Preface

These are notes to accompany the second year core physise EdlY S2006 Clas-
sical Mechanics. They are not necessarily complete andatr@ substitute for the
lectures. Certain sections are “starred” (with a star atetie of the section name,
like this*®): they contain material which is either revision or goesdreythe main
line of development of the course. You do not need to considehn sections as part
of the syllabus.

Background Information

This course continues the mechanics starteriargy and MatterPHYS1013. It
also builds on the studyiotion and RelativityPHYS1015. It relates to other physics
courses, especially in quantum mechanics and condenseéermatill try to high-
light the importance of identifying symmetries to help withysical understanding.
This should come up several times in the course.

In this course we will return to gravity and derive the imaort result that the
gravitational effect of a spherically symmetric objecthe tsame as the effect of a
point mass, with the same total mass, at its centre. We ttseniss Kepler’s laws of
planetary motion. This was an early triumph for Newtoniarchamics. To link the
observed effects of gravity on the Earth with the force gowey celestial motion
was a stunning achievement.

We will actually begin, however, by considering the motidrspstems of par-
ticles, allowing us to study problems such as rocket motiwve will then look
at rotational dynamics, applying Newton’s Laws to angulation, encountering
angular velocity, angular momentum and, for systems ofig@est the moment of
inertia. We will see some of the seemingly counterintuigifects that arise in the
motion of spinning objects.

We normally use inertial coordinate systems. However, olegtion of the Earth
on its axis makes coordinate systems fixed to the Earth neniah We’ll work
out the equation of motion in such a reference frame and seeftécts that arise,
discussing especially the Coriolis term.

Finally, we consider oscillations and waves in systems apted oscillators.

Course Information

Prerequisites  The course will assume familiarity with the first year phgsind
mathematics core courses, particularly PHYS1013, PHYS1BIATH1006/8 and
MATH1007.

Teaching Staff  Prof. S. Moretti is the course coordinator and principalueer.
His office is Room 5043 in the School of Physics and Astronoooyiding 46) and



he can be contacted by email as stefano@soton.ac.uk ordpht®ie on extension
26829.

Course Structure  The course comprises about 30 lectures, three per week. Each

week there is a one hour workshop where you work on a problémiséhe work-
shop you hand in answers for the previous week’s problemrskteceive marked
answers from the problem set handed in the previous weekeHne ten workshop
sessions.

Class Size and Organisation  This is a core course for BSc and MPhys stu-
dents so all second year physicists attend. There are ats®son-physics students.
Currently there are about 140+ students in total. For 2@.W&dtures are on Mon-
days (09:00 to 10:00) and Thursdays (10:00 to 12:00, a dslbievith a break in
between). There is one problem class (workshop) each weeklfaveeks starting
from the first one on Tuesdays (09:00 to 10:00). This yeartlese is in the second
semester.

Course Materials A handout of printed notes is available (a copy is provided fo
every student at the start of the course). These notesarecessarily complete,
however. A copy of the lecturer’s own notes is available ftbemSchool Office. You
may borrow those notes, using a sign-out system. The coasseéb pages at:

http://www.hep.phys.soton.ac.uk/courses/phys2006/

Study Requirements and Assessment Since it is part of your physics foun-
dation, this course’s orientation is towards problem sajybased on a small number
of principles. It is very important that you study the weeglpblem sheets. They
count for 20% of the marks for the course.

The examination will contain two sections, section A withwamber of short
guestions (typically five) all of which must be answered, ardtion B with four
guestions from which you must answer two and only two. Sacficcarries 1/3
and section B carries 2/3 of the examination marks. The wayitial mark for this
module is worked out is explained in the Student Handbook.

Student Assessment of the Course Informal feedback to the lecturer is al-
ways welcomed. Individual problems can usually be dealbhwit the workshop

leaders, but if several people share a problem they maydikemsult the lecturer

together. Students’ opinions are canvassed by a depadhtpréstionnaire issued
around one third of the way through the course. The resparsagviewed by the

School’s Syllabus Committee and the Staff Student Liaisomm@ittee. There is

also a questionnaire at the end of the course, issued by tudtyraf Science.
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D Acheson, From Calculus to Chaos: an Introduction to Dywan®xford Univer-
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Fowles and Cassiday'’s book is full of examples and is themaeended text, al-
though it stops short of discussing one-dimensional crystalels. The treatment
of mechanics in Chow’s book parallels the course quite tyosed has a mod-
ern viewpoint. Kibble or Marion and Thornton cover almosemithing, but are
mathematically more sophisticated. French and Ebison Faedch’s book on
Vibrations and Waves) have good physical explanations batt@over all the
material.

Acheson’s book is recommended as supplementary readinfpamgneral back-
ground. Although described by its author as “an introduct@some of the more
interesting applications of calculus,” this book is primally concerned with dy-
namics, how things evolve in time, and links quite well to goaf the topics in
this course.

All others are useful to integrate.

Further, two good foundation books to always have at hand are

K F Riley and M P Hobson, Essential Mathematical MethodslierRhysical Sci-
ences, Cambridge University Press, 2011

K F Riley and M P Hobson, Foundation Mathematics for the Rialssciences,

Cambridge University Press, 2011

Syllabus
The numbers of lectures indicated for each section are ajpate.

\Y



Vi

Linear motion of systems of particles  [5 lectures ]

e centre of mass

o total external force equals rate of change of total momer{tatarnal forces
cancel)

e examples (rocket motion, ...)

Angular motion [7 lectures ]

e rotations, infinitesimal rotations, angular velocity warct

e angular momentum, torque

e angular momentum for a system of particles; internal toscpacel for cen-
tral internal forces

e rigid bodies, rotation about a fixed axis, moment of ineniarallel and per-
pendicular axis theorems, inertia tensor mentioned

e precession (simple treatment: steady precession rateedant), gyrocom-
pass described

Gravitation and Kepler's Laws  [7 lectures ]

law of universal gravitation

gravitational attraction of spherically symmetric obgect
two-body problem, reduced mass, motion relative to cerftreass
orbits, Kepler’s laws

energy considerations, effective potential

Non-inertial reference frames [6 lectures ]

e fictitious forces
e motion in a frame rotating about a fixed axis, centrifugal @odolis terms —
apparent gravity, Coriolis deflection, Foucault’s pendulweather patterns

Normal modes [5 lectures ]

e damped and forced harmonic oscillation, resonance (@vjsi
e coupled oscillators, normal modes

e boundary conditions and eigenfrequencies

e beads on a string
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Motion of Systems of Particles

This chapter contains formal arguments showing (i) thatake external force act-
ing on a system of particles is equal to the rate of changs tdtial linear momentum
and (ii) that the total external torque acting is equal tortite of change of the total
angular momentum. Although you should ensure you undetstemarguments, the
important point is the simple and useful general resultctviemerge.

1.1 Linear Motion

Consider a system & particles labelled 2, ..., N with massesn at positiong;.
Let the momentum of thigh particle bep;. The total force acting and the total linear

momentum are N N
F= ZlFi and P= lei,
i= i=

respectively. Summing the equations of motibn= p; (Newton’s second law), for
all the particles immediately leads to

F=P.

To make this more useful, we divide up the fofgeon theith particle into the
external force plus the sum of all the internal forces duéoather particles:

Fi = FieXt—I— z Fij.
J#

Here, Fjj is the force on théth particle due to thgth. The payoff for using this
decomposition is that the internal forces are related irsgai Newton’s third law,

Fij = —Fii,

and therefore,
N

N N
F=2 (Fee Y Fi) = 2 FP+ mzzl Fij.

7 =
i7]

The first term on the RHS is simply the total external fofe®!, and the second term
vanishes because the internal forces cancel in pairs. Taehd up with the result:

F=p]|. (1.1)



1 Motion of Systems of Particles
¢ The total external force is equal to the rate of change of dked tinear mo-
mentum of the system.
e We used Newton'’s third law to cancel the internal forces iinga

e If the external force vanisheE&* = 0, thenP = 0, soP is constant and we
can state:

The linear momentum of a system subject to
no net external force is conserved.

1.1.1 Centre of Mass
Define the centre of masi, by,
N . N
R= _lez\nlmrl o Zlmrh
Yo M£

whereM =y my is the total mass.
If the individual masses are constant, then the velocityhefdentre of mass is
found from,

N
MR = Zlmh =P.
i:
Furthermore, we just saw above tif&t'= dP/dt. So we have the following results:

and [F=MR]. (1.2)

e |In theabsenc®f a net external force, the centre of mass moves with constan
velocity. This says (once again) that:

The linear momentum of a system subject to
no net external force is conserved.

o |f the net external force is non-zero, the centre of mass magdaf the total
mass of the system were there, acted on by the total extenrca. f

It is often useful to look at the system of particles with piasis measured rela-
tive to the centre of mass. g is the location of théth particle with respect to the
centre of mass then (see figure 1.1),

=Rip] a2

1.1.2 Kinetic Energy of a System of Particles

Let’s look at the total kinetic energy of the system using the decomposition in
equation (1.3).

T N } I-,Z B N } R 5

_NlRZN - N1 o,
= 2 g meR 3 omet



1.1 Linear Motion

origin *

Figure 1.1 Particle positions measured with respect to the Centre sEMa

The second term on the RHS vanishes sificap; = 0 andy mp, = 0 by the defi-
nition of the centre of mass. This leaves,

T—}MR2—|— S }mpz
2 giz N

which we write as,

1 .
T= E|\/|F<2+TCM . (1.4)

The total kinetic energy has one term from the motion of thrgresof mass and
a second term from the kinetic energy of motion with respethé centre of mass.
Since patrticle velocities are different when measured fierdint inertial reference
frames, the kinetic energy will in general be different iffetient frames. However,
Tewm, the kinetic energy with respect to the center of mass is#imeein all inertial
frames and is an “internal” kinetic energy of the system @bm of Tcy and the
potential energy due to the internal interactions is theltioiternal energyJ, as
used in thermodynamics). To prove this, note that a Galilesrsformation from a
frameSto a frameS moving at velocity with respect t@Schanges particle positions
by:

ri—ri=rj—Vt.

The centre of mass transforms similarly,

R=ZMN g ZMA_ gy,
2m 2m

so that positions and velocities with respect to the cerftreass arainchanged

pl’ = r-R = (ri—-vt)—-(R-vt) = r—-R = Pi

p = f-R = (i-v)-(R-v) = ii-R = p,

The decomposition of the kinetic energy in equation (1.4)lmauseful in prob-
lem solving. For example, if a ball rolls down a ramp, you capress the kinetic
energy as a sum of one term coming from the linear motion afé¢imére of mass plus
another term for the rotational motion about the centre a$sr(¢he kinetic energy
of rotational motion is discussed further later in the nptes

System of Two Particles Now apply the kinetic energy expression in equa-
tion (1.4) to a system of two particles. Write the particléoegties asu; = r; and
Uy =T, So that: ' '

uu=R+p; and u;=R+p,.



1 Motion of Systems of Particles

timet timet 4 ot
0 > == e >
\ V—u v+ Ov

Figure 1.2 Motion of a rocket. We consider the rocket at two closely sgaastants of
time,t andt + ot.

Subtracting these two equations giwgs- u; = p, — p,, While the centre of mass
condition states thatyp, +myp, = 0. We can thus solve f@, andp,:

. mp(up—Up) . —mg(u;—Up)

pr=—T7" P
m+ Ny m+ Ny

Substituting these in the kinetic energy expression gives,

1 . 1 m
T= E(ml-l-mz)Rz—l-—

The quantitymmy/(m + mp) appearing here is called theduced massWe will
meet it again (briefly) in chapter 3 on Kepler's laws.

1.1.3 Examples

Rocket Motion ~ We can use our results for the motion of a system of particles
to describe so-called “variable mass” problems, where thgsnof the (part of) the
system we are interested in changes with time. A prototypiample is the motion

of a rocket in deep space. The rocket burns fuel and ejectsotinbustion products

at high speed (relative to the rocket), thereby propelliagli forward. To describe
this quantitatively, we refer to the diagram in figure 1.2 pnaceed as follows.

We considerthe rocket at two closely spaced instants of thhémet the rocket
and its remaining fuel have massand velocityv. In a short additional intervait
the rocket’'s mass changesro+ dm as it burns a massdm of fuel (note thadm
is negativesince the rocket uses up fuel for propulsion) and the roskeglocity
changes to + dv. The exhaust gases are ejected with veloe€itywith respect to
the rocket, which is velocity — u with respect to an external observer. Hence, at
timet 4 ot we have a rocket of mass+ dm moving with velocityv + dv together
with a mass-dm of gas with velocity — u.

If the rocket is in deep space, far from any stars or plank&sgtis no gravita-
tional force or other external force on the system, so itsalvBnear momentum is
conserved. Therefore, we may equate the linear momentune gistem at timets
andt + ot,

mv = (m+0m)(v+dv) —dm(v — u).

Cancelling terms we find,
udm-+ mov + omdv = 0.

We take the [imidt — 0, so that thé@mdv term, which is second order in infinitesi-
mal quantities, drops out, leaving:
dm

u— = —dv.
m



1.2 Angular Motion

If the rocket initially has velocity; when its mass isy, and ends up with velocity
v when its mass im;, we integrate this equation to find:

Vi =Vj+uln (%) . (1.5)

f

The fact that the increase in the rocket’s speed dependstlogécally on the ratio
of initial and final masses is the reason why rockets are dlemdgely made up of
fuel when they are launched (the functiorxlgrowsvery slowly with x). It also
explains why multi-stage rockets are advantageous: ongégiee burnt up some
fuel, you don’t want to carry around the structure that cowd it, since this will
reduce the ration; /m; for the subsequent motion.

Rope Falling Onto a Table  Here we’ll consider a system where an external
force acts. A flexible rope with mass per unit lengtls suspended just above a
table. The rope is released from rest. Find the force on thle tahen a lengtix of
the rope has fallen to the table.

Our system here is the rope. The external forces in the atdicection are the
weight of the ropepag, acting downwards plus an upward normal foFcexerted
on the rope by the tabletop. We want to deterntine

The rope falls freely onto the table, so its downward acegilen isg. If we let
v = X, this means that = g andv? = 2gx.

