Coupled Oscillator s

e Take set of coupled oscillators described by set of
generalised coordinates qy, . . ., gn.

e In general potential V(q) =V (q;, i =1,...,n) will
be complicated function coupling all oscillators to-

gether.

e Consider small oscillations about a position of sta-
ble equilibrium, e.g.,gi=0fori=1,...,n

e Expand potential in Taylor series about this point,
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e By adding an overall constant to V we can choose
V(0)=0.

e Since we are at position of equilibrium, all first
derivative terms vanish.

e Define,
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and drop all remaining terms in expansion.

e Note that K;; is constant symmetric n x n matrix.



e Corresponding forces are
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and thus equations of motion are
Midi = — > Kijaj,
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fori=1,...,n.

e Here M;’s are oscillator masses and K;;’s are ‘spring
constants’.

e Can put them into matrices !

e For a system of masses connected by springs, with
each mass moving in same direction, coordinates can
be taken as real positions, then M is diagonal ma-
trix and K is matrix determined by actual spring con-
stants.



Normal modes

e Coupled oscillators !

e Take n of these each with generalised coordinate
gi(t) (i=1,...,n) and define system “position”:

C](t) — <q1<t)7q2(t)= R qn<t)) .

e Differential equations involve time dependence
only through time derivatives,
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e Thus can look for time translation invariant solu-

tions, called normal modes,

by solving eigenvalue equation:

M 1K A = o?A.

e (A are constants, their overall normalisation is

arbitrary by linearity of differential equation.)



e Normal mode: all oscillators move with same fre-
guency, but, in general, different phases and am-
plitudes.

e Normal modes provide all independent solutions
of differential equation.

e Once found all normal modes, can construct any
possible motion as their linear combination !



Example: Masses and Springs

e Take following system: see Fig. —

e Forces on my and My are
F]_ = —k]_Xl — K(X]_ — Xz)

F = —k2X2 — K(Xz — X]_).
e Newton’s 2nd law in matrix form:
m O X1 _ ki + K —K X1
0O m Xo - —K k2—|— k' X2 .
e Eigenvalue equation:
((kl+k/)/m1 —k//ml ) (Al) :wz (Al)
—k’/rr12 (k2—|—kl)/m2 A, A, .
e Now specialise to case m; = m, mp, = 2m, k; =K,
ko = 2k and K = 2k.
e Eigenvalue equation becomes
3 —2 A]_ . T Al
5 2) ()R (R)
or, setting A = mw? /K,
3—A =2 At (O
-1 2-A A) \0/°
e For there to be a solution, determinant of 2 x 2
matrix must vanish:

A2 —5\N+4=0,
with roots A =1 and A = 4.



e Corresponding eigenfrequencies are w = y/k/m

and w=2./k/m.

e For each eigenfrequency there is corresponding
eigenvector:

K 1 /1
o= A= 50)

K 1 /2
o=afm A= m(4)

assuming unit modulus for A; and Ao.

1. First normal mode: two masses swing in phase
with same amplitude while middle spring remains
unstretched.

2. Second normal mode: two masses move out of
phase with each other and my has twice amplitude

of my.



Weak couplingsand beats

e Take usual system: see Fig. —

e Forces on my and my are
F]_ = —k]_X]_ — K(X]_ — Xz)

F = —k2X2 — k/(Xz — X]_).
e Newton’s 2nd law in matrix form:
m O X1 _ ki + K —K X1
0O m Xo - —K ko 4+ K Xo |
e Eigenvalue equation:
((kﬁ—k’)/ml —k//ml ) <A1) . (Al)
—k’/rr12 (k2—|—kl)/m2 A, A, .

Now specialise to a case where m, = mp = m,
ki =k, =k and k' = €k.

e Eigenvalue equation (set A = mw?/K):
1+€—A —& Aq . 0
—€ 1+e—A)\A,) \0)/°
e From null determinant, quadratic equation for A:

A —2(14+e)A+(1+2¢)=0,

withrootsA =1 and A =1+ 2¢.



e Hence, eigenfrequencies and normal modes are:

K A L (1
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k 1 1
Wy = (1—|—28)a, A, = %(_1).

1. First mode: two masses swing in phase with
same amplitude, central connecting spring re-
mains un-stretched.

2. Second mode: two masses again have same
amplitude, but swing out of phase, alternately
approaching and receding from each other.

e For weak coupling € < 1, two normal modes have
almost same frequency and can observe beats if
motion contains components from both normal
modes.

e Start system from rest by holding left-hand mass
at a small displacement d to the right while keep-
ing right-hand mass in equilibrium.

e Let go.



e General solution for motion is:
X(t) = c1A1c0s(wst) + C2A2C0S(wpt)
+ CzA1sin(wnt) + CA2Sin(wpt).

o System starts from rest: &0 =0 — c3=¢, =0.

e Impose initial conditions:
0-(0)-(0)-5()-5()
e Find solutions: ¢; = ¢, = d//2.
e Motion is given by
xi(t) = —(cos(uwnt)+ cos(mnt)),

Xo(t) = =(cos(unt)—cos(wst)).

e Can rewrite as
xi(t) = dcos (ooz _ wlt) COS (u)1+ th) ,

2 2
%(t) = dsin (wzgwlt> sin (wlj;wzt).

e Both x; and x, has “fast” oscillation at average
frequency (o +y)/2, modulated by “slow” am-
plitude variation at frequency (w, — ) /2 (or vice
versa).

e Displacements show contributions of two normal
modes beating together (for e = 0.1, see Fig. —):
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As the lecture course is now fi nished:
you better double-check that you have
fi lled the empty boxes in your notes
correctly, by comparing your version
with the complete set now found at:

www. hep. phys. sot on. ac. uk/ cour ses/ phys2006/ i nf ocour se. ht




