figure 3.10 is shown a numerical solution for a restricted version of the three
body problem. The two black dots are stars of equal mass, heldat fixed positions.
This means that the total energy is conserved, but that the linear and angular momen-
tum are not conserved since forces and torques have to be applied to hold the stars
in place. The solid curve shows the trajectory of a planet which starts out with some
given initial velocity at the point marked by the triangle. The stars are taken to have
a finite radius and the planet is allowed to pass through them without suffering any
interaction apart from the gravitational force (this avoids some numerical instability
when the planet gets very close to a point mass). The complexity of the solid curve
already hints at the difficulty of this problem.

In fact, the motion is chaotic in the scientific sense. One aspect of this is shown
by the dashed curve. This is a second solution for a planet which also starts out
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at the point marked by the triangle, but has one of its initialvelocity components
differing by 0.5% from the corresponding component for the first case. You can see
how the paths stay close together for a little while, but thenrapidly diverge and show
qualitatively different behaviour. This extreme (exponential) sensitivity to the initial
conditions is one of the characteristics of chaotic systems. Contrast it to the two
body problem, where a small perturbation to an elliptical orbit would simply result
in a new slightly displaced orbit.

For an animated computer simulation of the three body problem described here,
together with many other instructive examples of chaotic systems, try the program
Chaos Demonstrationsby J C Sprott and G Rowlands, available from Physics Aca-
demic Software, http://www.aip.org/pas/.



38 3 Gravitation and Kepler’s Laws



4
Rotating Coordinate Systems

4.1 Time Derivatives in a Rotating Frame

First recall the result that, for a vectorA of fixed length, rotating about the origin
with constant angular velocityωωω, the rate of change ofA is

dA
dt

= ωωω�A :
Now let î, ĵ and k̂ be unit vectors of an inertial frameO and let î

0
, ĵ

0
and k̂

0
be unit

vectors of a rotating frameO0. Each of the primed basis vectors rotates rigidly with
O0, so

d î
0

dt
= ωωω� î

0;
with similar equations for̂j

0
and k̂

0
. Consider an arbitrary vectora and resolve it

into components inO andO0:
a = ai î+a j ĵ+ak k̂ = a0

i î
0+a0

j ĵ
0+a0

k k̂
0:

Differentiating with respect to time gives:

da
dt

= dai

dt
î+ daj

dt
ĵ+ dak

dt
k̂= da0i

dt
î
0+ da0j

dt
ĵ
0+ da0k

dt
k̂
0+a0

iωωω� î
0+a0

jωωω� ĵ
0+a0

kωωω� k̂
0:

At this point, we introduce some new notation. We normally use ȧ andda=dt
interchangeably. Let us now adopt the convention that

ȧ� da0i
dt

î
0+ da0j

dt
ĵ
0+ da0k

dt
k̂
0;

which means that you differentiate thecomponentsof a but not the basis vectors,
even if the basis vectors are time dependent. In other words,ȧ is therate of change
of a measured in the rotating frame. Thetotal rate of change ofa is then:

da
dt

= ȧ+ωωω�a :
There is one term for the rate of change with respect to the rotating axes and a second
term arising from the rotation of the axes themselves.

39
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4.2 Equation of Motion in a Rotating Frame

We can use the result we just derived to work out the equation of motion for a particle
when its coordinates are measured in a frame rotating atconstantangular velocity
ωωω. Let a be a position vectorr. Differentiating once:

dr
dt

= ṙ+ωωω�r:
Differentiating again:

d2r
dt2

= d
dt

(ṙ+ωωω�r)= r̈+ωωω� ṙ+ωωω� (ṙ+ωωω�r)= r̈+2ωωω� ṙ+ωωω� (ωωω�r)
Newton’s law of motion isFtot = md2r=dt2, whereFtot is the total force acting, so
the equation of motion in the rotating frame becomes:

mr̈ = Ftot�2mωωω� ṙ�mωωω� (ωωω�r) :
The last two terms on the right hand side areapparent(or inertial or fictitious)
forces, arising because we are measuring positions with respect to axes which are
themselves rotating (i.e. accelerating).

4.3 Motion Near the Earth’s Surface

Assume that the Earth is spherically symmetric so that the weight of an object is a
vector directed towards the Earth’s centre. Pick an inertial frame O with origin at
the Earth’s centre, together with a frameO0 also with origin at the Earth’s centre, but
rotating with the Earth at angular velocityωωω. Write the total force on the particle as
its weightmg plus any other external forcesF (Ftot = F+mg).

Let R be a vector from the centre of the Earth to some point on or nearits surface,
as shown in figure 4.1, and letx be the displacement of the particle relative to this
point. This says that the position vector inO0 can be written as

r = R+x:
SinceR is fixed inO0, Ṙ = 0 andR̈ = 0, and the equation of motion becomes:

mẍ = F+mg�2mωωω� ẋ�mωωω� (ωωω� [R+x]):
We will now drop all terms of orderx=R or smaller. Even ifx is 10km, this ratio is
10km=6400km� 1:6�10�3. With this approximation:

1. ωωω� (ωωω� [R+x])�!ωωω� (ωωω�R) (If Rwas not so large we would normally
drop thisO(ω2) term),

2. the term involvingg simplifies,

g =� GMjR+xj3 (R+x)�!�GM
R3 R =�g

R
R
:
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equatorequator

Southampton
latitude λ = 51

λ

ω

R

x

Figure 4.1 Motion near the surface of the Earth. Displacementx measured from tip of a
(rotating) vectorR from the Earth’s centre to a point on or near its surface.

The approximate equation of motion becomes,

mẍ = F+mg��2mωωω� ẋ ;
where we have defined theapparent gravity,

g� = �g
R
R
�ωωω� (ωωω�R) :

We will take the latitude to beλ, as shown in figure 4.1 (note that latitude is zero at
the equator).

4.3.1 Apparent Gravity

The apparent gravityg� defines a local apparent vertical direction. It is what is
measured by hanging a mass from a spring so that the mass is stationary in the
rotating frame fixed to the Earth, andẋ = 0, ẍ = 0. We can easily work out the small
deflection angleα between the apparent vertical and the true vertical defined by line
to the Earth’s centre. The situation is illustrated in figure4.2.

The magnitude of the centrifugal term is,j�ωωω� (ωωω�R)j= ω2Rcosλ:
Applying the cosine rule to the right hand triangle in figure 4.2 gives,

g�2 = g2+(ω2Rcosλ)2�2gω2Rcos2 λ;
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g�α

λ

ω2Rcosλ

Figure 4.2 Determining the deflection angle between true and apparent verticals on the
Earth’s surface.