Suppose that a leng#of the rope has reached the table top after timmehen the
speed of the falling section is A short timedt later, the length of rope on the table
is X+ 0x and the speed of the falling sectiomnvig- dv. The downward components
of the system’s total momentum at timeandt + &t are therefore:

pt) = p@-xVv,
p(t+dt) = p(a—x—ox)(v+ov).

Working to first order in small quantities,
Op = p(t+dt) — p(t) = p(a— x)dv— pvdX.
Taking the limitdt — 0, we find that the rate of change of momentum is,

d L
d—? = p(a—x)vV—pvx = p(a—x)g— 2pxg.

Therefore, equating the external force to the rate of chahgeomentum gives,
pag—F = p(a—x)g—2pxg,
or finally,
F = 3pxg
1.2 Angular Motion

The angular equation of motion for each particle is

d
ri xF :a(rixpi).



1 Motion of Systems of Particles

The total angular momentum of the system and the total toaqtieg are:

N N

L= i;ri xpi  and T:i;ri X Fi

As before we split the total force on each particle into exdéand internal parts.
We then make a corresponding split in the total torque:

N . N
T = I'iXFieX—I—ZlI’iX Fij
= .[ext_l_.[int‘

Recall that in the linear case, we were able to cancel thenialtéorces in pairs,
because they satisfied Newton’s third law. What is the cpmeding result here? In
other words, when can we ignoré!? To answer this, decompos® as follows,

T = ryx(Fio+Fis+-+Fw)
+r2x (Far+Fag+---+Fon) +--
= (ri—r2) x F12+ (other pairs.

We have used Newton’s third law to obtain the last line.

Now, if the internal forces act along the lines joining thetjate pairs, then all
the termgr; — rj) x Fjj vanish and™ = 0. Thust™ = 0 for centralinternal forces.
Examples are gravity and the Coulomb force.

With this proviso we obtain the result,

N X d N
rix Ft=—$rixp
2N g
which is rewritten as,
= |

¢ This result applies when we use coordinates in an ineraaié (one in which
Newton’s laws apply).

o Note that we used both Newton’s third law and the conditiai the forces
between particles were central in order to reach our result.

1.2.1 Angular Motion About the Centre of Mass

We will now see that taking moments about the centre of masslehds to a simple
result. To do this, look at the total angular momentum ushegdentre of mass
coordinates:

N N

L = _Zirixmfi = _;(R-I-Pi)Xm(R‘l'pi)

1=
— iinmR—l—iinmbi—l—iipi me+§ipi «mp..

The second and third terms on the RHS vanish sjhoep; = 0 andy mp; = 0 by
the definition of the centre of mass. This leaves,

. N .
L=RxMR+ leixmpi,
i=



1.3 Commentary

which we write as,

L=RxMR+Lcwm]| (1.6)

The total angular momentum therefore has two terms, whiohbesinterpreted as
follows. The first arises from the motion of the centre of malssut the origin of
coordinates: this is called tlebital angular momentum and takes different values
in different inertial frames. The second terby)y, arises from the angular motion
about (relative to) the centre of mass (think of the exampla epinning planet
orbiting the Sun): this is theamein all inertial frames and is amtrinsic or spin
angular momentum (the proof of this is like the one givenTtgy, the kinetic energy
relative to the CM, below equation (1.4) on page 3).

Finally, we take the time derivative of the last equation ibtam,

L L )
diev _ OL o MR = 1o_Ryped
dt dt
N N

= eri x FPX— ZLR x FfX
i= i=

N

= Zl(ri —~R) x Ff*

1=
N

= ZlPiXFiext = Tw
i:

So we've found two results we can use when considering tergpelied to a
system:

™= and [t =Lcm|. (1.7)

e These two equations say you can take moments either aboatitie of an
inertial frame, or about the centre of mass (even if the eemitmass is itself
accelerating).

e Furthermore, in either case:

The angular momentum of a system subject to
no external torque is constant.

1.3 Commentary

In deriving the general results above we assumed the wabiiNlewton'’s third law,
so that we could cancel internal forces in pairs. We alsorasduhat the forces were
central so that we could cancel internal torques in paire d$sumption of central
internal forces is very strong and we know of examples, ss¢haelectromagnetic
forces between moving particles, which ae central.

All we actually require is the validity of the results in egjoas (1.1) and (1.7).
It is perhaps better to regard them as basic assumptionsewhsisfication is that
their consequences agree with experiment.

For the puzzle associated with the electromagnetic foraagioned above, the
resolution is that you have to ascribe energy, momentum agdlar momentum to
the electromagnetic field itself.
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Rotational Motion of Rigid
Bodies

2.1 Rotations and Angular Velocity

A rotation R(N, 0) is specified by an axis of rotation, defined by a unit vector
(2 parameters) and an angle of rotatébf@ne parameter). Since you have a direction
and a magnitude, you might suspect that rotations couldgresented in some way
by vectors. However, rotations through finite anglesrerevectors, because they do
not commute when you “add” or combine them by performingedéht rotations in
succession. This is illustrated in figure 2.1

Infinitesimalrotationsdo commute when you combine them, however. To see
this, consider a vectoh which is rotated through an infinitesimal angl@ about
an axisn, as shown in figure 2.2. The chang in A under this rotation is a
tiny vector from the tip ofA to the tip of A +dA. The figure illustrates thatA is
perpendicular to both andn. Moreover, ifA makes an anglé with the axish,
then, in magnitudgdA| = AsinBdg, so that as a vector equation,

dA = A x Ade.
This has the right direction and magnitude.

If you perform a second infinitesimal rotation, then the dewill be some
newdA’ say. The total change i is thendA + dA’, but since addition of vectors

Fl P [w] ¢ [

rotate 90 degrees about z axis then 180 degrees about x axis

F| ¢ (9 | [@

rotate 180 degrees about x axis then 90 degrees about z axis

Figure 2.1 Finite rotations do not commute. A sheet of paper has therl8t on the front
and “B” on the back (shown light grey in the figure). Doing twait rotations in different
orders produces a different final result.



2 Rotational Motion of Rigid Bodies

= )

—

IS

do

dA

Al /A+dA

Figure 2.2 A vector is rotated through an infinitesimal angle about &n.ax

commutes, this is the same @&’ + dA. So, infinitesimal rotationdo combine as
vectors.

Now think of A as denoting a position vector, rotating around the axis with
angular velocitydg/dt = @, with the length ofA fixed. This describes a particle
rotating in a circle about the axis. The velocity of the petis,

dA .
v=—=nxAqQ.
gt — " Ae
We can define the vectangular velocity

w= N,
and then,
dA
i WxA | (2.2)

It's not necessary to think gk as a position vector, so this result describes the rate
of change of any rotating vector of fixed length.

2.2 Moment of Inertia

We will consider the rotational motion ofid bodies where the relative positions of
all the particles in the system are fixed. Specifying how onetpoitne body moves
around an axis is then sufficient to specify how the whole bodyes. The idea of a
rigid body is clearly an idealisation. Real bodies are rgitlrand will deform, how-
ever slightly, when subject to loads. Their constituenésaso subject to random
thermal motion. Nonetheless there are many situationsener deformation and
any thermal motion can be ignored.



2.2 Moment of Inertia

Figure 2.3 Rigid body rotation about a fixed axis.

The general motion of a rigid body with a moving rotation asisomplicated,
so we will specialise to &ixedaxis at first. We can extend our analysidaminar
motion, where the axis can move, without changing its dioectan example is
given by a cylinder rolling in a straight line down an inclthplane. We will later
discuss precession, where the axis itself rotates.

For a rigid body rotating about a fixed axis, what propertytoas the angular
acceleration produced by an external torque? The propaliye&vthe rotational
analogue of mass (which tells you the linear acceleratiodyeed by a given force).
Itis known as thenoment of inertiassometimes abbreviated (in these notes anyway)
asMol.

To find out how to define the Mol, look at the kinetic energy ofatmn. Let
W= wA, so thath specifies the rotation axis. Let be the mass of thi¢h particle in
the body and leR; be the perpendicular distance of iltke particle from the rotation
axis. The geometry is illustrated in figure 2.3. Since theybisdigid, R, is a fixed
distance for eachandw is the same for all particles in the body. The kinetic energy

is
[ = EI vazI = EI ZmRZw = 2Iw,

where the last equality allows us to define the Mol about thergaxis, according
to,

IEZmRiZ.

The contribution of an element of massltgrows quadratically with its distance
from the rotation axis. Note the analogy betw@'n\iZ for the kinetic energy of a
particle moving with speedand%l «? for the kinetic energy of a body with moment
of inertial rotating with angular speed.

If the position vector; of theith particle is measured from a point on the rotation
axis, thenv; = wx rj andy; = |wx ri| = Rw. This is an application of the result in
equation (2.1) for the rate of change of a rotating vector.

The moment of inertia is one measure of the mass distribaofian object. Other
characteristics of the mass distribution we have alreadyameethe total mass and
the location of the centre of mass.

11
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For a continuous mass distribution, simply replace the sonas discrete parti-
cles with integrals over the mass distribution,

| = dem:/b Repdr |.

body ody

Here,dm= pd® is a mass elemenp is the mass density ardfr is a volume
element.
It is sometimes convenient to use tiaelius of gyrationk, defined by

1= mi)

A single particle of mass equal to the total mass of the bodlsidincek from the
rotation axis will have the same moment of inertia as the body

Now look at the component, in the direction of the rotation axis of the (vector)
angular momentum about some point on the axis (see figure Pt#3 is obtained
by summing all the contributions of momenta perpendicuaihe axis times the
perpendicular separation from the axis,

Ly = ZRi(mRiw) =lw]|.

The subscriph labels the rotation axis. Note that the angular momenturheifth
particle isL; = r; x myv;j, and the component of this in the directionfois,

A-(rixmvi) =A-(r x mwxr;)) = mR%w,

which is just what appears in the sum giving
If A is a symmetry axis thel, is the only non-zero component of the total angu-
lar momentunk. However, in general, need not lie along the axis, or equivalently,
L need not be parallel to.
Taking components of the angular equation of motios,dL /dt along the axis
gives,
Th= dbn _ lo=1¢@
dt ’
if @ measures the angle through which the body has rotated frome seference
position.

2.3 Two Theorems on Moments of Inertia

2.3.1 Parallel Axis Theorem

Ilcm = Moment of Inertia (Mol) about axis through centre of mass jCM
I = Mol about parallel axis at distancsfrom axis through CM

The parallel axis theorem states:

| = lom+Md? |,

whereM is the total mass. To prove this result, choose coordinaiistiae z-axis
along the direction of the two parallel axes, as shown in &gu4. Then,

N
| = _;m(ﬁﬂ?)-
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CM axis

new axis CM axis

[e—d

Figure 2.4 Parallel axis theorem. In the right hand figure, we are logkiertically down
in thez direction.

Figure 2.5 Perpendicular axis theorem for thin flat plates.

We can also choose thxedirection to run from the new axis to the CM axis. Then,
X =d+px and y =py

wherepix andpjy are coordinates with respect to the CM. The expressioh e
comes:

N N
| = Zim((d+pix)2+p§) = Zim(p§+p?y+d2+2dpix).
i= i=

The last term above contairgsmipix which vanishes by the definition of the CM.
The remaining terms giviey andMd? and the result is proved.

2.3.2 Perpendicular Axis Theorem

This applies for thin flat plates of arbitrary shapes, whightake to lie in the«y
plane, as shown in figure 2.5. Lkt Iy andl, be the Mol about the, y andz axes
respectively. The perpendicular axis theorem states:

IZ: IX—I_Iy .
The proof of this is very quick. Just observe that since weslzathin flat plate, then
N 2 N )
k=Y my- and Iy=) mx".
Sy A b=
But \
=3 mO¢+y),
T

and the result is immediate.
In both these results we have assumed discrete distritaigroint masses. For
continuous mass distributions, simply replace the sumstiegrations. For example,

Izz_im(&2+y?> —>/(x2+y2)dm

13
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(M+nm)g m

Figure 2.6 Wheel rolling down a slope.

2.4 Examples

Moment of Inertia of a Thin Rod Find the moment of inertia of a uniform thin
rod of length 2 about an axis perpendicular to the rod through its centreasfsm
Also find the moment of inertia about a parallel axis throughend of the rod.

Let p be the mass per unit length of the rod anddeheasure position along
the rod starting from the centre of mass (sa < x < a). For an element of the
rod of lengthdx the mass ipdx and the moment of inertia of the elemenpig dx.
Therefore the total moment of inertia is given by the integra

a 2
lem= [ pxldx= Zpa’.
_a 3

The total mass isn= 2pa, and therefore,

1
|CM:§m .

Applying the parallel axis theorem, the moment of inertiawattone end of the rod
is,

4

Spoked Wheel A wheel of radiusa comprises a thin rim of ma$4 andn spokes,
each of mass, which may be considered as thin rods terminating at theeerit
the wheel. If the wheel rolls without slipping down a planelined at anglé® to the
horizontal, as depicted in figure 2.6, what is the linear lBcagon of its centre of
mass?

We will apply the angular equation of motion about the cemtrenass (see
equation (1.7) on page 7), and the linear equation of motsee Equation (1.2)
on page 2) in a direction parallel to the sloping plane. Ifahgular velocity of the
wheel isw, then the no-slip condition says that its speedHsaw. Choose directions
so thatw andv are both positive when the wheel rolls downhill.

The angular equation of motion applied to the wheel aboutetgre of mass
sayst& = lcm @. The external torque comes from the frictional foFeacting up
the sloping plane at the point of contact with the wheel. gsire result above for
the Mol of a rod (remembering that the rod length is reoiustead of 2), we find,

n
lcm = Ma2—|— émaz
The angular equation of motion then gives,

Fa— (Maz—l—gmaz)d).
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The component of the linear equation of motion in a directiown the plane gives,
—F + (M4 nm)gsin@ = (M + nm)aw.

We now eliminaté= and solve foaw, which gives the linear acceleration as,

aio— 3(M+nm)jgsin®

6M+4nm

Alternatively, since the normal reactioN (n figure 2.6) and frictional forces
on the wheel do no work, we can apply the conservation of thetld plus (grav-
itational) potential energy. Applying our result in equati(1.4) on page 3 for the
kinetic energy of a system, we find:

1 1 .
5(M+ nmv? + EICMwZ — (M +nm)gxsin® = const

wherex is the distance moved starting from some reference poinhgys= x = aw
and differentiating with respect to time gives

1
3
which leads to the same result as before for the acceleradiea X.

(6M +4nm)xx = (M + nm)gsinBx,

2.5 Precession

Spinning bodies tend tprecessunder the action of a gravitational torque. We'll
work out the steady precession rate for a spinning top. Eiguf shows a top sup-
ported at a fixed pivot point. We will apply the angular eqoatf motiont = dL /dt
about the pivot. As drawn, the torque about the pivot due ¢owkight of the top
points into the paper. Hence, the angular momentuof the top must change by
moving into the paper. If the top is spinning very fast abtaibixis, therL is, to a
very good approximation, aligned with the top’s axis. Se tibp will tend to turn
bodily, orprecessaround a vertical axis. It may help to think of the torquaushing
the tip ofL around.

We can calculate the precession frequency quite easilyurAsshal is large so
that the total angular momentum of the top is given entirglytte spin, and ignore
any contribution due to the slow precession of the top abwtertical axis. The
torque is given by,

T=rxF,

wherer is the vector from the pivot to the top’s centre of mass knd mg is the
top’s weight. In magnitude,
T = mgrsina,

where the top’s axis makes an anglevith the vertical.
If the top precesses through an infinitesimal amgl@bout the vertical axis, then
the magnitude of the changelinis,

dL = Ldgsina.
If o= wy is the precession angular velocity, then,

%—L sina
dt_(‘)p '
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pivot

Figure 2.7 A spinning top will precess under gravity.

Applying the equation of motion, taking the magnitude oftbsides, gives:
mgrsina = Lwysina.

The simx terms cancel and the final answer comes out independent nifie
which the top makes with the vertical. The precession amgelacity is given by,

— magr
L

A full treatment of the motion of a top is complicated. Steguigcession is a
special motion: in general the top tends to nod up and downutate, as it pre-
cesses.

2.6 Gyroscopic Navigation

A gyrocompass is a spinning top mounted in a frame so thakitsig constrained
to be horizontal with respect to the Earth, see figure 2.8 haddarth turns, the axis
turns with it, causing the end of the axis labelkeh the figure to be raised upwards
and the end to be pushed down (as seen from a fixed frame not attached to the
Earth). This means that there is a torque on the gyroscopewitiperpendicular
to the spin angular momentuimand points between the North and West when the
compass is oriented as in the figure.

From the angular equation of motians= dL /dt, this torque will tend to push
towards the North. IL points between North and West, the torque again tries to line
up L with the North-South axis. The gyrocompass will thus tendgoillate with
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Figure 2.8 A gyrocompass.

its spin direction oscillating about the N-S axis. If you Bpgpome damping, then it
will tend to settle down with its spin along the N-S line.

2.7 Inertia Tensor *

Now let’s look at the moment of inertia in more detail. So fdrem we've consid-
ered the Mol for a body rotating around a fixed axis, we've gsvimoked at the
component., of the angular momentur along the direction of the axis. Now
let’s look atall the components df. From the definition of angular momentum we

have,
N N

N
L = eri X pi = Zri Xm(wxri) = Zlm(ri-riw—w-ri ri),
i= i= i=

where we have useal = myvi = mw x ri andw= wi. We also applied a standard
result for the vector triple produat; x (WX ri) =ri-riw— wrir;. Rewrite this as a
matrix equation giving the componentslofin terms of the components af (the
summations run oveér=1,... N):

Lx SmM(Y?+2) -3 mxy — Y Mz 0
Ly| = —ImyX  YM(Z+X)  —Ymyz Wy
L, — Y Mz —ymzy,  ImE+yd) /) \w,

Ixx Ixy Ixz Wy
= [l by bz oy
l2x lzy 1z OV
This is given more succinctly as,
L=l

wherel is the matrix, known as thimertia tensorwhich acts onw to giveL. Re-
membering thatd = wn, our old results are recovered from,

and Lhn=n

17
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so we can define
l,=ATIA

as the moment of inertia about the axis This corresponds to what we calléd
earlier, when we didn't make explicit reference to the riotabxis we were using.
Here we are thinking of a matrix notation, 86 means the transpose df which
gives a row vector.

The resultL = | @ shows quite clearly that although the angular momentum
depends linearly owit doesnothave to be parallel t. One important place where
this matters is wheel balancing on cars. A wheel is unbathpoecisely wheh and
w are not parallel. Then, as the wheel rotates witfixed, L describes a cone so
dL /dt # 0. Therefore a torque must be applied and you feel “wheel fedbbhis is
corrected by adding small masses to the wheel rim to atljiesinakel. andw line
up. In general, sinckis a symmetric matrix, it can be diagonalised. This mearss it
always possible to choose a set of axes in the body for wHhiels non zero elements
only along the diagonal. If you rotate the body around ondneséprincipal axes
L andw will be parallel.

2.7.1 Free Rotation of a Rigid Body — Geometric Description

Consider the rotational motion of a rigid body moving freatyder no forces (or, a
rigid body falling freely in a uniform gravitational field gbat there are no torques
about the CM; or, a rigid body freely pivoted at the CM).

If there are no torques acting, the total angular momenturmust remain con-
stant. It is convenient to choose axes fixed in the body, atignith its principal
axes of inertia. These body axes are themselves rotatirnigteese coordinates the
components of along the axes may change (see chapter 4 on rotating cotegdina
systems). Howevell | is still fixed, so that_-L = L? = const. Expressed in the
body coordinates, this reads:

L7 = Faf +1368 + 5

Furthermore, since there is no torque, the rotational ldretergy is fixed,T =
const. Expressed in the body coordinates, this second r@ti®a condition reads:

2T = 1168 + 126053 + 3053,

The components of the angular velocity simultaneoushgBativo different equa-
tions. These equations specify two ellipsoids amchust lie on the line given by
their intersection.

Suppose that all three principal moments of inertia are uaka@s is the case for,
say, a book or a tennis racket. We'll talke< |2 < I3. Now, start spinning the object
with angular velocity of magnitude aligned along thé, axis. Angular momentum
conservation says that the maximum magnitude of the conmpafew along the
I, axis in the subsequent motionds; /I», while kinetic energy conservation says
the maximum magnitude of this componentig/l1/1>. Sincely < I, we find that
the maximum component allowed by kinetic energy consewadt bigger, so that
the kinetic energy ellipsoid liesutsidethe angular momentum ellipsoid along the
I, axis. Likewise, sincé; < I3, the kinetic energy ellipsoid liesutsidethe angular
momentum ellipsoid in thé; direction. Therefore, the intersection of the two ellip-
soids comprises just two points, along the positive andthagh directions. This
is enough to tell you that rotation about theaxis is stable — see figure 2.9(a).
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Figure 2.9 Free rotation of a rigid body. The diagrams show the (firsaoist of the)
kinetic energy and angular momentum ellipsoids for the fogation of a rigid body with
all three principal moments of inertia differeif,< I> < I3. In (a) the rotation is stable with
w pointing along thd; direction. In (b) the two ellipsoids intersect in a line, sliog that
rotation about thé, axis is unstable. In (c) the rotation is stable widfpointing in thel
direction.

Figure 2.10 Curves showing the time variation of angular velocity forreety rotating
object. The curves all lie on the ellipsoid of constant kinenhergy, and each one is given
by the intersection of this ellipsoid with a similar ellipd@f constant (magnitude of) angular
momentum. On the left the full curves are shown, while on gty parts of the curves on
the “back” of the kinetic energy ellipsoid are hidden. Thesed loops around tHe andls
axes show that the rotation is stable about these two axes.

A similar argument holds if you start with the angular vetgdined up along
the I3 axis, although in this case the angular momentum ellipdge&ldutside the
kinetic energy ellipsoid, with the intersection only at twoints along the positive
and negativés axes. Thus, rotation about the axis with the largest momfenedia
is also stable — see figure 2.9(c).

The final case we consider is where the initial angular vetasialigned along
thel, axis. Now, sincd; > |3, the angular momentum ellipsoid lies outside the
kinetic energy ellipsoid in th direction, but, sincé, < |3, the angular momentum
ellipsoid lies inside the kinetic energy ellipsoid in thedirection. This means that
there is a whole line of points where the two ellipsoids is¢et — see figure 2.9(b).
In turn, this tells you that rotation about the axis with imediate moment of inertia
is unstable: any small misalignment can be amplified andhfexowill be observed
to “tumble” as it spins. It is easy to demonstrate this forngelf by throwing a book
in the air, spinning it about each of its three principal axetsirn.

These three cases are illustrated in figure 2.9. Figure 2d@sthe time varia-
tion of wfor the freely rotating body: each continuous curve showsdithe variation
of the components ab. The curves all lie on the surface of the ellipsoid of constan
kinetic energy, and each curve is given by the intersectfahis ellipsoid with an
ellipsoid of constant angular momentum.
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Gravitation and Kepler’s Laws

In this chapter we will recall the law of universal gravitatiand will then derive

the result that a spherically symmetric object acts gréwnally like a point mass
at its centre if you are outside the object. Following thiswiklook at orbits under

gravity, deriving Kepler's laws. The chapter ends with asidaration of the energy
in orbital motion and the idea of an effective potential.

3.1 Newton’s Law of Universal Gravitation

For two particles of masses andm, separated by distancéhere is a mutual force

of attraction of magnitude

Gmmy
rz2 '

whereG = 6.67 x 10-1'm3kg~'s 2is thegravitational constantlf Fy,is the force
of particle 2 on particle 1 and vice-versa, and i =r, —r1 is the vector from
particle 1 to particle 2, as shown in figure 3.1, then the wefcion of the law is:

Gy
Fio=—-Fa=—5—"T1
2

where the hat (°) denotes a unit vector as usual. Gravity ©b®y superposition
principle, so if particle 1 is attracted by particles 2 andi® total force on 1 is
Fio+Fis.

The gravitational force is exactly analogous to the eletaiic Coulomb force
if you make the replacements,— q, —G — 1/41, (of course, masses are always

F
Feom .
/
Fi2
my r
) m

Figure 3.1 Labelling for gravitational force between two masses )laftd gravitational
potential and field for a single mass (right).

21
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positive, whereas chargescan be of either sign). We will return to this analogy
later.

Since gravity acts along the line joining the two masses, digentral forceand
thereforeconservativgany central force is conservative — why ?). For a conser-
vative force, you can sensibly defingatential energy differendeetween any two
points according to,

V(re) -V(r) = —/r_rde-r.

The definition is sensible because the answer depends otiye@ndpoints and not
on which particular path you used. Since odifferencesn potential energy appeatr,
we can arbitrarily choose a particular point, say as a reference and declare its
potential energy to be zer¥,(ro) = 0. If you're considering a planet orbiting the
Sun, it is conventional to s&t = 0 at infinite separation from the Sun, gg| =

o, This means that we can define a gravitational potentialggniey making the
conventional choice that the potential is zero when the tvassas are infinitely
far apart. For convenience, let's put the origin of coortisaat particle 1 and let
r =r,—r1 be the position of particle 2. Then the gravitational foroeparticle 2
due to particle 1 if = Fo; = —Gmympf /r? and the gravitational potential energy

IS,
r r
V(r):—/ Fodr’ = —/ (- S g ST
0 r

00 r

(The prime(’) on the integration variable is simply to distinguish it fréhe point
where we are evaluating the potential energy.) It is alséulise think of particle
1 setting up a gravitational field which acts on particle Zhvgarticle 2 acting as
a test mass for probing the field. Define t@vitational potential which is the
gravitational potential energy per unit mass, for partictey (settingmy = mnow),

Gm

d(r)= .

Likewise, define thgravitational fieldg of particle 1 as the gravitational force per
unit mass:

The use ofy for this field is deliberate: the familigr= 9.81 ms 2 is just the magni-
tude of the Earth’s gravitational field at its surface. Thielfend potential are related
in the usual way:

g=-—0o.

Gravitational Potential Energy Near the Earths’ Surface If you are think-
ing about a particle moving under gravity near the Earthrfase, you might set the
V = 0 at the surface. Here, the gravitational force on a partitleasamis,

F = —mgk,
wherek is an upward vertical unit vector, ap= 9.81ms2 is the magnitude of

the gravitational acceleration. In componerfis= F, = 0 andF, = —mg Since
the force is purely vertical, the potential energy is indegent ofx andy. We will
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measureas the height above the surface. Applying the definition oépiial energy
difference between heightand the Earth’s surface £ 0), we find

V(h)-V(0) = —/Oh Fdz= —/Oh(—mg)dz: mgh

Choosingz = 0 as our reference height, we 3¢tz=0) = 0 and find the familiar
result for gravitational potential energy,

_ Gravitational potential energy
V() = mgh near the Earth’s surface

Note that since the gravitational force acts verticallyaog path between two given
points the work done by gravity depends only on the changbeight between the
endpoints. So, this force is indeed conservative.

3.2 Gravitational Attraction of a Spherical Shell

The problem of determining the gravitational attractionspherically symmetric
objects led Newton to invent calculus: it took him many yeargrove the result.
The answer for a thin uniform spherical shell of matter i¢ thaiside the shell the
gravitational force is the same as that of a point mass of #éneestotal mass as
the shell, located at the centre of the shell. Inside thd,sie force is zero. By
considering an arbitrary spherically symmetric objectédhilt up from thin shells,
we immediately find that outside the object the gravitatiéor@e is the same as that
of a point with the same total mass located at the centre.

We will demonstrate this result in two ways: first by calcirgtthe gravitational
potential directly, and then, making full use of the sphari&ymmetry, using the
analogy to electrostatics and applying Gauss’ law.

3.2.1 Direct Calculation

We consider a thin spherical shell of radismass per unit arep and total mass
m= 4rpa’. Use coordinates with origin at the center of the shell ancutate the
gravitational potential at a poiftdistance from the centre as shown in figure 3.2.

We use the superposition principle to sum up the individoatigbutions to the
potential from all the mass elements in the shell. All the snasthe thin annulus
of width ad@ at angled is at the same distané&from P, so we can use this as our
element of mass: m

dm= p2rasinfadb = 5 sinBde.

The contribution to the potential from the annulus is,

Gdm Gmsin6de
db=-—F-=-7"Rx

Now we want to sum all the contributions by integrating o®drom 0 tort In fact,
it is convenient to change the integration variable fidta R. They are related using
the cosine rule:

R? = r?+a® — 2arcosh.