(a) (b) (c)

ω

Figure 4.3 Particle moving across a rotating disc: seen from (a) an inertial frame, (b) a
frame rotating with the disc, (c) a frame rotating with the disc whenωa=v is large, wherev
is the particle’s speed in the inertial frame anda is the disc’s radius.

which tells us thatg� = g+O(ω2). Applying the sine rule to the same triangle gives,

sinα
ω2Rcosλ

= sinλ
g� :

Sinceα is small, we approximate sinα� α, and to orderω2 we can replaceg� by g,
to find:

α = ω2R
g

sinλcosλ :
This tells us that the deflection vanishes at the equator and the poles, and is maximal
at latitude 45�. The size of the deflection is governed by

ω2R
g

= 3:4cms�2

g
= 0:35%:

At Southampton,λ = 51�, we findα = 1:7�10�3rad= 0�60.
4.3.2 Coriolis Force

The Coriolis “force” (in quotation marks because it’s a fictitious or inertial force
associated with our use of an accelerated frame) is the term�2mωωω� ẋ

in the equation of motion. You see that it acts at right anglesto the direction of
motion, and is proportional to the speed. To understand the physical origin of this
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ωωω

λ

x̂

ŷ ẑ

Figure 4.4 Coordinate system on the Earth’s surface.

force, it may be helpful to consider a particle moving diametrically across a smooth
flat rotating disc with no forces acting horizontally. An observer in an inertial frame
(watching the disc from above) will simply see the particle move in a straight line at
constant speed, as in figure 4.3(a). However, an observer rotating with the disc will
see the particle follow a curved track as in figure 4.3(b). If the observer does not
realise that the disc is rotating they will conclude that some force acts on the particle
at right angles to its velocity: this is the Coriolis force (in this example, the rotating
observer also sees the effect of the apparent forcemω2x acting radially outwards).
As the rotation rate,ω, gets large, the path seen by the rotating observer can get quite
complicated, figure 4.3(c).

To study the Coriolis force quantitatively, it is helpful tochoose a convenient
set of axes on the Earth’s surface. This is done as follows, and is illustrated in
figure 4.4. We choosêz along the apparent upward vertical (parallel to�g�), and
take x̂ pointing to the East. The third unit vectorŷ = ẑ� x̂ therefore points North.
Using this coordinate system, the equations of motion are:

mẍ = Fx�2mω(żcosλ� ẏsinλ);
mÿ = Fy�2mω ẋsinλ;
mz̈ = Fz�mg�+2mω ẋcosλ: (4.1)

4.3.3 Free Fall — Effects of Coriolis Term

For a particle in free fall, the non-gravitational forceF disappears from the equation
of motion, which becomes,

ẍ = g��2ωωω� ẋ:
We will work toO(ω) in this section, so we can approximateg� by g.
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We could investigate this using the coordinate form of the equation of motion
given in equation (4.1). However, in this case, we can proceed vectorially and solve
all three coordinate equations at the same time.

The equation of motion can be integrated once with respect totime, with the
initial conditionsx = a andẋ = v at t = 0, corresponding to a particle projected with
velocityv from pointa. This gives,

ẋ = v+gt�2ωωω� (x�a):
Since we are ignoring terms ofO(ω2), we can substitute the zeroth order solution,
x = a+vt +gt2=2 in the cross product term, giving,

ẋ = v+gt�2ωωω��vt + 1
2

gt2
� :

This can be integrated once more, using the same initial conditions,x = a andẋ = v
at t = 0, to give:

x = a+vt + 1
2

gt2�ωωω��vt2+ 1
3

gt3
� :

Now that we have our solution, we can express it in terms of ourchoice of coordi-
nates in figure 4.4. We will consider two cases: a particle dropped from a tower and
a shell fired from a cannon.

Particle dropped from a tower Consider a particle dropped from rest from a
vertical tower of heighth. Writing a vector as a column of its components along our
choice of axes, this says that the initial conditions are,

v =0@0
0
0

1A ; a =0@0
0
h

1A :
Usingωωω�g =�ωgcosλ x̂, we find that the components,x, y andzof x are:0@x

y
z

1A=0@0
0
h

1A� 1
2

gt2

0@0
0
1

1A+ 1
3

ωgt3cosλ

0@1
0
0

1A :
The particle hits the ground whenz= 0 at t =p2h=g. For thist, thex component
of the particle’s position is

1
3

ωcosλ
�

8h3

g

�1=2 :
This says that the particle strikes the ground a little to theEast of the base of the
tower.

Two views of this are shown in figure 4.5. On the left is the viewfrom a non-
inertial frame fixed to the rotating Earth: the particle lands a little to the East of the
base of the tower. On the right is a view from an inertial frame, where the Earth and
tower are spinning beneath the observer. Now the particle isseen to be projected
from the top of the tower. Because the particle is acted upon by the Earth’s gravita-
tional attraction, a central force, its angular momentum around the Earth’s rotation
axis is constant. As the particle falls, it gets closer to theaxis, so its angular velocity
must increase to keep the angular momentum constant. Therefore, the particle is
again seen to get slightly ahead of the tower as it falls.
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Figure 4.5 Two views of a particle dropped from the top of a tall tower fixed to the rotating
Earth. On the left, as seen in a rotating frame fixed to the Earth, and on the right as seen in
an inertial frame in which the Earth spins on its axis.
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Figure 4.6 Deflection of a cannon shell by Coriolis force when viewed from non-inertial
coordinates rotating with the Earth. A shell is fired at elevation angleπ=4 with speed
80ms�1 at latitude 24� in the Northern hemisphere. The Earth’s angular velocity isset
to ω = 0:05rads�1 to exaggerate the effect.

Shell fired from a cannon A shell is fired due North with speedv from a can-
non, with elevation angleπ=4. The initial conditions, taking the origin at the cannon,
are now,

v = vp
2

0@0
1
1

1A ; a =0@0
0
0

1A ;
and the cross product ofωωω with the initial velocity is,

ωωω�v = ωvp
2
(cosλ�sinλ) x̂:

Substituting in our solution we get:0@x
y
z

1A= vtp
2

0@0
1
1

1A� 1
2

gt2

0@0
0
1

1A+ 1
3

ωgt3cosλ

0@1
0
0

1A� ωvt2p
2

(cosλ�sinλ)0@1
0
0

1A :
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�ωsinλ

mg

F

x

l

Figure 4.7 Foucault’s pendulum and much exaggerated view of the path ofthe bob. The
plane of oscillation rotates with angular velocity�ωsinλ, clockwise when seen from above.

Looking at thez component of this result shows thatz= vt=p2�gt2=2, so impact
occurs att =p2v=g. The Eastward deflection at impact is then found to be:p

2ωv3

3g2 (3sinλ�cosλ):
If 3sinλ > cosλ then the deflection at impact will be to the East. This occurs for
λ > tan�1(1=3) = 18:4�, roughly the latitude of Mexico City or Bombay.

The Eastward deflection is the sum of a positive cubic term in the timet plus
a quadratic term int which is positive forλ > 45�. So, at Southampton,λ = 51�,
the deflection is Eastward throughout the trajectory, but atlatitudes below 45�, the
deflection is initially to the West and then changes to the East. Figure 4.6 shows the
trajectory up to the impact time, forλ = 24�, with an initial speedv= 80ms�1, but
using a ridiculously large value,ω = 0:05rads�1, for the Earth’s angular velocity to
magnify the effect. This value ofω is about 700 times larger than the true value of
about 7:3�10�5rads�1. If the angular velocity were really as large as 0:05rads�1,
we wouldn’t be justified in using our small-ω approximation.