From this we find si@d8/R = dR/(ar), which makes the integration simple. If
r > athe integration limits are— a andr +a, while if r < athey area—r anda+-r.
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gravitational :
potential a r

—Gm/a |

gravitational g
field a r

™ —Gmyr?

—Gmya?t
Figure 3.2 Gravitational potential and field for a thin uniform sphatishell of matter.

We can specify the limits for both cases|as- a| andr + a, so that:

Gm r+a {—Gm/r forr >a

P00 ="%ar |r_a|dR: ~Gmya forr<a’

We obtain the gravitational field by differentiating:

_ £/r2 >
g(r):{ Gmi/r2 forr>a
0 forr <a

As promised, outside the shell, the potential is just that pbint mass at the centre.
Inside, the potential is constant and so the force vanishtesimmediate corollaries

are:

¢ A uniform or spherically stratified sphere (so the densitg fsinction of the
radial coordinate only) attracts like a point mass of theesémtal mass at its
centre, when you are outside the sphere;

¢ Two non-intersecting spherically symmetric objects attemch other like two
point masses at their centres.
3.2.2 The Easy Way

Now we make use of the equivalence of the gravitational faw¢be Coulomb force
using the relabelling summarised in table 3.1. We can nowyapp integral form
of Gauss’ Law in the gravitational case to our sphericallsiiéle law reads,

/g-dS: —4nG/ omdV
S \Y
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Coulomb force Gravitational force
charge q mass m
coupling 1 (410) coupling -G
potential \% potential )
electricfield E=-0V gravitational field g=—-0®
charge density pq mass density Pm
Gauss’ law 0-E = pg/e0 | Gauss’ law 0-g= —41Gpnm

Table 3.1 Equivalence between electrostatic Coulomb force and gtigonal force.

rz

Figure 3.3 Coordinates for a two-body system.

which says that the surface integral of the normal compoo€titte gravitational
field over a given surfac8is equal to{—41G) times the mass contained within that
surface, with the mass obtained by integrating the masstgignsover the volume
V contained by,

The spherical symmetry tells us that the gravitational fegglchust be radial,
g=gf. If we choose a concentric spherical surface with radinsa, the mass
enclosed is justn, the mass of the shell, and Gauss’ Law says,

41r’g= —4TGm
which gives
Gm,

immediately. Likewise, if we choose a concentric sphescaface inside the shell,
the mass enclosed is zero apthust vanish.

3.3 Orbits: Preliminaries

3.3.1 Two-body Problem: Reduced Mass

Consider a system of two particles of massgsat positionr, andmp atr inter-
acting with each other by a conservative central force, asvshn figure 3.3. We
imagine these two particle to be isolated from all other &rfices so that there is no
external force.

Express the positiony of each particle as the centre of mass locafoplus a
displacemenp; relative to the centre of mass, as we did in equation (1.3)apter 1
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on page 2.

ri=R+py, r2=R+po.
Now change variables from andr, to R andr =r; —r». Since the only force
acting is the internal forcé; = F1o= —F»1, between particles 1 and 2, the equations

of motion are:
ml'r'l = |:7 mzi"z = —F.

From these we find, setting = ny 4+ my,
MR = myf1 4 mpi'p = 0,

which says that the centre of mass moves with constant ¥glasiwe already know
from the general analysis in section 1.1.1 (see page 2) heardw relative displace-
mentr, we find,

9

1 1)F:m1—|—mz|:

F=f1-fo= (4=
mg e mym

which we write as,

F=] @

where we have defined teduced mass

_ My
T mtmp |

For a conservative force there is an associated potential enewy) and the
total energy of the system becomes

1 ., 1,
E= EMR + Plad +V(r).
This is just an application of the general result we derivedthe kinetic energy
of a system of particles in equation (1.4) on page 3 — we ayregglied it in the
two-particle case on page 3. Likewise, whers central, the angular momentum of
the systemis

L =MRXR4pr xr,

which is an application of the result in equation (1.6) ongag You should make
sure you can reproduce these two results.

Since the center of ma$® moves with constant velocity we can switch to an
inertial frame with origin aR, so thatR = 0. Then we have:

_ 1.0
= SHf '—|-V(r)7 (3.2)
L = prxr.

The original two-body problem reduces to an equivalent lgmbof a single body
of massy at position vector relative to a fixed centre, acted on by the foFce-
—(oV/or)ft.
It's often the case that one of the masses is very much langerthe other, for
example:
Msun 2> Mplanet
Mearth 2> NMeatellite
Mproton = Melectron
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If mp > my, thenpu=mmy/(mM+my) ~ my and the reduced mass is nearly equal to
the light mass. Furthermore,

m
R— G 1171 ~r
m + Ny

and the centre of mass is effectively at the larger mass. dh sases we treat the
larger mass as fixed ap ~ 0, with the smaller mass orbiting around it, and get
equal to the smaller mass. This is sometimes called the “&sdand moving planet
approximation.” We will use this approximation when we gerKepler's Laws.
We will also ignore interactions between planets in congmarito the gravitational
attraction of each planet towards the Sun.

3.3.2 Two-body Problem: Conserved Quantities

Recall that gravity is a central force: the gravitation#iaadtion between two bodies
acts along the line joining them. In the formulation of egoas 3.2 above, this
means that the gravitational force on the maasts in the directior-r and therefore
exerts no torque about the fixed centre. Consequently, thidammomentum vector

L is a constant: its magnitude is fixed and it points in a fixeeaion. Sincd. =

r x p (wherep = pr), we see that is always perpendicular to the plane defined by
the position and momentum of the massAlternatively stated, this means that
andp must always lie in the fixed plane of all directions perpeuatictoL, and can
therefore be described using plane polar coordin@at€s, with origin at the fixed
centre.

For completeness we quote the radial and angular equationstmn in these
plane polar coordinates. We set the reduced mass equal pieitnet’s massn and
write the gravitational force a6 = —kf /r2, wherek = GMmandM is the Sun’s
mass. The equations become (the reader should exercigar¢avee the following
expressions):

F—rg2 = —% radial equation
1d25 — o angular equatian
r dt

The angular equation simply expresses the conservatidmeadiigular momentum
L = mr26.

The second conserved quantity is the total energy, kinétis potential. All
central forces are conservative and in our two-body ortmbl@m the only force
acting is the central gravitational force. We againisetjual to the planet's mass
and write the gravitational potential energy\és) = —k/r. Then the expression for
the constant total energy becomes, using plane polar cuaiesi,

E= %mf2—|— %mrzéz— k/r.

In section 3.5 on page 33 we will deduce a good deal of infaonatbout the orbit
straight from this conserved total energy.

3.3.3 Two-body Problem: Examples

Comet A comet approaching the Sun in the plane of the Earth’s odsisiimed
circular) crosses the orbit at an angle of 8@velling at 50kms?. Its closest ap-
proach to the Sun is/10 of the Earth’s orbital radius. Calculate the comet’s dpee
at the point of closest approach.
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Take a circular orbit of radius, for the Earth. Ignore the attraction of the comet
to the Earth compared to the attraction of the comet to thea®drignore any com-
plications due to the reduced mass.

The key to this problem is that the angular momentusar x p =r x mv of the
comet about the Sun is fixed. At the point of closest approaeltdomet’s velocity
must be tangential only (why?), so that,

|I’ X V| = rmianax.

At the crossing point,
Ir X V| =revsin30.

Equating these two expressions gives,
1
I'minVmax = 0.1reVmax = EreV7

leading to

Cygnus X1  Cygnus X1 is a binary system of a supergiant star of 25 solasaga
and a black hole of 10 solar masses, each in a circular orbiitabeir centre of
mass with period Bdays. Determine the distance between the supergiant and th
black hole, given that a solar mass i99x 10°°kg.

Here we apply the two-body equation of motion, equation)(Bdm page 26.
Labelling the two massas; andny, their separation and their angular velocitgp,
we have,

Gmm,  mm
2 om4m

Rearranging and using the peridod= 217/ w, gives

ro’

3 G(m1‘|‘ m2)T2

41P
_ 6.67x 107 mPkg's72 x (104 25) x 1.99x 10°%kg x (5.6 x 8640042
N 412
= 275x10°m’,

leading tor = 3 x 10%m.

3.4 Kepler's Laws
3.4.1 Statement of Kepler's Laws
1. The orbits of the planets are ellipses with the Sun at ooesfo

2. The radius vector from the Sun to a planet sweeps out egeas & equal
times.

3. The square of the orbital period of a planet is proportibméhe cube of the
semimajor axis of the planet’s orbit ¢ 0 a3).
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aphelion perihelion

polar equation - =1+ecosd
2
. . (x+ae
cartesian equation % + g -1
o : I k
mim = =——
semimajor axis = a= ;— >E

I
semiminor axis b= -—— —al/3%/2
V1-¢€?

eccentricity e
2
semi latus rectum | = —
mk
constank k= GMm
mié k
total ener E=———(1-€)=——
gy 212 ( ) 2a

Figure 3.4 Geometry of an ellipse and relations between its paramelerthie polar and
cartesian equations for the ellipse, the origin of coordisgs at théocus

3.4.2 Summary of Derivation of Kepler's Laws

We will be referring to the properties of ellipses, so figushows an ellipse and its
geometric parameters. The parameters are also expressemthgof the dynamical
quantities: energ¥, angular momenturh, mass of the SuM, mass of the planet
m and the universal constant of gravitati@n The semimajor axia is fixed by the
total energyE and the semi latus rectuhis fixed by the total angular momentum

In general the path of an object orbiting under an inverseusglaw force can
be any conic section. This means that the orbit may be arselliith 0< e <
1, parabola witke = 1 or hyperbola withe > 1. With the definition that the zero
of potential energy occurs for infinite separation, thelteteergy of the system is
negative for an elliptical orbit. When the total energy isazéhe object can just
escape to infinite distance, where it will have zero kinetiergy: this is a parabolic
orbit. For positive energy, the object can escape to infisdggaration with finite
kinetic energy: this gives a hyperbolic orbit. Figure 3lGstrates the possible orbital
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\vvoe>1
T~~ \\hyperbola

~o \,
~ \
e= I\\\ N\,
o \
parabola ~~_ N

e<l e=0:
ellipse circle *

Figure 3.5 Different conic sections, showing possible orbits undeingerse square law
force. The figure is drawn so that each orbit has the same @angumentum (samig but
different energy (the mass of the orbiting object is heldd)xe

shapes.

2nd Law This is the most general and is a statement of angular momeca-
servation under the action of tkentralgravitational force. The angular equation of
motion gives:

. L
r26 = — = const
m

This immediately leads to,

dA 1., L
— = ‘6= — =const.
. 2r9 o cons

The 2nd law is illustrated in figure 3.6. An orbiting planetwas along the arc
segment#®B andCD in equal times, and the two shaded areas are equal.

Orbit equation  The first and third laws are arrived at by finding the equatan f
the orbit. The fact that the orbits are ellipsesjgcificto an inverse square law for
the force, and hence the first and third laws are also spegiéin tnverse square law
force.

Proceed as follows, starting from the radial equation ofiomfwith k= GMm),

k

o A2
f—rogc=—-——.
mr2
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Figure 3.6 lllustration of Kepler's 2nd Law. An orbiting planet moveloag the arc seg-
mentsAB andCD in equal times, and the two shaded areas are equal.

(i) Eliminate® using angular momentum conservatién; L/mr2, leading to a
differential equation for alone:
L2 k

o=
mér3 mr?

(i) Use the relation
d_pd_Lt d
dt  "de  mr2de’
to obtain derivatives with respect oin place of time derivatives. This gives
a differential equation for in terms of@.

(iii) To obtain an equation which is easy to solve, make thessitutionu = 1/r,
to obtain the orbit equation:

|k

@ ti= 1|

1st Law The solution of the orbit equation is

1 mk
- = ?(1+ecose),

which for 0< e < 1 gives an ellipse, with semi latus recture: L2/mk This is the
first law.

In figure 3.7 we show the orbit of a hypothetical planet arothel Sun with
semimajor axis #27x 10°km (the same as Saturn) and eccentrieity0.56 (bigger
than for any real planet — Pluto has the most eccentric oritit &= 0.25). The
figure also shows how the planet’s distance from the Sungdspregangular velocity
vary during its orbit.

3rd Law Start with the 2nd law for the rate at which area is swept out,

dA L

dt — 2m’
and integrate over a complete orbital peribdo giveT = 2mA/L, whereA = Tab
is the area of the ellipse. Substituting foin terms ofa gives the third law:

_ 4
 GM

T2 al|.
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distance from Sun

(10°km)

15

i
angular velocity
(10~8rads™)

2

0 0.5 1 15 é t/T

Figure 3.7 On the left is shown the orbit of a hypothetical planet arotimel Sun with
distance scales marked in units of?kin. The planet has the same semimajor axis
1.427x 10°km as Saturn, and hence the same periog; 10760days. The eccentricity is
e=0.56. The three graphs on the right show the planet’s distaioce fhe sun, speed and
angular velocity respectively as functions of time meaduneunits of the orbital period .

Kepler's Procedure * The solution of the orbit equation givess a function of

6, but if you're an astronomer, you may well be interested iokimg 6(t), so that
you can track a planet’s position in orbit as a function ofetinYou could do this
by brute force by combining the angular equation of motig8,= L/m, with the
equation giving the orbit,/r = 1+ ecosb, and integrating. This gives a disgusting
integral which moreover leads taas a function oB: you have to invert this, by a
series expansion method, to geas a function ot. This is tedious, and requires
you to keep many terms in the expansion to match the accuraagtmnomical
observations. Kepler himself devised an ingenious gedcadétvay to determine
6(t), and his construction leads to a much neater numerical guveel refer you to
the textbook by Marion and Thorntbfor a description.

13 B Marion and S T Thorntor€lassical Dynamics of Particles and SysteBrsl edition, Harcourt
Brace Jovanovich (1988) p261
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3.4.3 Scaling Argument for Kepler’s 3rd Law

Suppose you have found a solution of the orbit equatien;62 = —k/mr?, giving
r and® as functions of. Now scale the radial and time variables by constardaad
[ respectively:

r' =ar, t' = Bt.

In terms of the new variables andt’, the left hand side of the orbit equation be-

comes, , _
der! de\2  a 6\2 o .. -,
a7 @) =gt ar(g) =t

while the right hand side becomes,

k 1 k
“mz =g me)
Comparing the two sides, you can see that we will have a nemtisnlin terms of
r' andt’ providedB? = 3. But this says precisely that if you have orbits of similar
shape, the perio@ and semimajor axia (characterising the linear size of the orbit)
will be related byT?2 O a3, which is Kepler's third law.
To find the constant of proportionality and show that thetsraie conic sections,

you really have to solve the orbit equation. However, thdisgargument makes
clear how the third law depends on having an inverse-sqoace faw.

3.5 Energy Considerations: Effective Potential

Since the gravitational force is conservative, the totakgpE of the orbiting body
is conserved. Writingy (r) for the gravitational potential energy for a moment (so
that we can substitute different forms for the potentiargnéf necessary), we find

1 ., 1 .
E= émr2—|— Emrzez—l—V(r).

Since we know that angular momentum is also conserved (tise fe central), we
can eliminated usingr?6 = L/m, to leave,

1 L2
E=-mi2+——+V(n|
2mr+2mr2+ (r)

Thisis justthe energy equation you would get for a particbeimg in one dimension
in aneffective potential

LZ

(= i +V(r)|.

The effective potential contains an additiorantrifugal term L?/2mr?, which
arises because angular momentum has to be conserved. Weacaralgood deal
about the possible motion by studying the effective po&dmtithout having to solve
the equation of motion far.

In our case, replaciny (r) by the gravitational potential energy and using
L?/mk, the effective potential becomes (see figure 3.8)

kI k
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positive 1/r >term
dominates at small r

rp lc la

parabola

E<O
ellipse

E = —k/2|
circle

\/

negativel/r term
dominates at large r

Figure 3.8 Effective potentiall (r) = kl/2r? —k/r for motion in an inverse-square law

force.

The allowed motion must havé > 0, so the energy equation says

kI k

If we choose a value for the total enerfgywe can then draw a horizontal line at this
value on the graph df (r), and we know that the allowed motion occurs only where
theU (r) curve liesbelowour chosen value d&.

The minimum possible total energy (for a given angular mamn@j is given by
the minimum of the curve dl (r). In this situatiorr is constant at

re=1=1%/mk

so the orbit is a circle and the total energyEis- —k/2l = —mié/2L2.

If —k/2l < E < 0, you can see that the motion is allowed for a finite range of
r,rp <r <ra Thisis the case of an elliptical orbit with periheliopand aphelion
ra. You can find the values af, andr, by finding the roots of the equatida =

Kl/2r% —k/r.

If E =0, you see that there is a minimum value fobut that escape to infinity
is just possible. This is the case of a parabolic orbit. Eor 0, escape to infinity
is possible with finite kinetic energy at infinite separationhis is the case of a

hyperbolic orbit.

Orbits in a Yukawa Potential We found that the orbits produced by an inverse-
square law attractive force were ellipses, where the plapetatedly traced the same
path through space. Now consider a force given by the Yukatenpial,

ae—Kr
V(r)=- ; (a> 0,k >0).
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uE) u(

o6k 0.0006
0.0003
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0.217 ~0.0003
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0 1 2
—02f
045

Figure 3.9 Left: effective potentiadl (r) = L2/2mr? —ae ™" /rwithm=1,a =1,k = 0.24
andL = 0.9. The inset showsl(r) at larger where it has a local maximum (note the
differences in scale, particularly for the valueldf. Right: rosette orbit of a particle with
this effective potential.

Such a potential describes, for example, the force of ditrabetween nucleons in
an atomic nucleus. Of course, in that situation, the proldkould be treated quan-
tum mechanically, but for now, let’s just look at classicadits under the influence
of this potential.

The effective potential is,

L2 ae—Kr
2mr2 ¢

ur)=

To be specific, work in dimensionless units, settmg= 1, a = 1, k = 0.24 and
choosing- = 0.9. The shape of the resulting effective potential as a fonadi r is
shown in the left hand part of figure 3.9.

If the total energyE is negative but greater than the minimumufr), then
motion is allowed between a minimum and maximum value of #ugusr. On the
right hand side of figure 3.9 is the trajectory of a partickrtitg at(x,y) = (3,0)
with (v, v) = (0,0.3) (so thatL = 0.9). Here the particle’s (dimensionless) energy
is —0.117 and the motion is restricted to the regios8b< r < 3, where 0486 and 3
are the two solutions of the equatiorr) = —0.117.

Note that ifk = 0, the Yukawa potential reduces to the same form as the stan-
dard gravitational potential. So, Kr remains small compared to 1 we expect the
situation to be a small perturbation relative to the graiiteal case. In our example,
for the “rosette” orbit on the right of figure 3.9, this is thase, and you can see
that the orbit looks like an ellipse whose orientation skpathanges. This is often
denoted “precession of the perihelion” and is typical ofeffect of small perturba-
tions on planetary orbits, for example those due to the &sffetother planets. In
fact, observed irregularities in the motion of Uranus lethdiscovery of Neptune
in 1846. The orientation of the major axis of the Earth’s bdifts by about 104
seconds of arc each century, mostly due the influence ofelugior Mercury, the
perihelion advances by about 574 seconds of arc per ceri@dyseconds of this
can be explained by the Newtonian gravitational interaxtiof the other planets,
while the remaining 43 seconds of arc are famously expldiyefinstein’s general
relativity.

The effective potential shown in figure 3.9 displays anothiresting property.
At larger the L2/2mr? dominates the exponentially falling Yukawa term,$¢r)
becomes positive. In our exampld{r) has a local maximum near= 20. If the
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Figure 3.10 Orbital trajectories for a planet around two equal massstar

total energy is positive, but less than the valudJoét the local maximum, there
are two possibilities for orbital motion. For exampleEit= 0.0003, we find either
0.451<r < 16.31 orr > 36.48. Classically these orbits are distinct, and a particle
with E = 0.0003 which starts out in the inner region can never surmeritiarrier”
inU (r) and so will never be found in> 36.48. In quantum mechanics, however, it
is possible for a particle to “tunnel” through such a barserthat an initially bound
particle has a (small) finite probability of escaping to &rg This is the case for a
process like alpha decay.

3.6 Chaos in Planetary Orbits *

We have shown that a single planet orbiting the Sun followshale closed elliptical
path. You might think that adding one more object to the sysi®uld make the
equations more complicated, but that with patience andtefftu might be able to
figure out a solution for the trajectories. In fact, such aéthbody problem” is
notoriously intractable, and, even today, analytic sohsiare known only in a few
special cases.

In figure 3.10 is shown a numerical solution for a restrictetsion of the three
body problem. The two black dots are stars of equal mass,dtdiged positions.
This means that the total energy is conserved, but thatriediand angular momen-
tum are not conserved since forces and torques have to biedpphold the stars
in place. The solid curve shows the trajectory of a planettitarts out with some
given initial velocity at the point marked by the trianglehdl'stars are taken to have
a finite radius and the planet is allowed to pass through thhout suffering any
interaction apart from the gravitational force (this awsme numerical instability
when the planet gets very close to a point mass). The contpleikihe solid curve
already hints at the difficulty of this problem.

In fact, the motion is chaotic in the scientific sense. Oneetspf this is shown
by the dashed curve. This is a second solution for a planethwdliso starts out
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at the point marked by the triangle, but has one of its init&dbcity components
differing by 0.5% from the corresponding component for th&t tase. You can see
how the paths stay close together for a little while, but ttegridly diverge and show
qualitatively different behaviour. This extreme (expoti@hsensitivity to the initial
conditions is one of the characteristics of chaotic syste@msntrast it to the two
body problem, where a small perturbation to an elliptichitwould simply result
in a new slightly displaced orbit.

For an animated computer simulation of the three body proldescribed here,
together with many other instructive examples of chaotgtays, try the program
Chaos Demonstrationtsy J C Sprott and G Rowlands, available from Physics Aca-
demic Software, http://www.aip.org/pas/.
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Rotating Coordinate Systems

4.1 Time Derivatives in a Rotating Frame

First recall the result that, for a vectér of fixed length rotating about the origin
with constant angular velocity, the rate of change & is

A
- = Al
ar @

Now let i, ] andk be unit vectors of an inertial fran@ and leti, | and k' be unit
vectors of a rotating fram@'. Each of the primed basis vectors rotates rigidly with
O, so

with similar equations forf' and k. Consider an arbitrary vecterand resolve it
into components i® andO’:

a=ai+ajjrak=al +aj +ak.
Differentiating with respect to time gives:
da da . daj- L 9% da "

a ~ dat' dt dt
_ g3y dg o
= O dtJ i at k—|—a1w><|—|—aw><1 —I—ak(oxk

At this point, we introduce some new notation. We normallg asindda/dt
interchangeably. Let us now adopt the convention that
dd J ~ dd( A/

a=a'*al+dt

which means that you differentiate tkemponent®f a but not the basis vectors,
even if the basis vectors are time dependent. In other wardsherate of change
of ameasured in the rotating fram@hetotal rate of change acd is then:

da
dt
There is one term for the rate of change with respect to tla¢ingtaxes and a second
term arising from the rotation of the axes themselves.

=atwxal.

39
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4.2 Equation of Motion in a Rotating Frame

We can use the result we just derived to work out the equatiorotion for a particle
when its coordinates are measured in a frame rotatiegrgtantangular velocity
. Letabe a position vectar. Differentiating once:

dr .
Differentiating again:
dr d .

= F+WOXI+Wx(F+wxr)
= F+20Xr+wWx (WXr)

Newton’s law of motion isF; = mdPr /dt?, whereF is the total force acting, so
the equation of motion in the rotating frame becomes:

mi' = Fiot — 2MW X F — MW X (WX ) |.

The last two terms on the right hand side agparent(or inertial or fictitious)
forces, arising because we are measuring positions wiffeceé$o axes which are
themselves rotating (i.e. accelerating).

4.3 Motion Near the Earth’s Surface

Assume that the Earth is spherically symmetric so that thght®f an object is a
vector directed towards the Earth’s centre. Pick an ineirane O with origin at
the Earth’s centre, together with a frafealso with origin at the Earth’s centre, but
rotating with the Earth at angular velociky Write the total force on the particle as
its weightmg plus any other external forc€s(Fo; = F + mg).

LetR be a vector from the centre of the Earth to some point on oritesuirface,
as shown in figure 4.1, and Igtbe the displacement of the particle relative to this
point. This says that the position vector@can be written as

r=R+x.
SinceR is fixed inO’, R = 0 andR = 0, and the equation of motion becomes:
MX = F+mg—2mw x X —mw x (WX [R+X]).

We will now drop all terms of ordex/R or smaller. Even ik is 10km, this ratio is
10kny6400km: 1.6 x 10-3. With this approximation:

1. ox (Wx[R+X]) — wx (wx R) (If Rwas not so large we would normally
drop thisO(w?) term),

2. the term involvingy simplifies,

GM GM R
——— (R —~_R=-g-.
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o Southampton |
latitude A =51

Figure 4.1 Motion near the surface of the Earth. Displacementeasured from tip of a
(rotating) vectoR from the Earth’s centre to a point on or near its surface.

The approximate equation of motion becomes,

9

‘mi(:F—|—mg*—2mw><>'(

where we have defined tlag@parent gravity

g = —g%—wx (WxR)|.

We will take the latitude to b&, as shown in figure 4.1 (note that latitude is zero at
the equator).

4.3.1 Apparent Gravity

The apparent gravitg* defines a local apparent vertical direction. It is what is
measured by hanging a mass from a spring so that the masgionatg in the
rotating frame fixed to the Earth, ard= 0, X = 0. We can easily work out the smalll
deflection anglex between the apparent vertical and the true vertical defigeihé
to the Earth’s centre. The situation is illustrated in figdr2.

The magnitude of the centrifugal term is,

| —wx (WX R)| = w’RcosA.
Applying the cosine rule to the right hand triangle in figur2 dives,
g*? = g%+ (W?Rcosh)? — 2gw?’Rcog A,
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w?Rcos\

Figure 4.2 Determining the deflection angle between true and appaestitals on the
Earth’s surface.

A >(,o

Figure 4.3 Particle moving across a rotating disc: seen from (a) artiaidrame, (b) a
frame rotating with the disc, (c) a frame rotating with theaivhenwa/v is large, wherey
is the particle’s speed in the inertial frame amis the disc’s radius.

(@) (b) (©

which tells us thay* = g+ O(w?). Applying the sine rule to the same triangle gives,

sina sinA
w?Rcos\ g

Sincea is small, we approximate sinx o, and to ordew? we can replacg* by g,
to find:

o= %sin)\cosx .

This tells us that the deflection vanishes at the equatortenpdles, and is maximal
at latitude 48. The size of the deflection is governed by

w’R _ 34cms?
g
At Southampton) = 51°, we finda = 1.7 x 10~ 3rad= 0°6'.

= 0.35%

4.3.2 Coriolis Force

The Coriolis “force” (in quotation marks because it's a fictiis or inertial force
associated with our use of an accelerated frame) is the term

—2mMw x X

in the equation of motion. You see that it acts at right angethe direction of
motion, and is proportional to the speed. To understand tigsipal origin of this
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Figure 4.4 Coordinate system on the Earth’s surface.

force, it may be helpful to consider a particle moving diamcatly across a smooth
flat rotating disc with no forces acting horizontally. An ebger in an inertial frame
(watching the disc from above) will simply see the particlevenin a straight line at
constant speed, as in figure 4.3(a). However, an obsenaimotvith the disc will
see the particle follow a curved track as in figure 4.3(b).h& bbserver does not
realise that the disc is rotating they will conclude that sdorce acts on the particle
at right angles to its velocity: this is the Coriolis forca this example, the rotating
observer also sees the effect of the apparent foxoéx acting radially outwards).

As the rotation ratey, gets large, the path seen by the rotating observer can et qu

complicated, figure 4.3(c).

To study the Coriolis force quantitatively, it is helpful ethoose a convenient
set of axes on the Earth’s surface. This is done as followd,isnllustrated in
figure 4.4. We choosé along the apparent upward vertical (paralleHg*), and
take X pointing to the East. The third unit vectgr= z x X therefore points North.
Using this coordinate system, the equations of motion are:

mX = Fx—2mw(zcosh —ysinA),
my = F,—2mwXsinA, (4.1)
mZz = F;—mg + 2mwXCcosA.