4.3.4 Foucault’s Pendulum

If you were to set up a pendulum at the North pole and start it swinging in a plane
(as viewed from an inertial frame — one not attached to the Earth), then clearly,
according to an observer standing on the Earth, the plane of oscillation would rotate
backwards at angular velocity�ω.

At lower latitudes, the phenomenon persists, but gets more and more diluted
until it vanishes at the equator. In fact, at latitudeλ the plane of oscillation rotates
at angular velocity�ωsinλ. This is illustrated, in a very exaggerated fashion, in
figure 4.7. At Southampton, latitude 51�, the plane rotates about 10� in one hour.
The effect was first demonstrated by Jean Foucault in Paris in18511. In practice, it
is quite hard to start the pendulum with the correct initial conditions: the bob often
ends up with a circular or elliptical path where the Foucaultrotation is much harder
to detect.

1For background, see the articleLéon Foucault, Scientific American (July 1998) pp52–59
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We will now derive the result for the rotation of the plane of oscillation. We make
our standard choice of coordinates, shown in figure 4.4, withthe z-axis along the
upward local vertical,̂z =�g�=g�. We will work to first order in the Earth’s angular
velocity ω, so we will drop the star ong�. The system we consider is a pendulum
of length l , free to swing in any direction with the same period, as illustrated in
figure 4.7. The pendulum should be long and heavy so that it will swing for a long
time, a matter of hours, in spite of air resistance (which we will neglect).

Measuring the displacementx of the bob from the bottom of the swing, the
equations of motion in our coordinate system are just those of equation (4.1), where
F is the tension in the support cable. In the approximation of small oscillations, we
can ignore allz terms compared tox andy. Then,Fx � �mgx=l andFy � �mgy=l .
Thex andy equations now become,

ẍ = �ω2
0x+2ωsinλẏ;

ÿ = �ω2
0y�2ωsinλẋ;

where we have definedω2
0 � g=l , so thatω0 is the natural angular frequency of the

pendulum. To solve these equations, define the complex quantity α = x+ iy. It is
easy to see that the two equations above combine into a singleequation forα,

α̈+2iωsinλα̇+ω2
0α = 0:

Look for a solution of the formα = Aeipt . Substituting this form shows that we have
a solution provided,

p = �ωsinλ�qω2
0+ω2sin2 λ� �ωsinλ�ω0;

where we have usedω0� ωsinλ. The general solution is therefore,

α = (Aeiω0t +Be�iω0t)e�i(ωsinλ) t ;
whereA andB are complex constants. With appropriate initial conditions the solu-
tion can be given as,

α = ae�i(ωsinλ) t cos(ω0t) :
The cos(ω0t) term describes the usual periodic swing of the pendulum and the
e�i(ωsinλ) t term describes the rotation of the plane of oscillation withangular ve-
locity�ωsinλ, as shown in figure 4.7.

Geometric Description � There is a nice geometric way to think about the Fou-
cault Pendulum which allows you to work out the rotation ratewithout solving a
differential equation2.

Draw parallel lines on a disc and then cut out a segment and fold the remainder
into a cone. Choose the disc radius so that the edge of the conesits on the Earth’s
surface at latitudeλ, with the surface of the cone tangential to the Earth’s surface
where it touches. Keep the cone fixed in space as the Earth turns beneath it. As the
Earth turns, the plane of swing of the Foucault pendulum always remains parallel to
the lines drawn on the cone’s surface. The construction is shown in figure 4.8. If you

2See J B Hart, R E Miller and R L Mills, Am. J. Phys.55 (1987) 67.
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λ

Figure 4.8 A geometric construction to find the rate of rotation of the plane of oscillation
of a Foucault pendulum.

think about it, you should be able to figure out the rotation rate from the geometry
(try it!).

This is an example of “parallel transport”: the plane of swing of the pendulum
is parallel-transported as the Earth rotates. This conceptis very important in differ-
ential geometry, which underlies general relativity.



5
Simple Harmonic Motion �
Note: this section is not part of the syllabus for PHYS2006. You should already be
familiar with simple harmonic motion from your first year course PH115Oscilla-
tions and Waves. This section is included for completeness and as a reminder.

5.1 Simple Harmonic Motion

This is one of the most important phenomena in physics: it applies to the description
of small oscillations of any system about a position of stable equilibrium.

Work in one dimension, so that one coordinate describes the position of the
system (e.g. the displacement from the equilibrium position of a spring, the angle
of a pendulum from the vertical). Only conservative forces do work, so there is a
potentialV(x). Choose coordinates so thatx= 0 is a position of stable equilibrium.
This means

F(x=0) = 0; �dV
dx

����
0
= 0:

As long asx remains small, we can expand the potential:

V(x) =V(0)+xV0(0)+ 1
2

x2V00(0)+ � � �
However,V 0(0) = 0, sincex= 0 is a position of equilibrium, so the first derivative
term vanishes. Lettingk=V00(0) (k is just the force constant for a spring force) and
choosing our zero of potential energy so thatV(0) = 0, we find:

V(x) = 1
2

kx2+ � � � :
The corresponding force isF(x) =�kx. We ignore the special casek= 0, when the
expansion ofV begins at higher order. Ifk< 0 then the equilibrium is unstable, and
the system will move out of the region where our approximation is valid. Hence we
will look at displacements around positions of stable equilibrium for whichk> 0.

We define aSimple Harmonic Oscillatoras a one-dimensional problem with:

V(x) = 1
2

kx2 = 1
2

mω2
0x2

wherek> 0 and we have definedω2
0 = k=m.

A mass oscillating on a Hooke’s law spring is a simple harmonic oscillator.
Small oscillations of a simple pendulum are simple harmonic.

49
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5.1.1 General Solution

The equation of motion for the simple harmonic oscillator is

ẍ+ω2
0x= 0:

This is a second order homogeneous linear differential equation, meaning that the
highest derivative appearing is a second order one, each term on the left contains
exactly one power ofx, ẋ or ẍ (there is no ˙x term in this case) and there is no term (a
constant or a function of time) on the right.

Two independent solutions of this are cos(ω0t) and sin(ω0t). The general solu-
tion is a linear combination of these, which can be written inseveral forms:

x = Acos(ω0t)+Bsin(ω0t)= Ccos(ω0t +δ)= Dsin(ω0t +ε)= Re(αeiω0t)= Im(βe�iω0t)
whereA, B, C, D, δ andε are real constants, andα andβ are complex constants. Use
whichever solution is most convenient. We will often use thecomplex exponential
forms, so we will need to remember that the physical solutions are found by taking
the real or imaginary parts. Some terminology associated with the simple harmonic
oscillator is:

angular frequency ω0

period T = 2π=ω0

amplitude a= jCj= jDj=pA2+B2 = jαj= jβj
The arguments of the sine or cosine in cos(ω0t + δ) and sin(ω0t + ε) are called the
phase. The period of a simple harmonic oscillator is independent of the amplitude:
this is a special property, not true for oscillators in general.

5.2 Damped Harmonic Motion

We’ll assume that a damping force proportional to speed is present,

Fdamping= �2mγẋ:
This equation definesγ (note that in definingγ we have pulled out one factor ofm
for convenience:γ could still itself depend onm). Warning: many authors useγ=2
in place ofγ.

In general, the damping can be some power series in ˙x. We approximate by
keeping the linear term only. In practice, this turns out to work well: the viscously
damped harmonic oscillator is a very useful model for all sorts of physical systems.

The equation of motion has become:

ẍ+2γẋ+ω2
0x= 0:

This is still a linear, homogeneous second order differential equation. We try a
solution of the form

x= AeΩt
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Figure 5.1 Amplitude as a function of time for a lightly damped harmonicoscillator. The
time is measured in units of the “period”T = 2π=ω. The dashed lines show the exponentially
damped envelope of the oscillatory motion.

whereA andΩ may be complex (and we take the real part at the end). We will do
this same trick of using a complex exponential many times more. Substituting our
trial solution gives: (Ω2+2γΩ+ω2

0)AeΩt = 0:
Since the equation is linear,A is arbitrary, and we want it non zero in order to have
a non-trivial solution. The factor in brackets then gives a quadratic forΩ: the two
roots of this will provide us with our two independent solutions.

5.2.1 Small Damping: γ2< ω2
0

The roots of the quadratic are

Ω = �γ� iω; where ω =qω2
0� γ2:

A solution may be writtenx= Re(A1eiωt +A2e�iωt)e�γt, which can be reexpressed
as:

x= Be�γt cos(ωt +δ):
This describes an oscillation with “frequency”ω =qω2

0� γ2 and exponentially de-

caying “amplitude”Ae�γt, as illustrated in figure 5.1. The quotes are here because
the motion is no longer periodic, so there is not really a frequency. However, you
could use the time between the system crossingx = 0 in thesamedirection as a
measure of a “period”, since this time is 2π=ω. If the damping is truly small, then
the oscillations will appear to have amplitudeAe�γt if you watch them for a short
interval around timet.

In one “period”,T = 2π=ω of a lightly damped oscillator’s motion, the fractional
energy loss is found by comparing the total energy at the start of the period and at
the end. For any time,t, the fractional loss is given by

∆E
E

= E(t)�E(t+T)
E(t) = 1�e�2γT :

When the damping is very small,γ=ω0� 1, we haveω � ω0 and then

∆E
E
� 2π

2γ
ω0
� 2π

Q
;



52 5 Simple Harmonic Motion�
0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

x=x(0)
t=T

Figure 5.2 Amplitude as a function of time for heavily damped (solid curve) and critically
damped (dashed curve) harmonic oscillators. The time is measured in units of the natural
periodT = 2π=ω0 of the oscillator when the damping is switched off.

which defines thequality factor Q. Warning: definitions ofQ vary from author to
author.

5.2.2 Large Damping: γ2 >ω2
0

The roots of the quadratic are

Ω =�γ�qγ2�ω2
0

and a solution may be written

x= Ae�(γ+pγ2�ω2
0 )t +Be�(γ�pγ2�ω2

0 )t :
This is a sum of two exponentials, both decaying with time, illustrated by the solid
curve in figure 5.2. The “B” exponential falls more slowly, so it dominates at large
times. This case is sometimes referred to as “overdamped”.

5.2.3 Critical Damping: γ2= ω2
0

In this special case the solutions forΩ are degenerate (the roots of the quadratic
coincide). It looks as though there is just one solution. However, a second order
differential equationmusthave two independent solutions. You can check by differ-
entiating that the second solution in this case is

x= Bte�γt;
so that the general solution becomes:

x= (A+Bt)e�γt:
The critically damped solution is illustrated by the dashedcurve in figure 5.2. Crit-
ical damping is important: for example a measuring instrument should be critically
damped so that the reading settles down as fast as possible without the response time
being too slow.
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Figure 5.3 Amplitude of forced harmonic oscillator as a function of driving frequency (in
units of natural frequency)

5.3 Driven damped harmonic oscillator

The equation of motion for a damped harmonic oscillator driven by an external force
F(t) is

mẍ+2mγẋ+mω2
0x= F(t):

Consider the case of a periodic driving force,

F(t) = m fcos(ωt) = m fRe(eiωt);
and look for thesteady statesolution, when anytransientdamped solution has died
away (the transients are solutions of the differential equation without the driving
termF(t), that is, a free damped oscillator). Look for a complexzwhich solves

z̈+2γż+ω2
0z= f eiωt ;

and take the real part ofz at the end. Try a trial solutionz= Aeiωt : the idea is that
after a long time we expect the system to be oscillating with the same frequency as
the driving force. More technically, the full solutionof the differential equation is the
sum of the solution we are about to find plusanysolution of the undriven equation
(without the f eiωt term). Because of the damping, the solution in the undriven case
decays exponentially with time: we are interested in what happens after a long time
when thistransientsolution has died out.

Returning to our trial solution,z= Aeiωt solves the equation if(�ω2+2iγω+ω2
0)Aeiωt = f eiωt :

Cancelling theeiωt from both sides and solving forA gives

A= f�ω2+2iγω+ω2
0
:

Writing A= jAje�iδ, we find that the oscillation amplitudejAj and phase lagδ are
given by, jAj= fq(ω2

0�ω2)2+4γ2ω2
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Figure 5.4 Phase lag of forced harmonic oscillator as a function of driving frequency (in
units of natural frequency)

and

tanδ = 2γω
ω2

0�ω2
:

In figures 5.3 and 5.4 we plot the amplitude (actuallyω2
0jAj= f ) and the phaseδ as

functions ofω=ω0, for four different values of thequality factor Q= ω0=2γ. The
quality factor tells you about the ratio of the energy storedin the oscillator to the
energy loss per cycle. As you move from solid to finer and finer dashed lines theQ
values are 1, 2, 4 and 8 respectively.



6
Coupled Oscillators

In what follows, I will assume you are familiar with the simple harmonic oscilla-
tor and, in particular, the complex exponential method for finding solutions of the
oscillator equation of motion. If necessary, consult the revision section on Simple
Harmonic Motion in chapter 5.

6.1 Time Translation Invariance

Before looking at coupled oscillators, I want to remind you how time translation
invariance leads us to use (complex) exponential time dependence in our trial solu-
tions. Later, we will see that spatial translation invariance leads to exponential forms
for the spatial parts of our solutions as well.

To examine the implication of time translation invariance,it’s enough to consider
a single damped harmonic oscillator, with equation of motion,

mẍ=�2mγẋ�mω2
0x;

where the two terms on the right are the damping and restoringforces respectively.
We can rearrange this to,

ẍ+2γẋ+ω2
0x= 0:

To solve this equation, we used an ansatz (or guess) of the form

x= AeΩt;
whereA andΩ are in general complex (to get a physical solution you can usethe
real or imaginary parts of a complex solution). The reason that we could guess such
a solution lies in time translation invariance.