4.3.3 Free Fall — Effects of Coriolis Term

For a particle in free fall, the non-gravitational forfeelisappears from the equation
of motion, which becomes,
X=0g"—2wxX.

We will work to O(w) in this section, so we can approximateby g.
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We could investigate this using the coordinate form of theatign of motion
given in equation (4.1). However, in this case, we can prdeeetorially and solve
all three coordinate equations at the same time.

The equation of motion can be integrated once with respetiimi®, with the
initial conditionsx = a andx = v att = 0, corresponding to a particle projected with
velocityv from pointa. This gives,

X=V+0gt—2Wx (Xx—a).
Since we are ignoring terms @f(w?), we can substitute the zeroth order solution,
X = a+ vt +gt?/2 in the cross product term, giving,
. 1,
X=V+4+0gt—2Wx vt—|—§gt .

This can be integrated once more, using the same initialitond,x = aandx = v
att =0, to give:

X = a+vt+}gt2—w>< (vt2+}gt3)
— 5 2 :

Now that we have our solution, we can express it in terms ofcboice of coordi-
nates in figure 4.4. We will consider two cases: a particl@ped from a tower and
a shell fired from a cannon.

Particle dropped from a tower Consider a particle dropped from rest from a
vertical tower of heighh. Writing a vector as a column of its components along our
choice of axes, this says that the initial conditions are,

0 0
v=1[0], a=10
0 h
Usingw x g = —wgcosA X, we find that the components,y andz of x are:
X 0 1 0 1 1
yl=10 —Egtz 0 —I—éwgt?’cos?\ 0
z h 1 0

The particle hits the ground when= 0 att = y/2h/g. For thist, thex component

of the particle’s position is
1 3\ 1/2
= WCOSA (ﬂ) .
3 g

This says that the particle strikes the ground a little toEast of the base of the
tower.

Two views of this are shown in figure 4.5. On the left is the viesm a non-
inertial frame fixed to the rotating Earth: the particle lardittle to the East of the
base of the tower. On the right is a view from an inertial framieere the Earth and
tower are spinning beneath the observer. Now the partictees to be projected
from the top of the tower. Because the particle is acted uyahd Earth’s gravita-
tional attraction, a central force, its angular momentuouad the Earth’s rotation
axis is constant. As the particle falls, it gets closer toatkis, so its angular velocity
must increase to keep the angular momentum constant. ©herehe particle is
again seen to get slightly ahead of the tower as it falls.
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Figure 4.5 Two views of a particle dropped from the top of a tall tower dixe the rotating
Earth. On the left, as seen in a rotating frame fixed to thehEarid on the right as seen in
an inertial frame in which the Earth spins on its axis.

Figure 4.6 Deflection of a cannon shell by Coriolis force when viewedroon-inertial
coordinates rotating with the Earth. A shell is fired at elmraanglet/4 with speed
80ms! at latitude 24 in the Northern hemisphere. The Earth’s angular velocityeis
tow = 0.05rads? to exaggerate the effect.

Shell fired from a cannon A shell is fired due North with speadfrom a can-
non, with elevation angla/4. The initial conditions, taking the origin at the cannon,
are now,

0 0

v
v=—|[1], a=10],
V21 0

and the cross product o§ with the initial velocity is,

wxv=2 (COsSA —sinA) X.

V2

Substituting in our solution we get:

X 0 0 1 (thz

vt 1 1
= — (1] -Zgt?| 0| +Zwgt3cos\ | 0] — —— (cosh—sinA) [ O
)z/ V2 1\, 2" 1 3™ 0 vz ) 0
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X —WsinA

mg

Figure 4.7 Foucault’s pendulum and much exaggerated view of the patheobob. The
plane of oscillation rotates with angular velocitgsinA, clockwise when seen from above.

Looking at thez component of this result shows that vt/v/2 — gt?/2, so impact
occurs at = v/2v/g. The Eastward deflection at impact is then found to be:

V202
30?2

(3sin\ — COsA).

If 3sinA > cosh then the deflection at impact will be to the East. This occars f
A > tar1(1/3) = 18.4°, roughly the latitude of Mexico City or Bombay.

The Eastward deflection is the sum of a positive cubic terninéntimet plus
a quadratic term in which is positive forA > 45°. So, at Southamptoi, = 51°,
the deflection is Eastward throughout the trajectory, blat#tudes below 45 the
deflection is initially to the West and then changes to the.Bagure 4.6 shows the
trajectory up to the impact time, far= 24°, with an initial speed/= 80ms™1, but
using a ridiculously large valuey= 0.05rads !, for the Earth’s angular velocity to
magnify the effect. This value @b is about 700 times larger than the true value of
about 73 x 10-°rads™*. If the angular velocity were really as large a8®rads?,
we wouldn’t be justified in using our smadk-approximation.

4.3.4 Foucault's Pendulum

If you were to set up a pendulum at the North pole and startiigwwvg in a plane
(as viewed from an inertial frame — one not attached to theéhizathen clearly,
according to an observer standing on the Earth, the plansailfaiion would rotate
backwards at angular velocitycw.

At lower latitudes, the phenomenon persists, but gets modenaore diluted
until it vanishes at the equator. In fact, at latitiddéhe plane of oscillation rotates
at angular velocity-wsinA. This is illustrated, in a very exaggerated fashion, in
figure 4.7. At Southampton, latitude 9he plane rotates about °Lth one hour.
The effect was first demonstrated by Jean Foucault in Pafi83d. In practice, it
is quite hard to start the pendulum with the correct init@ditions: the bob often
ends up with a circular or elliptical path where the Fouceatfation is much harder
to detect.

1For background, see the artitléon FoucaultScientific American (July 1998) pp52-59
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We will now derive the result for the rotation of the plane s€itlation. We make
our standard choice of coordinates, shown in figure 4.4, Whig¢z-axis along the
upward local verticalz = —g*/g*. We will work to first order in the Earth’s angular
velocity w, so we will drop the star og*. The system we consider is a pendulum
of lengthl, free to swing in any direction with the same period, as ifated in
figure 4.7. The pendulum should be long and heavy so thatliswihg for a long
time, a matter of hours, in spite of air resistance (which viengglect).

Measuring the displacememrtof the bob from the bottom of the swing, the
equations of motion in our coordinate system are just thbsquation (4.1), where
F is the tension in the support cable. In the approximatiomudlsoscillations, we
can ignore alzterms compared te andy. Then,F, ~ —mgx/| andF, ~ —mgy/I.
Thex andy equations now become,

= —Wx+ 2wsin\y,
= —Wy— 2wsinAX,

where we have defined = g/1, so thatuy is the natural angular frequency of the
pendulum. To solve these equations, define the complex ipant x+iy. It is
easy to see that the two equations above combine into a €igghgion for,

6 -+ 2iwsiNAG + wia = 0.

Look for a solution of the forno = A€P'. Substituting this form shows that we have

a solution provided,
P = —wSiNA+ 4/ w8+ w2sirA

~  —WSINA £ Wy,
where we have usad > wsinA. The general solution is therefore,
= (Aejwot + Be—iwot) e—i(msin)\)t7

whereA andB are complex constants. With appropriate initial condiitime solu-
tion can be given as,

= ae—i(msin)\)t COS(OL)ot) )

The cogupt) term describes the usual periodic swing of the pendulum &ed t
e-i(@siM)t term describes the rotation of the plane of oscillation veittyular ve-
locity —wsinA, as shown in figure 4.7.

Geometric Description *  There is a nice geometric way to think about the Fou-

cault Pendulum which allows you to work out the rotation natéhout solving a
differential equatiofi

Draw parallel lines on a disc and then cut out a segment addliel remainder
into a cone. Choose the disc radius so that the edge of thesitsnen the Earth’s
surface at latituda@, with the surface of the cone tangential to the Earth’s serfa
where it touches. Keep the cone fixed in space as the Earthlbemeath it. As the
Earth turns, the plane of swing of the Foucault pendulum ydwamains parallel to
the lines drawn on the cone’s surface. The constructiorag/stin figure 4.8. If you

2See J B Hart, R E Miller and R L Mills, Am. J. Phys5 (1987) 67.
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Figure 4.8 A geometric construction to find the rate of rotation of thar@ of oscillation
of a Foucault pendulum.

think about it, you should be able to figure out the rotatide feom the geometry
(try ith).

This is an example of “parallel transport”: the plane of syvaf the pendulum
is parallel-transported as the Earth rotates. This coriseygry important in differ-
ential geometry, which underlies general relativity.



Simple Harmonic Motion *

Note: this section is not part of the syllabus for PHYS2006u ¥hould already be
familiar with simple harmonic motion from your first year eea PH1150scilla-
tions and WavesThis section is included for completeness and as a reminder

5.1 Simple Harmonic Motion

This is one of the most important phenomena in physics: ili@epm the description
of small oscillations of any system about a position of stagjuilibrium.

Work in one dimension, so that one coordinate describes tiséipn of the
system (e.g. the displacement from the equilibrium paosigba spring, the angle
of a pendulum from the vertical). Only conservative forcesabrk, so there is a
potentiaV (x). Choose coordinates so that 0 is a position of stable equilibrium.

This means

F(x=0) =0, v =0.
dx|,

As long asx remains small, we can expand the potential:
1
V(X) =V(0) +XV'(0) + 5xV"(0) ++ -

However,V'(0) = 0, sincex = 0 is a position of equilibrium, so the first derivative
term vanishes. Letting= V" (0) (kis just the force constant for a spring force) and
choosing our zero of potential energy so th&0) = 0, we find:

V(X = Jhod 4o

The corresponding force I5(x) = —kx. We ignore the special cage= 0, when the
expansion o¥ begins at higher order. K < 0 then the equilibrium is unstable, and
the system will move out of the region where our approxinratsovalid. Hence we
will look at displacements around positions of stable eqriilm for whichk > O.

We define &Simple Harmonic Oscillatoas a one-dimensional problem with:

1 1
V(X) = Zk¥€ = Zmoupx?
) =3 > My

wherek > 0 and we have defined = k/m.

A mass oscillating on a Hooke’s law spring is a simple harmascillator.
Small oscillations of a simple pendulum are simple harmonic

49
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5.1.1 General Solution

The equation of motion for the simple harmonic oscillator is
%+ wdx = 0.

This is a second order homogeneous linear differential temjuameaning that the
highest derivative appearing is a second order one, eachderthe left contains
exactly one power af, x or X (there is nokterm in this case) and there is no term (a
constant or a function of time) on the right.

Two independent solutions of this are ¢met) and sifuxt). The general solu-
tion is a linear combination of these, which can be writteagmeral forms:

X = Acogwgt)+ Bsin(wpt)
= Ccoquot+9)
= Dsin(uxot +¢)
= Re(ad"™)
= Im(pe'*)

whereA, B, C, D, 0 ande are real constants, aimdandf3 are complex constants. Use
whichever solution is most convenient. We will often use ¢benplex exponential
forms, so we will need to remember that the physical solstame found by taking
the real or imaginary parts. Some terminology associatél tive simple harmonic
oscillator is:

angular frequency wy
period T =2m/uy
amplitude a=|C|=|D|=vAZ+B2=|a|=|B|

The arguments of the sine or cosine in (@ost + 8) and sirfogt + €) are called the
phase. The period of a simple harmonic oscillator is inddpahof the amplitude:
this is a special property, not true for oscillators in gaher

5.2 Damped Harmonic Motion
We’'ll assume that a damping force proportional to speeddsepnt,

Fdamping= —2MyX.

This equation defineg (note that in definingy we have pulled out one factor af
for conveniencey could still itself depend om). Warning many authors use/2
in place ofy.

In general, the damping can be some power series ikVé approximate by
keeping the linear term only. In practice, this turns out twkwvell: the viscously
damped harmonic oscillator is a very useful model for altsof physical systems.

The equation of motion has become:

X+ 2yX+ whx = 0.

This is still a linear, homogeneous second order diffeegérggquation. We try a
solution of the form
x= A
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x/X(0)

0.5

Figure 5.1 Amplitude as a function of time for a lightly damped harmoogcillator. The
time is measured in units of the “perio@"= 211/ w. The dashed lines show the exponentially
damped envelope of the oscillatory motion.

whereA andQ may be complex (and we take the real part at the end). We will do
this same trick of using a complex exponential many timesem&ubstituting our
trial solution gives:

(Q%+2yQ + i) A = 0.

Since the equation is lineak is arbitrary, and we want it non zero in order to have
a non-trivial solution. The factor in brackets then givesuadyatic forQ: the two
roots of this will provide us with our two independent soturs.

5.2.1 Small Damping: Y < o}

The roots of the quadratic are

Q= -y+iw, where  w= /w2 -2

A solution may be writterx = Re(A;€“ 4 Aye~'®)e~", which can be reexpressed
as:
x = Be Y cogwt +5).

This describes an oscillation with “frequenay’= /w3 — y2 and exponentially de-

caying “amplitude”Ae™™, as illustrated in figure 5.1. The quotes are here because
the motion is no longer periodic, so there is not really ademty. However, you
could use the time between the system crosgiag0 in the samedirection as a
measure of a “period”, since this time ist2o. If the damping is truly small, then
the oscillations will appear to have amplitude ™" if you watch them for a short
interval around time.

In one “period”,T = 21/ w of a lightly damped oscillator's motion, the fractional
energy loss is found by comparing the total energy at thé¢ stahe period and at
the end. For any time, the fractional loss is given by

AE _ E(t) - E(t+T)

=1-e 2T,
E E(t)

When the damping is very smayl/uwy < 1, we havew a wy and then

AE
—zZT[gEZ—T[7
E w Q
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15

x/x(0)

0.5

S~ .

gt /T

Figure 5.2 Amplitude as a function of time for heavily damped (solidw@)rand critically
damped (dashed curve) harmonic oscillators. The time isuned in units of the natural
periodT = 21/ wy of the oscillator when the damping is switched off.

which defines theuality factor Q Warning: definitions ofQ vary from author to
author.

5.2.2 Large Damping: Y > w3

The roots of the quadratic are

Q= -y /- o}

and a solution may be written
x = Ae~(VFVY=G)t 4 Be(y=v/¥V—uwp)t,

This is a sum of two exponentials, both decaying with timesirated by the solid
curve in figure 5.2. TheB” exponential falls more slowly, so it dominates at large
times. This case is sometimes referred to as “overdamped”.

5.2.3 Critical Damping: y* = &%

In this special case the solutions fOrare degenerate (the roots of the quadratic
coincide). It looks as though there is just one solution. Ewsv, a second order
differential equatiomusthave two independent solutions. You can check by differ-
entiating that the second solution in this case is

x=Bte™,
so that the general solution becomes:
x= (A+Bt)e ™.
The critically damped solution is illustrated by the dashenre in figure 5.2. Crit-
ical damping is important: for example a measuring instmins@ould be critically

damped so that the reading settles down as fast as possibtamthe response time
being too slow.
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Figure 5.3 Amplitude of forced harmonic oscillator as a function ofuilng frequency (in
units of natural frequency)

5.3 Driven damped harmonic oscillator

The equation of motion for a damped harmonic oscillatorarigy an external force
F(t)is
MX -+ 2myX + muix = F (t).

Consider the case of a periodic driving force,
F(t) = mfcogwt) = mfRe(e™),

and look for thesteady statsolution, when anyransientdamped solution has died
away (the transients are solutions of the differential #guawithout the driving
termF(t), that is, a free damped oscillator). Look for a comptexhich solves

2+ 2yz+ Bz = fe,

and take the real part afat the end. Try a trial solution= Ad“: the idea is that
after a long time we expect the system to be oscillating withdame frequency as
the driving force. More technically, the full solution oithdifferential equationis the
sum of the solution we are about to find plusy solution of the undriven equation
(without the fé** term). Because of the damping, the solution in the undrieec
decays exponentially with time: we are interested in whapeas after a long time
when thistransientsolution has died out.
Returning to our trial solutiorg, = Ad“ solves the equation if

(—w? 4 2iyw+ wd) Ad™ = f,
Cancelling theg®* from both sides and solving fa gives

f
A= .
— G2 + 2iyw+ 0B

Writing A= |Ale ", we find that the oscillation amplitudd| and phase lad are
given by, .

A=
(- w?)24-ay20?
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0.5 1 15 2 2.5 3

Driving frequency

Figure 5.4 Phase lag of forced harmonic oscillator as a function ofidg\frequency (in
units of natural frequency)

and 2y
W

tand= ————.
w5 — WP
In figures 5.3 and 5.4 we plot the amplitude (actualfA|/ f) and the phass as
functions ofw/wx, for four different values of thequality factor Q= wy/2y. The
quality factor tells you about the ratio of the energy starethe oscillator to the
energy loss per cycle. As you move from solid to finer and firsesheéd lines th®
values are 1, 2, 4 and 8 respectively.



Coupled Oscillators

In what follows, | will assume you are familiar with the sirepharmonic oscilla-
tor and, in particular, the complex exponential method fodifig solutions of the
oscillator equation of motion. If necessary, consult thésien section on Simple
Harmonic Motion in chapter 5.

6.1 Time Translation Invariance

Before looking at coupled oscillators, | want to remind yamttime translation
invariance leads us to use (complex) exponential time digrere in our trial solu-
tions. Later, we will see that spatial translation invaceieads to exponential forms
for the spatial parts of our solutions as well.

To examine the implication of time translation invariante enough to consider
a single damped harmonic oscillator, with equation of nmgtio

MX = —2MyX — Mu?X,

where the two terms on the right are the damping and restéoicgs respectively.
We can rearrange this to,

%4 2y%+ wdx = 0.
To solve this equation, we used an ansatz (or guess) of tihve for
x = Ae,

whereA andQ are in general complex (to get a physical solution you canthise
real or imaginary parts of a complex solution). The reasanwle could guess such
a solution lies in time translation invariance.

What this invariance means is that we don’t care about trgarodf time. It
doesn’t matter what our clock read when we started obsemviegystem. In the
differential equation, this property appears becausdiedependence enters only
through time derivativesiot through the value of time itself. In terms of a solution
X(t), this means that:

if x(t) is a solution, then so igt +-c) for any constant.

The simplest possibility is tha{t 4 c) is proportional tox(t), with some proportion-
ality constantf (c), depending o,

X(t+c) = f(o)x(t).
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We can solve this equation by a simple trick. We differeetiaith respect t@ and
then set = 0 to obtain
X(t) = Qx(t),

whereQ is just the value off (0). The general solution of this linear first order
differential equation is

X(t) = Ae™.

We often talk aboutomplexexponential forms becaug2 must have a non-zero
imaginary part if we want to get oscillatory solutions. letiarom now on | will let
Q =iw, so thatwis real for a purely oscillatory solution.

We can't just us@anyvalue we like forw. The allowed values are determined by
demanding thafd“ actually solves the equation of motion:

(—w? 4 2iyw+ wd) Aé™ = 0.

If we are to have a non-trivial solutioA,should not vanish. The factor in parentheses
must then vanish, giving a quadratic equation to determin&€he two roots of the
guadratic give us two independent solutions of the origieabnd order differential
equation.

6.2 Normal Modes

We want to generalise from a single oscillator to a set oflladors which can affect
each others’ motion. That is to say, the oscillatorscanepled

If there aren oscillators with positions; (t) fori = 1,...,n, we will denote the
“position” of the whole system by a vecta(t) of the individual locations:

X(t) = (Xxa(t),x2(t), ..., xn(t)).

The individual positions; (t) might well be generalised coordinates rather than real
physical positions.

The differential equations satisfied by thewill involve time dependence only
through time derivatives, which means we can look for a tirmaglation invariant
solution, as described above. This means all the oscilatarst have the same
complex exponential time dependené&!, wherew is real for a purely oscillatory
motion. The solution then takes the form,

A

A .
xty=| . [,

An

where theA; areconstantsThis describes a situation where all the oscillators move
with thesame frequencgyout, in general, different phases and amplitudes: thd-osci
lators’ displacements are in fixed ratios determined byAh€This kind of motion
is called anormal mode The overall normalisation is arbitrary (by linearity of the
differential equation), which is to say that you can muitipll the A; by the same
constant and still have the same normal mode.

Our job is to discover whiclw are allowed, and then determine the sefApf
corresponding to each allowea We will find precisely the right number of normal

modes to provide all the independent solutions of the seiftgfrential equations.
For n oscillators obeying second order coupled equations ther@endependent
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solutions: we will findn coupled normal modes which will give us 2eal solutions
when we take the real and imaginary parts.

Once we have found all the normal modes, we can consinygiossible motion
of the system as a linear combination of the normal modes. paoethis with
Fourier analysis, where any periodic function can be expdrat a series of sines
and cosines.

6.3 Coupled Oscillators

Take a set of coupled oscillators described by a set of coateéqs,...,g,. In
general the potentiad(q) will be a complicated function which couples all of these
oscillators together. Considemall oscillations about a position of stable equilib-
rium, which (by redefining our coordinates if necessary) ae take to occur when
g =0fori=1,...,n. Expanding the potential in a Taylor series about this point
we find,

e+

Vi =V(0)+ 3 5 o

By adding an overall constant ¥ we can choos& (0) = 0. Since we are at a
position of equilibrium, all the first derivative terms vahi So the first terms that
contribute are the second derivative ones. We define,

'+zzmm

_ LAY,
"= 0q;dq; |o

and drop all the remaining terms in the expansion. NoteKhat a constant sym-
metric (why?)n x n matrix. The corresponding force is thus

and thus the equations of motion are
Midi = - Kijq;,
]

fori=1,...,n. Here theM; are the masses of the oscillators, ahis a matrix of
‘spring constants’. Indeed for a system of masses connéstasgrings, with each
mass moving in the same single dimension, the coordinatebesaken as the real
position coordinates, and th&mis a (diagonal in this case) matrix of masses, while
K is a matrix determined by the spring constants. Be aware Vethat coupled
oscillator equations occur more generally (for examplelécteical circuits) where
the gis need not be actual coordinates but more general parandetsesbing the
system (known as generalised coordinates) and in thisMaardK play similar
roles even if they do not in actuality correspond to masaéssaring constants.
To simplify the notation, we will write the equations of marias a matrix equa-
tion. So we define,
M O --- O Kiz Kiz -+ Kin
v N S L

0 0 Mn Knl Kn2 Knn
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Figure 6.1 Two coupled harmonic oscillators. The vertical dashedslimark the equilib-
rium positions of the two masses.

Likewise, letqg andq be column vectors,

01 (o]

02 . G2
q — : 3 q = :

On Gn

With this notation, the equation of motion is,
Mqg=-Kaq, or q:_M_qu7

whereM ~1 is the inverse oM. _
Now look for a normal mode solutiog,= Aé**, whereA is a column vector.
We havef = —u? g, and cancelling/®* factors, gives finally,

MK A =?A.

This is now areigenvalue equatiorrhe squares of the normal mode fregencies are
theeigenvaluesf M ~1K, with the column vectora as the correspondirgigenvec-
tors.

6.4 Example: Masses and Springs

As a simple example, let’s look at the system shown in figute Gmprising two
massesn; andm, constrained to move along a straight line. The masses aredoi
by a spring with force constakt, andm; (mp) is joined to a fixed wall by a spring
with force constank; (k2). Assume that the equilibrium position of the system has
each spring unstretched, and use the displacemeatslx, of the two masses away
from their equilibrium positions as coordinates. The fosoemassm is then

Fl = —k1X1 — k’(Xl — Xz)

and on massy
Fz = —k2X2— k’(Xz—Xl).

(Note that these follow from a potential of foivh= Tkix2 + 2K (X, — x1)2 + 2k»x3.)
You can check that Newton’s 2nd law thus implies, in matrisfo

m O X1 _ ki + K —K X1
0O m X ) —K ko + K X )

The eigenvalue equation we have to solve is:

("™ weiem) () =7 ()
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Now specialise to a case whare = m, mp, = 2m, k; = k, ko = 2k andk’ = 2k.
The eigenvalue equation becomes,

(5 D) (R)-%(R)

or, settingh = mw? /K,
a5 () -(6)
(

For there to be a solution, the determinant of the 2 matrix in the last equation
must vanish. This gives a quadratic equationNor

A2 —BA+4=0,

with rootsA = 1 andA = 4. The corresponding eigenfrequencies @re: /k/m
andw = 2,/k/m. For each eigenvalue, there is a corresponding eigenvefiti

A =1 you findA; = A1, and withA = 4 you findA; = —A;/2. Note that just the
ratio of the twoA; is determined: you can multiply all th by a constant and stay
in the same normal mode. This means that we are free to neeribk eigenvectors
as we choose. It is common to make them have unit modulus, iohwdase the
eigenfrequencies and eigenvectors are:

k 1/1
o= Vm A= 50)

k 1 2
o =25 A= &(4)

In the first normal mode, the two masses swing in phase witbdiree amplitude,
and the middle spring remains unstretched. This could hege predicted: we have
solved for a case wherg, is twice the mass afry, and is attached to a wall by a
spring with twice the force constant. Therefamg,andm, would oscillate with the
same frequency in the absence of the connecting spring.

In the second mode the two masses move out of phase with daeh abdmy
has twice the amplitude ail,.

6.4.1 Weak Coupling and Beats

Now consider a case where the two masses are equat m, = m, and the two
springs attaching the masses to the fixed walls are idenkical k, = k. From the
symmetry of the setup, you expect one mode where the two siassag in phase
with the same amplitude, the central connecting spring @ unstretched. In
the second mode, the two masses again have the same ampitideing out of
phase, alternately approaching and receding from each dthis second mode will
have a higher frequency (why?).

If the spring constant of the connecting sprind(is= €k, you should check that
applying the solution method worked through above givesalewing eigenfre-
guencies and normal modes:

k
W = 57 Al —

/ k
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When the connecting spring has a very small force constaatl, so that the
coupling is weak, the two normal modes have almost the saegaiéncy. In this
case it's possible to obsereatswhen a motion contains components from both
normal modes. For example, suppose you start the systenréstrby holding the
left hand mass with a small displacement to the right,cséseeping the right hand
mass in its equilibrium position, and then letting go.

A general solution for the motion has the form,

X(t) = c1A1cogwt) + CoA2cogupt) 4+ C3A1Sin(wat) 4 C4A2 SNyt ).

Because the system starts from rest, you can immediatel{nsdes sure you can!)
thatcz = ¢4 = 0 in this case. Then the initial condition,

x0=({).
(6)=350)+ 5 (),

which is solved byc; = ¢, = d/+/2. So, the motion is given by:

gives,

xi(t) = (coqunt) 4+ cogwpt)),

o Nl

X(t) = cogwyt) — cogwpt)).

5!
We can rewrite the sum and difference of cosines as prodeaisng:
. W — Wy W+
xi(t) = dcos( > t) cos( > t),

W_M09%M+WQ.

Xo(t) = dsin(

Now you can see that each »f andx; has a “fast” oscillation at the average fre-
quency(w; + ) /2, modulated by a “slow” amplitude variation at the diffezen
frequency(w, — wq)/2. The displacements show the contributions of the two nor-
mal modes beating together, as illustrated in figure 6.2.

You can easily demonstrate beats by tying a length of cotébmwden two chairs
and hanging two keys from it by further equal-length thredgksch key is a simple
pendulum and the suspension thread provides a weak colyg@iageen them. Start
the system by pulling one of the keys to one side, with therdihaging vertically,
and releasing, so that you start with one key swinging frode $0 side and the
other at rest. The swinging key gradually reduces its aogdif and at the same
time the other key begins to move. Eventually, the first kely mbmementarily
stop swinging, whilst the second key has reached full aomiit The process then
continues, and the swinging motion transfers back and fmtiveen the two keys.
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Figure 6.2 Displacements; andxy as functions of time, starting with both masses at rest
andx1(0) = d, x2(0) = 0. The displacement curve fg is shown dashed. For this plot, the
ratio € of the spring force constants of the coupling (central)repand either of the outer
springs is OL. Time is plotted in units of the period of the lower frequgnormal mode.
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Normal Modes of a Beaded
String

7.1 Equation of Motion

The system we will describe is a string stretched to tenBjararryingN beads, each
of massM, as shown in figure 7.1. The beads are equally spaced disteaquart,
and the ends of the string are distaadeom the first and last bead respectively. We
will consider small transverse oscillations of the beadsh the ends of the string
held in fixed positions.

If the displacement of theth bead isu,, we can work out its equation of motion
by applying Newton’s second law. Referring to the lower péfigure 7.1, we find:

MU, = —T (sing+sing).
If the displacements are all small, then

. Up — Un— . Up—u
siny ~ ”T”l, and  simpx ”T”J’l.