What this invariance means is that we don’t care about the origin of time. It
doesn’t matter what our clock read when we started observingthe system. In the
differential equation, this property appears because the time dependence enters only
through time derivatives,not through the value of time itself. In terms of a solution
x(t), this means that:

if x(t) is a solution, then so isx(t +c) for any constantc.

The simplest possibility is thatx(t+c) is proportional tox(t), with some proportion-
ality constantf (c), depending onc,

x(t +c) = f (c)x(t):
55
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We can solve this equation by a simple trick. We differentiate with respect toc and
then setc= 0 to obtain

ẋ(t) = Ωx(t);
whereΩ is just the value ofḟ (0). The general solution of this linear first order
differential equation is

x(t) = AeΩt:
We often talk aboutcomplexexponential forms becauseΩ must have a non-zero
imaginary part if we want to get oscillatory solutions. In fact, from now on I will let
Ω = iω, so thatω is real for a purely oscillatory solution.

We can’t just useanyvalue we like forω. The allowed values are determined by
demanding thatAeiωt actually solves the equation of motion:(�ω2+2iγω+ω2

0)Aeiωt = 0:
If we are to have a non-trivial solution,Ashould not vanish. The factor in parentheses
must then vanish, giving a quadratic equation to determineω. The two roots of the
quadratic give us two independent solutions of the originalsecond order differential
equation.

6.2 Normal Modes

We want to generalise from a single oscillator to a set of oscillators which can affect
each others’ motion. That is to say, the oscillators arecoupled.

If there aren oscillators with positionsxi(t) for i = 1; : : :;n , we will denote the
“position” of the whole system by a vectorx(t) of the individual locations:

x(t) = (x1(t);x2(t); : : :;xn(t)):
The individual positionsxi(t) might well be generalised coordinates rather than real
physical positions.

The differential equations satisfied by thexi will involve time dependence only
through time derivatives, which means we can look for a time translation invariant
solution, as described above. This means all the oscillators must have the same
complex exponential time dependence,eiωt , whereω is real for a purely oscillatory
motion. The solution then takes the form,

x(t) =0BB@A1

A2
...

An

1CCAeiωt ;
where theAi areconstants. This describes a situation where all the oscillators move
with thesame frequency, but, in general, different phases and amplitudes: the oscil-
lators’ displacements are in fixed ratios determined by theAi. This kind of motion
is called anormal mode. Theoverall normalisation is arbitrary (by linearity of the
differential equation), which is to say that you can multiply all theAi by the same
constant and still have the same normal mode.

Our job is to discover whichω are allowed, and then determine the set ofAi

corresponding to each allowedω. We will find precisely the right number of normal
modes to provide all the independent solutions of the set of differential equations.
For n oscillators obeying second order coupled equations there are 2n independent
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solutions: we will findn coupled normal modes which will give us 2n real solutions
when we take the real and imaginary parts.

Once we have found all the normal modes, we can constructanypossible motion
of the system as a linear combination of the normal modes. Compare this with
Fourier analysis, where any periodic function can be expanded as a series of sines
and cosines.

6.3 Coupled Oscillators

Take a set of coupled oscillators described by a set of coordinatesq1; : : : ;qn. In
general the potentialV(q) will be a complicated function which couples all of these
oscillators together. Considersmalloscillations about a position of stable equilib-
rium, which (by redefining our coordinates if necessary) we can take to occur when
qi = 0 for i = 1; : : : ;n. Expanding the potential in a Taylor series about this point,
we find,

V(q) =V(0)+∑
i

∂V
∂qi

����
0
qi + 1

2 ∑
i; j ∂2V

∂qi∂q j

����
0
qiq j + � � � :

By adding an overall constant toV we can chooseV(0) = 0. Since we are at a
position of equilibrium, all the first derivative terms vanish. So the first terms that
contribute are the second derivative ones. We define,

Ki j � ∂2V
∂qi∂q j

����
0
;

and drop all the remaining terms in the expansion. Note thatKi j is a constant sym-
metric (why?)n�n matrix. The corresponding force is thus

Fi =�∂V
∂qi

=�∑
j

Ki j q j

and thus the equations of motion are

Miq̈i = �∑
j

Ki j q j ;
for i = 1; : : :;n. Here theMi are the masses of the oscillators, andK is a matrix of
‘spring constants’. Indeed for a system of masses connectedby springs, with each
mass moving in the same single dimension, the coordinates can be taken as the real
position coordinates, and thenM is a (diagonal in this case) matrix of masses, while
K is a matrix determined by the spring constants. Be aware however, that coupled
oscillator equations occur more generally (for example in electrical circuits) where
theqis need not be actual coordinates but more general parametersdescribing the
system (known as generalised coordinates) and in this caseM andK play similar
rôles even if they do not in actuality correspond to masses and spring constants.

To simplify the notation, we will write the equations of motion as a matrix equa-
tion. So we define,

M =0BB@M1 0 � � � 0
0 M2 � � � 0
...

...
. ..

...
0 0 � � � Mn

1CCA ; K =0BB@K11 K12 � � � K1n

K21 K22 � � � K2n
...

...
. ..

...
Kn1 Kn2 � � � Knn

1CCA :
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x1 x2

m1 m2k1 k0 k2

Figure 6.1 Two coupled harmonic oscillators. The vertical dashed lines mark the equilib-
rium positions of the two masses.

Likewise, letq andq̈ be column vectors,

q =0BB@q1

q2
...

qn

1CCA ; q̈ =0BB@ q̈1

q̈2
...

q̈n

1CCA :
With this notation, the equation of motion is,

Mq̈ = �Kq; or q̈ =�M�1Kq;
whereM�1 is the inverse ofM.

Now look for a normal mode solution,q = Aeiωt , whereA is a column vector.
We haveq̈ = �ω2 q, and cancellingeiωt factors, gives finally,

M�1KA = ω2 A :
This is now aneigenvalue equation. The squares of the normal mode freqencies are
theeigenvaluesof M�1K, with the column vectorsA as the correspondingeigenvec-
tors.

6.4 Example: Masses and Springs

As a simple example, let’s look at the system shown in figure 6.1, comprising two
massesm1 andm2 constrained to move along a straight line. The masses are joined
by a spring with force constantk0, andm1 (m2) is joined to a fixed wall by a spring
with force constantk1 (k2). Assume that the equilibrium position of the system has
each spring unstretched, and use the displacementsx1 andx2 of the two masses away
from their equilibrium positions as coordinates. The forceon massm1 is then

F1 =�k1x1�k0(x1�x2)
and on massm2

F2 =�k2x2�k0(x2�x1):
(Note that these follow from a potential of formV = 1

2k1x2
1+ 1

2k0(x2�x1)2+ 1
2k2x2

2.)
You can check that Newton’s 2nd law thus implies, in matrix form:�

m1 0
0 m2

��
ẍ1

ẍ2

�= ��k1+k0 �k0�k0 k2+k0��x1

x2

� :
The eigenvalue equation we have to solve is:�(k1+k0)=m1 �k0=m1�k0=m2 (k2+k0)=m2

��
A1

A2

� = ω2
�

A1

A2

� :
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Now specialise to a case wherem1 = m, m2 = 2m, k1 = k, k2 = 2k andk0 = 2k.
The eigenvalue equation becomes,�

3 �2�1 2

��
A1

A2

�= m
k

ω2
�

A1

A2

� ;
or, settingλ = mω2=k, �

3�λ �2�1 2�λ

��
A1

A2

�= �0
0

� :
For there to be a solution, the determinant of the 2� 2 matrix in the last equation
must vanish. This gives a quadratic equation forλ,

λ2�5λ+4= 0;
with rootsλ = 1 andλ = 4. The corresponding eigenfrequencies areω =pk=m
andω = 2

p
k=m. For each eigenvalue, there is a corresponding eigenvector. With

λ = 1 you findA2 = A1, and withλ = 4 you findA2 = �A1=2. Note that just the
ratio of the twoAi is determined: you can multiply all theAi by a constant and stay
in the same normal mode. This means that we are free to normalise the eigenvectors
as we choose. It is common to make them have unit modulus, in which case the
eigenfrequencies and eigenvectors are:

ω = r
k
m
; A = 1p

2

�
1
1

� ;
ω = 2

r
k
m
; A = 1p

5

�
2�1

� ;
In the first normal mode, the two masses swing in phase with thesame amplitude,

and the middle spring remains unstretched. This could have been predicted: we have
solved for a case wherem2 is twice the mass ofm1, and is attached to a wall by a
spring with twice the force constant. Therefore,m1 andm2 would oscillate with the
same frequency in the absence of the connecting spring.

In the second mode the two masses move out of phase with each other, andm1

has twice the amplitude ofm2.

6.4.1 Weak Coupling and Beats

Now consider a case where the two masses are equal,m1 = m2 = m, and the two
springs attaching the masses to the fixed walls are identical, k1 = k2 = k. From the
symmetry of the setup, you expect one mode where the two masses swing in phase
with the same amplitude, the central connecting spring remaining unstretched. In
the second mode, the two masses again have the same amplitude, but swing out of
phase, alternately approaching and receding from each other. This second mode will
have a higher frequency (why?).

If the spring constant of the connecting spring isk0 = εk, you should check that
applying the solution method worked through above gives thefollowing eigenfre-
quencies and normal modes:

ω1 = r
k
m
; A1 = 1p

2

�
1
1

� ;
ω2 = r(1+2ε) k

m
; A2 = 1p

2

�
1�1

� ;
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When the connecting spring has a very small force constant,ε� 1, so that the
coupling is weak, the two normal modes have almost the same frequency. In this
case it’s possible to observebeatswhen a motion contains components from both
normal modes. For example, suppose you start the system fromrest by holding the
left hand mass with a small displacement to the right, sayd, keeping the right hand
mass in its equilibrium position, and then letting go.

A general solution for the motion has the form,

x(t) = c1A1cos(ω1t)+c2A2cos(ω2t)+c3A1sin(ω1t)+c4A2sin(ω2t):
Because the system starts from rest, you can immediately see(make sure you can!)
thatc3 = c4 = 0 in this case. Then the initial condition,

x(0) = �d
0

� ;
gives, �

d
0

�= c1p
2

�
1
1

�+ c2p
2

�
1�1

� ;
which is solved byc1 = c2 = d=p2. So, the motion is given by:

x1(t) = d
2
(cos(ω1t)+cos(ω2t));

x2(t) = d
2
(cos(ω1t)�cos(ω2t)):

We can rewrite the sum and difference of cosines as products,leaving:

x1(t) = dcos
�ω2�ω1

2
t
�

cos
�ω1+ω2

2
t
�;

x2(t) = dsin
�ω2�ω1

2
t
�

sin
�ω1+ω2

2
t
�:

Now you can see that each ofx1 andx2 has a “fast” oscillation at the average fre-
quency(ω1 +ω2)=2, modulated by a “slow” amplitude variation at the difference
frequency(ω2�ω1)=2. The displacements show the contributions of the two nor-
mal modes beating together, as illustrated in figure 6.2.

You can easily demonstrate beats by tying a length of cotton between two chairs
and hanging two keys from it by further equal-length threads. Each key is a simple
pendulum and the suspension thread provides a weak couplingbetween them. Start
the system by pulling one of the keys to one side, with the other hanging vertically,
and releasing, so that you start with one key swinging from side to side and the
other at rest. The swinging key gradually reduces its amplitude, and at the same
time the other key begins to move. Eventually, the first key will momementarily
stop swinging, whilst the second key has reached full amplitude. The process then
continues, and the swinging motion transfers back and forthbetween the two keys.
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Figure 6.2 Displacementsx1 andx2 as functions of time, starting with both masses at rest
andx1(0) = d, x2(0) = 0. The displacement curve forx2 is shown dashed. For this plot, the
ratio ε of the spring force constants of the coupling (central) spring and either of the outer
springs is 0:1. Time is plotted in units of the period of the lower frequency normal mode.
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7
Normal Modes of a Beaded
String

7.1 Equation of Motion

The system we will describe is a string stretched to tensionT, carryingN beads, each
of massM, as shown in figure 7.1. The beads are equally spaced distancea apart,
and the ends of the string are distancea from the first and last bead respectively. We
will consider small transverse oscillations of the beads, with the ends of the string
held in fixed positions.

If the displacement of thenth bead isun, we can work out its equation of motion
by applying Newton’s second law. Referring to the lower partof figure 7.1, we find:

Mün = �T (sinψ+sinφ):
If the displacements are all small, then

sinψ� un�un�1

a
; and sinφ� un�un+1

a
:

Applying this approximation, the equations of motion are

ün = T
Ma

(un�1�2un+un+1) :
You get the same equation for longitudinal oscillations of aone-dimensional line of
masses connected by identical springs, withC=M replacingT=Ma, whereC is the
spring constant of each spring.

0 1 2 3 N – 1 N N + 1

u

u

u
n–1

n

n+1

T T

φψ

Figure 7.1 Transverse oscillations of a beaded string.
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We can incorporate the boundary conditions, that the ends ofthe string are fixed,
by requiring

u0 = 0; uN+1 = 0:
You should convince yourself that these conditionsgive theright equations of motion
for the first andNth beads.