Applying this approximation, the equations of motion are

T

Un = M_a(un—l — 2Un+ Unt1) |-

You get the same equation for longitudinal oscillations oha-dimensional line of
masses connected by identical springs, W@ftM replacingT /Ma, whereC is the
spring constant of each spring.

Tun—l Tunwtl

Figure 7.1 Transverse oscillations of a beaded string.
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7 Normal Modes of a Beaded String

We can incorporate the boundary conditions, that the entteddtring are fixed,
by requiring
Up = 07 UNy1 = 0.

You should convince yourself that these conditions giveitite equations of motion
for the first and\th beads.

7.2 Normal Modes

We would like to find the normal modes of the beaded string.s€rere motions
where all the beads oscillate with the same angular frequ@nc

Un :Anemx7

for some set of coefficient,. Substituting in the equation of motion gives,

A= o (Ao 1+ 20— Aoy, (7.1)

This is arecurrence relatiorfor the A, — it is a discrete form of a differential
equation. The boundary conditions are now incorporated as,

Ao=An;1=0.

We could solve for thé\, by viewing the recurrence relation as a matrix equation
determining the column vector of th&,’s, like we did for systems with one or
two degrees of freedom. Alternatively, we could apply knawethods of solving
recurrence relations. Rather than do either of these thingwiill use some physical
insight, allowing us almost to write down the solution wittilé effort. There are
two key points:

e Suppose we actually had anfinite line of beads on a string. The infinite
system has @ranslation invariance If you jump one step (or any integer
number of steps) left or right, the system looks the sames Wil make it
easy to find the normal modes of the infinite system.

e Each bead is connected to its two nearest neighbours ordyintéraction is
local. In the equation of motiony, is affected only byu,_1, uny1 andup
itself, so thenth bead’s displacement is affectedly by the displacements
of its two neighbours. Thus, if you can find a combination ofmal modes
of the infinite system which satisfidg = An,1 = 0, then you'll have found
a mode of the finite system. You don’t care what;, An;2 and so on are
doing.

To repeat, we will look for normal modes by finding modes forirfimite line of
beads and then selecting particular combinations of mamsattsfy the boundary
conditions that the ends of the finite string are fixed.

7.2.1 Infinite System: Translation Invariance

Suppose we have already found a mode for the infinite strinth some set of
displacement amplitudés,.

Now shift the system one step to the left. The translatiomuiawnce tells us
it looks the same. This means that if thg gave us a mode with frequency,



7.2 Normal Modes

the shiftedA, should give another mode with tlsamew. That is, the new set of
amplitudes,

A:‘I = Aﬂ+l7
also give a mode.
Now let’s look for a translation invariant mode, which reguges itself when we
do the shift. Since a mode is arbitrary up to an overall s¢hie means,

A:‘| = Aﬂ-l—l = hA’H
for some constant, so that the new amplitudes are proportional to the old ones.
Applying the last relation repeatedly shows that,
An = h"Ag,

whereA is arbitrary and sets the overall scale. Given this séi,pfve can find the
corresponding angular frequen@by substituting in the equation of motion in the
form it appeared in equation (7.1). We find,

Wh"Ag = Mla (—h"TAg+ 2h"Ag — KA.

Cancelling a common factdfAg, leaves,

T 1
P=_——(2—h-2). 7.2
W= (2-h— 1) (7.2)
This shows thalh and 1/h give the same normal mode frequency. Conversely, if the
frequencyw is fixed, the amplitudes,, must be an arbitrary linear combination of

the amplitudes foh and I/h. That is,
A, =ah"+ph™",

wherea andf} are constants. _
We will find it convenient to seh = €®. The relation givingo for a givenh in
equation (7.2) becomes a relation giviador a givend according to,

w2:4Mlasin2(9/2) : (7.3)

The displacement of theth bead is,
up = (ad"® + e ) dut, (7.4)

7.2.2 Finite System: Boundary Conditions

The value oM is fixed by the boundary conditions, and this in turn fix@s~or the
string of N beads with both ends fixed, we incorporate the boundary tiondiby
requiring

Up = 07 UNy1 = 0.

Theup = 0 condition requires that = — 3, which makesu, proportional to sifn6)
only, and the boundary condition at positida+ 1 then imposes,

sin(N+1)6]=0.
This last equation in turn gives
LS (7.5)
N+ '

wheremis an integer which labels the modes.
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7 Normal Modes of a Beaded String

Figure 7.3 Repetition of normal modes for mode numbers greater thaiosiastring with
fixed ends carrying six beads. Modes 3, 11 and 17 are shownrraionode remains the
same if all the displacements are multiplied by a constantuding—1, so all three modes
shownare the same.

7.2.3 The Set of Modes

Observe that the linear combination of modes in equatia) (g just a sum of left-
and right-moving wavelike solutions for the infinite beads#tdng. For the finite
string we are simply constructing a standing wave solutidis is just like finding
standing waves for guitar or violin strings or organ pipast, ow the system is
discrete rather than continuous.

Look at a string with six beads as an example. There are sitede@f freedom
and so we expect six modesrasuns from 1 to 6: these are shown in figure 7.2. The
figure also shows the continuous curves obtained by takitogvary continuously
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Frequency
21 L= o
a0
o
o
n
o
o
1k ."
o
o
o
0 1 1 1 1 3 m/(N+1)
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.4 Frequencies, in units of/T /Ma, of the normal modes of a beaded string
with five (N = 5, black squares) or twelvél(= 12, white squares) beads, showing that the
frequencies lie on a universal curve.

and lettingna be the position along the string. For larger valuesxahe modes are
repeated (or you get zero displacements). This is shownunfig.3. Here you see
that the underlying curve of sinB) changes, but the positions of the beads, which
determine the physical situation are unchanged.

The normal mode frequencies are found by inserting the vafllefrom equa-
tion (7.5) in equation (7.3) giving in terms of6:

W = 2\/Mja5i”(2(TmJTr[1)) .

In figure 7.4 are shown the normal mode frequencies for dririgive (N = 5) and
twelve (N = 12) beads, plotted as functionsmof (N+1). They lie on a universal
curve when plotted in terms of this variable. The curve giesmode frequencies
of an infinite line of beads and the finite systems pick out stgaf allowed modes
which satisfy the boundary conditions.
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Supplementary Problems

These are practice questions: ydo notneed to hand in solutions. You can also
study past exam papers. PH211 (now PHYS2006) was a new cout$93, so
you'll find some relevant questions in pre 1993 PH101 papers.

1. A rocket burns a kerosene-oxygen mixture: the completeibgrof 1kg of
kerosene requires.8kg of oxygen. This burning produces abou? 4 107 J
of thermal energy. Suppose that of this energy goes into kinetic energy of
the reaction products (4kg). What will be the exhaust speed of the reaction
products? [Hint: you can answer this by using the expredsinthe kinetic
energy of a system of particles in terms of the centre of mag&oomplus that
due to the motion relative to the CM.]

2. At timet =0 a dust particle of massy starts to fall from rest through a
cloud. Its mass grows exponentially with the distance falé® that after falling
through a distanceits mass isnpexp(ax), wherea is a constant. Show that at
timet the velocity of the particle is given by

V= \/gtant(tw/ag)
whereg is the acceleration due to gravity.

3. The total mass of a rocket is 10kg including fuel. What pathig mass should
be fuel in order that the kinetic energy of the rocket aftéthad fuel is burned
is maximised? If the velocity of the exhaust gases is 300 ndetermine this
maximum kinetic energy. Ignore gravity.

4. A payload of massnis mounted on a two stage rocket. Tiogal mass of both
rocket stages, fully fuelled, plus the payloadNs1 The mass of the fully
fuelled second stage plus payloadyidlm For each stage the exhaust speed
is uand the full fuel load makes up 90% of the total mass of theestag

vNm

E 90% fuel 90% fuel m >

Nm
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(i) Show that the speed gained from rest, after first stageduirand separa-
tion followed by second stage burn, is

2uln (ﬁ) .

(i) If u=2.5kms™!, show that the two-stage rocket can achieve a payload
velocity of 10kms! for large enougtN, but that a single stage rocket
with the same construction and payload caverdo so (take the single
stage rocket to have payload masss before and to have 90% of the
stage mass as fuel initially).

5. Find the direction and magnitude of the total torque aboeiitigin produced
by the forcesF; = F(X+ 2§+ 2) acting atr; = a(X— y) andF, = F(2X —
3y+42z) acting atrp = a(X+ 2).

6. A car travels round a curve of radiusIf his the height of the centre of mass
above the ground andb2he width between the wheels, show that the car will
overturn if the speed exceeqégrb/h, assuming no side slipping takes place.
If the coefficient of friction between the tyres and the rogg,ishow that the
car will skid before overturning ift < b/h.

7. (@) A reel of thread of radiua and moment of inertidMk? is allowed to
unwind under gravity, the upper end of the thread being fixadd the
acceleration of the reel and the tension in the thread.

(b) Find the acceleration of a uniform cylinder of radimsolling down a
slope of inclinatiorB to the horizontal.

8. (&) AmasaM is suspended at a distantcom its centre of mass. By writing
down the equation of rotational motion, show that the penddmall

oscillations is
|
P | T
\/ mg/’

wherel is the moment of inertia about the point of suspension.

(b) A body of moment of inertid about its centre of mass is suspended from
that point by a wire which produces a torqueer unit twist. Show that
the period of small oscillations is

2m/1/1

9. Calculate the moments of inertia of;

(8) athinrod aboutits end

(b) athin circular disc about its axis

(c) athin circular disc about its diameter
(d) athin spherical shell about a diameter
(e) auniform sphere about a diameter

Note that already known results, together with symmetry hedp you.



10. Two cylinders are mounted upon a common axis and a motor ce e

11.

12.

13.

rotate with respect to the other. Otherwise the systemiatesw. The following
sequence of operations takes place:

(a) one half is rotated with respect to the other throughepgl|

(b) the moments of inertia of the cylinders change figrandl, to 17 andl;

(c) the two halves are rotated back until they are in theigio&l relative
positions

(d) the moments of inertia are restored to their originaligal

Show that the whole system is at rest but has rotated thraughgle

I5/11—12/11
(1+12/12) (14 15/17)

This illustrates how a falling cat can manage to land on &$.fe

A thin straight rod 20m long, having a linear densitgf 0.5kgnt ! lies along
the y-axis with its centre at the origin. A 2kg uniform sphere lags the x-

axis with its centre of mass 3m away from the rod’s centre ofsnawhat
gravitational force does the rod exert on the sphere?

A planet of massn moves in an elliptical orbit around a sun of mads Its
maximum and minimum distances from the sunmgg andr min.
Show that the total energy of the planet can be written in onen f

1 L2  GMm
E=-mi’+——
2mr +2mr2 r

whereL is the angular momentum. Hence show that

GMm
Mmax+ 'min=———=—

E

Using conservation of energy, find the maximum and minimutaorgy of the

Assuming Kepler’s law relating the periddof the orbit to the semi-major axis
of the ellipse, show that
T[(rmax‘|‘ I'min)

v VmaxVmin

T=

For motion under a central conservative force, the totalggnand the angular

momentumL are conserved. For the special case of an inverse-square law

force, such as gravitation or the Coulomb force, with pagenergyV (r) =
—k/r, we will show that there is a second conserved vector, thegBuluenz
vectorA, given by

A=pxL—mkf

By considering® (r-r) = $(r?), or otherwise, show that

di v r-wv

dat r 13
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14.

15.

16.

17.

18.

A Supplementary Problems

wherev =r. Use the equation of motion to show that

. k
p><L:—ﬂ

r3r><(r><v)

Now use the above results to demonstrateéhaio, orA is conserved.

A is perpendicular th. (A-L = 0), soA defines a fixed direction in the orbit
plane. Let the angle betweerandA be6. Take the dot product afwith A to
show that

rAcosd = L% — mkr

By comparing to the standard equatidir = 1+ ecosd, express the eccen-
tricity e in terms of the lengti of the Runge-Lenz vector. Which point of the
orbitisA directed towards?

Hint: the following identities for arbitrary vectoes b andc, may be useful

ax(bxc) = b(ac)—c(ab)
a-(bxc) = (axb)-c

[Hard] A ballistic rocket is fired from the surface of the Earth witblacity

v < (Rg/¥2 at an anglex to the vertical. Assuming the equation for its orbit,
show that to achieve maximum rangeshould be chosen so that 2a— R,
where( is the semi-latus rectuna is the semi-major axis arid is the Earth’s
radius. Deduce that the maximum rangeR®2vhere

gV
sin@ RV

A locomotive is travelling due North in latitude along a straight level track
with velocity v. Show that the ratio of the forces on the two rails is approxi-

mately
4wvh

14+ ——sinA
ga
whereh is the height of the centre of mass above the rails aid the distance

between the rails. Calculate this ratio for a speed of 150kmm latitude
45deg North, assuming thht= 2a. Which rail experiences the larger force?

A uniform solid ball has a few turns of light string wound anaiit. If the end
of the string is held steady and the ball allowed to fall urgtewity, show that
the acceleration of the ball ig37.

A body of moment of inertiad is suspended from a torsion fibre for which the
restoring torque per unit angular displacemerit;isvhen the angular velocity
of the body iXQ it experiences a retarding torqk@. If the top end of the fibre
is made to oscillate with angular displacemegsinwt, wherew? = T /1, show
that the maximum twist in the fibre ig(1+T1/k?)/2.

Two identical massem are suspended by light strings of lengthThe sus-
pension points are distanteapart and a light spring of natural lengthand

spring constark connects the two masses. Indicate qualitatively the forthef
two normal modes for oscillations in the plane of the striagd spring. Write
down the equations of motion for small oscillations of thesses in terms of
their horizontal displacements andx, from equilibrium. Find the normal
mode frequencies and verify your guess for the ratjoc; in the two modes.
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19. Alarge number of identical massesarranged in a line at equal intervalsare
joined together by identical springs between neighbohessprings being such
that unit extension requires a forpe The mass at one end is oscillated along
the direction of the line with angular frequenay Show that a compressional
wave is propagated along the line with wavenumbgiven by the expression

w=wpsinka/2),  wy=2(u/m2

What happens ifis made greater thag?