7.2 Normal Modes

We would like to find the normal modes of the beaded string. These are motions
where all the beads oscillate with the same angular frequency ω:

un = Aneiωt ;
for some set of coefficientsAn. Substituting in the equation of motion gives,

ω2An = T
Ma

(�An�1+2An�An+1): (7.1)

This is a recurrence relationfor the An — it is a discrete form of a differential
equation. The boundary conditions are now incorporated as,

A0 = AN+1 = 0:
We could solve for theAn by viewing the recurrence relation as a matrix equation
determining the column vector of theAn’s, like we did for systems with one or
two degrees of freedom. Alternatively, we could apply knownmethods of solving
recurrence relations. Rather than do either of these things, we will use some physical
insight, allowing us almost to write down the solution with little effort. There are
two key points:� Suppose we actually had aninfinite line of beads on a string. The infinite

system has atranslation invariance. If you jump one step (or any integer
number of steps) left or right, the system looks the same. This will make it
easy to find the normal modes of the infinite system.� Each bead is connected to its two nearest neighbours only: the interaction is
local. In the equation of motion,un is affected only byun�1, un+1 andun

itself, so thenth bead’s displacement is affectedonly by the displacements
of its two neighbours. Thus, if you can find a combination of normal modes
of the infinite system which satisfiesA0 = AN+1 = 0, then you’ll have found
a mode of the finite system. You don’t care whatA�1, AN+2 and so on are
doing.

To repeat, we will look for normal modes by finding modes for aninfinite line of
beads and then selecting particular combinations of modes to satisfy the boundary
conditions that the ends of the finite string are fixed.

7.2.1 Infinite System: Translation Invariance

Suppose we have already found a mode for the infinite string, with some set of
displacement amplitudesAn.

Now shift the system one step to the left. The translation invariance tells us
it looks the same. This means that if theAn gave us a mode with frequencyω,
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the shiftedA0
n should give another mode with thesameω. That is, the new set of

amplitudes,
A0

n = An+1;
also give a mode.

Now let’s look for a translation invariant mode, which reproduces itself when we
do the shift. Since a mode is arbitrary up to an overall scale,this means,

A0
n = An+1 = hAn;

for some constanth, so that the new amplitudes are proportional to the old ones.
Applying the last relation repeatedly shows that,

An = hnA0;
whereA0 is arbitrary and sets the overall scale. Given this set ofAn, we can find the
corresponding angular frequencyω by substituting in the equation of motion in the
form it appeared in equation (7.1). We find,

ω2hnA0 = T
Ma

(�hn�1A0+2hnA0�hn+1A0):
Cancelling a common factorhnA0, leaves,

ω2 = T
Ma

(2�h� 1
h
): (7.2)

This shows thath and 1=h give the same normal mode frequency. Conversely, if the
frequencyω is fixed, the amplitudesAn must be an arbitrary linear combination of
the amplitudes forh and 1=h. That is,

An = αhn+βh�n;
whereα andβ are constants.

We will find it convenient to seth= eiθ. The relation givingω for a givenh in
equation (7.2) becomes a relation givingω for a givenθ according to,

ω2 = 4
T

Ma
sin2(θ=2) : (7.3)

The displacement of thenth bead is,

un = (αeinθ +βe�inθ)eiωt : (7.4)

7.2.2 Finite System: Boundary Conditions

The value ofθ is fixed by the boundary conditions, and this in turn fixesω. For the
string ofN beads with both ends fixed, we incorporate the boundary conditions by
requiring

u0 = 0; uN+1 = 0:
Theu0 = 0 condition requires thatα = �β, which makesun proportional to sin(nθ)
only, and the boundary condition at positionN+1 then imposes,

sin[(N+1)θ] = 0:
This last equation in turn gives

θ = mπ
N+1

; (7.5)

wherem is an integer which labels the modes.
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Figure 7.2 The six normal modes of a beaded string fixed at both ends carrying six beads.

1 2 3 4 5 6
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Figure 7.3 Repetition of normal modes for mode numbers greater than sixfor a string with
fixed ends carrying six beads. Modes 3, 11 and 17 are shown. A normal mode remains the
same if all the displacements are multiplied by a constant, including�1, so all three modes
shownare the same.

7.2.3 The Set of Modes

Observe that the linear combination of modes in equation (7.4) is just a sum of left-
and right-moving wavelike solutions for the infinite beadedstring. For the finite
string we are simply constructing a standing wave solution.This is just like finding
standing waves for guitar or violin strings or organ pipes, but now the system is
discrete rather than continuous.

Look at a string with six beads as an example. There are six degrees of freedom
and so we expect six modes asmruns from 1 to 6: these are shown in figure 7.2. The
figure also shows the continuous curves obtained by takingn to vary continuously
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Frequency

m/(N+1)0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.4 Frequencies, in units of
p

T=Ma, of the normal modes of a beaded string
with five (N = 5, black squares) or twelve (N = 12, white squares) beads, showing that the
frequencies lie on a universal curve.

and lettingna be the position along the string. For larger values ofm the modes are
repeated (or you get zero displacements). This is shown in figure 7.3. Here you see
that the underlying curve of sin(nθ) changes, but the positions of the beads, which
determine the physical situation are unchanged.

The normal mode frequencies are found by inserting the valueof θ from equa-
tion (7.5) in equation (7.3) givingω in terms ofθ:

ωm = 2

r
T

Ma
sin

�
mπ

2(N+1)� :
In figure 7.4 are shown the normal mode frequencies for strings of five (N = 5) and
twelve (N = 12) beads, plotted as functions ofm=(N+1). They lie on a universal
curve when plotted in terms of this variable. The curve givesthe mode frequencies
of an infinite line of beads and the finite systems pick out subsets of allowed modes
which satisfy the boundary conditions.
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A
Supplementary Problems

These are practice questions: youdo notneed to hand in solutions. You can also
study past exam papers. PH211 (now PHYS2006) was a new coursein 1993, so
you’ll find some relevant questions in pre 1993 PH101 papers.

1. A rocket burns a kerosene-oxygen mixture: the complete burning of 1kg of
kerosene requires 3:4kg of oxygen. This burning produces about 4:2� 107J
of thermal energy. Suppose thatall of this energy goes into kinetic energy of
the reaction products (4:4kg). What will be the exhaust speed of the reaction
products? [Hint: you can answer this by using the expressionfor the kinetic
energy of a system of particles in terms of the centre of mass motion plus that
due to the motion relative to the CM.]

2. At time t = 0 a dust particle of massm0 starts to fall from rest through a
cloud. Its mass grows exponentially with the distance fallen, so that after falling
through a distancex its mass ism0exp(αx), whereα is a constant. Show that at
time t the velocity of the particle is given by

v=r g
α

tanh(tpαg)
whereg is the acceleration due to gravity.

3. The total mass of a rocket is 10kg including fuel. What part ofthis mass should
be fuel in order that the kinetic energy of the rocket after all the fuel is burned
is maximised? If the velocity of the exhaust gases is 300ms�1, determine this
maximum kinetic energy. Ignore gravity.

4. A payload of massm is mounted on a two stage rocket. Thetotal mass of both
rocket stages, fully fuelled, plus the payload, isNm. The mass of the fully
fuelled second stage plus payload is

p
Nm. For each stage the exhaust speed

is u and the full fuel load makes up 90% of the total mass of the stage.��XX��XX ��HH90% fuel

p
Nmz }| {��HH90% fuel ��@@m| {z }

Nm
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(i) Show that the speed gained from rest, after first stage burnout and separa-
tion followed by second stage burn, is

2uln

�
10

1+9=pN

� :
(ii) If u = 2:5kms�1, show that the two-stage rocket can achieve a payload

velocity of 10kms�1 for large enoughN, but that a single stage rocket
with the same construction and payload canneverdo so (take the single
stage rocket to have payload massm as before and to have 90% of the
stage mass as fuel initially).

5. Find the direction and magnitude of the total torque about the origin produced
by the forcesF1 = F( x̂+ 2ŷ+ ẑ) acting atr1 = a( x̂� ŷ) andF2 = F(2x̂�
3ŷ+4ẑ) acting atr2 = a( x̂+ ẑ).

6. A car travels round a curve of radiusr . If h is the height of the centre of mass
above the ground and 2b the width between the wheels, show that the car will
overturn if the speed exceeds

p
grb=h, assuming no side slipping takes place.

If the coefficient of friction between the tyres and the road is µ, show that the
car will skid before overturning ifµ< b=h.

7. (a) A reel of thread of radiusa and moment of inertiaMk2 is allowed to
unwind under gravity, the upper end of the thread being fixed.Find the
acceleration of the reel and the tension in the thread.

(b) Find the acceleration of a uniform cylinder of radiusa rolling down a
slope of inclinationθ to the horizontal.

8. (a) A massM is suspended at a distance` from its centre of mass. By writing
down the equation of rotational motion, show that the periodof small
oscillations is

2π

s
I

mg̀

whereI is the moment of inertia about the point of suspension.

(b) A body of moment of inertiaI about its centre of mass is suspended from
that point by a wire which produces a torqueτ per unit twist. Show that
the period of small oscillations is

2π
p

I=τ

9. Calculate the moments of inertia of:

(a) a thin rod about its end

(b) a thin circular disc about its axis

(c) a thin circular disc about its diameter

(d) a thin spherical shell about a diameter

(e) a uniform sphere about a diameter

Note that already known results, together with symmetry, may help you.
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10. Two cylinders are mounted upon a common axis and a motor can make one
rotate with respect to the other. Otherwise the system is isolated. The following
sequence of operations takes place:

(a) one half is rotated with respect to the other through angleφ
(b) the moments of inertia of the cylinders change fromI1 andI2 to I 01 andI 02
(c) the two halves are rotated back until they are in their original relative

positions

(d) the moments of inertia are restored to their original values.

Show that the whole system is at rest but has rotated through an angle

φ
I 02=I 01� I2=I1(1+ I2=I1)(1+ I 02=I 01)

This illustrates how a falling cat can manage to land on its feet.

11. A thin straight rod 20m long, having a linear densityλ of 0:5kgm�1 lies along
the y-axis with its centre at the origin. A 2kg uniform sphere lieson thex-
axis with its centre of mass 3m away from the rod’s centre of mass. What
gravitational force does the rod exert on the sphere?

12. A planet of massm moves in an elliptical orbit around a sun of massM. Its
maximum and minimum distances from the sun arermax andrmin.

Show that the total energy of the planet can be written in the form

E = 1
2

mṙ2+ L2

2mr2
� GMm

r

whereL is the angular momentum. Hence show that

rmax+ rmin = �GMm
E

Using conservation of energy, find the maximum and minimum velocity of the
planet (vmax andvmin).

Assuming Kepler’s law relating the periodT of the orbit to the semi-major axis
of the ellipse, show that

T = π(rmax+ rmin)p
vmaxvmin

13. For motion under a central conservative force, the total energy and the angular
momentumL are conserved. For the special case of an inverse-square law
force, such as gravitation or the Coulomb force, with potential energyV(r) =�k=r , we will show that there is a second conserved vector, the Runge-Lenz
vectorA, given by

A = p�L�mkr̂

By consideringd
dt(r�r) = d

dt(r2), or otherwise, show that

d r̂
dt

= v
r
� r�v

r3 r
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wherev = ṙ. Use the equation of motion to show that

ṗ�L =�mk
r3 r� (r�v)

Now use the above results to demonstrate thatȦ = 0, orA is conserved.

A is perpendicular toL (A�L = 0), soA defines a fixed direction in the orbit
plane. Let the angle betweenr andA beθ. Take the dot product ofr with A to
show that

rAcosθ = L2�mkr

By comparing to the standard equation,`=r = 1+ ecosθ, express the eccen-
tricity e in terms of the lengthA of the Runge-Lenz vector. Which point of the
orbit isA directed towards?

Hint: the following identities for arbitrary vectorsa, b andc, may be useful

a� (b�c) = b(a�c)�c(a�b)
a � (b�c) = (a�b) �c

14. [Hard] A ballistic rocket is fired from the surface of the Earth with velocity
v< (Rg)1=2 at an angleα to the vertical. Assuming the equation for its orbit,
show that to achieve maximum range,α should be chosen so that` = 2a�R,
where` is the semi-latus rectum,a is the semi-major axis andR is the Earth’s
radius. Deduce that the maximum range is 2Rθ where

sinθ = v2

2Rg�v2

15. A locomotive is travelling due North in latitudeλ along a straight level track
with velocity v. Show that the ratio of the forces on the two rails is approxi-
mately

1+ 4ωvh
ga

sinλ

whereh is the height of the centre of mass above the rails and 2a is the distance
between the rails. Calculate this ratio for a speed of 150kmhr�1 in latitude
45deg North, assuming thath= 2a. Which rail experiences the larger force?

16. A uniform solid ball has a few turns of light string wound around it. If the end
of the string is held steady and the ball allowed to fall undergravity, show that
the acceleration of the ball is 5g=7.

17. A body of moment of inertiaI is suspended from a torsion fibre for which the
restoring torque per unit angular displacement isT; when the angular velocity
of the body isΩ it experiences a retarding torquekΩ. If the top end of the fibre
is made to oscillate with angular displacementφ0sinωt, whereω2 = T=I , show
that the maximum twist in the fibre isφ0(1+TI=k2)1=2.

18. Two identical massesm are suspended by light strings of lengthl . The sus-
pension points are distanceL apart and a light spring of natural lengthL and
spring constantk connects the two masses. Indicate qualitatively the form ofthe
two normal modes for oscillations in the plane of the stringsand spring. Write
down the equations of motion for small oscillations of the masses in terms of
their horizontal displacementsx1 and x2 from equilibrium. Find the normal
mode frequencies and verify your guess for the ratiox1=x2 in the two modes.
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19. A large number of identical massesm, arranged in a line at equal intervalsa, are
joined together by identical springs between neighbours, the springs being such
that unit extension requires a forceµ. The mass at one end is oscillated along
the direction of the line with angular frequencyω. Show that a compressional
wave is propagated along the line with wavenumberk given by the expression

ω = ω0sin(ka=2); ω0 = 2(µ=m)1=2:
What happens ifω is made greater thanω0?


