
Coupled Oscillators

• Take set of coupled oscillators described by set of
generalised coordinates q1, . . . ,qn.

• In general potential V (q) ≡ V (qi, i = 1, . . . ,n) will
be complicated function coupling all oscillators to-
gether.

• Consider small oscillations about a position of sta-
ble equilibrium, e.g., qi = 0 for i = 1, . . . ,n.

• Expand potential in Taylor series about this point,

V (q) = V (0)+∑
i

∂V
∂qi

∣

∣

∣

∣

0

qi +
1
2 ∑

i, j

∂2V
∂qi∂q j

∣

∣

∣

∣

0

qiq j + · · · .

• By adding an overall constant to V we can choose
V (0) = 0.

• Since we are at position of equilibrium, all first
derivative terms vanish.

• Define,

Ki j ≡
∂2V

∂qi∂q j
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∣

0

,

and drop all remaining terms in expansion.

• Note that Ki j is constant symmetric n×n matrix.
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• Corresponding forces are

Fi = −
∂V
∂qi

= −∑
j

Ki jq j

and thus equations of motion are

Miq̈i = −∑
j

Ki jq j,

for i = 1, . . . ,n.

• Here Mi’s are oscillator masses and Ki j’s are ‘spring
constants’.

• Can put them into matrices !

• For a system of masses connected by springs, with
each mass moving in same direction, coordinates can
be taken as real positions, then M is diagonal ma-
trix and K is matrix determined by actual spring con-
stants.
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Normal modes

• Coupled oscillators !

• Take n of these each with generalised coordinate
qi(t) (i = 1, . . . ,n) and define system “position”:

q(t) =
(

q1(t),q2(t), . . . ,qn(t)
)

.

• Differential equations involve time dependence
only through time derivatives,

q̈ = −M−1Kq,

M =









M1 0 · · · 0
0 M2 · · · 0
... ... . . . ...
0 0 · · · Mn









,K =









K11 K12 · · · K1n

K21 K22 · · · K2n
... ... . . . ...

Kn1 Kn2 · · · Knn









.

• Thus can look for time translation invariant solu-
tions, called normal modes,

q(t) = Aeiωt =









A1

A2
...

An









eiωt,

by solving eigenvalue equation:

M−1KA = ω2 A.

• (Ai are constants, their overall normalisation is
arbitrary by linearity of differential equation.)
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• Normal mode: all oscillators move with same fre-
quency, but, in general, different phases and am-
plitudes.

• Normal modes provide all independent solutions
of differential equation.

• Once found all normal modes, can construct any
possible motion as their linear combination !
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Example: Masses and Springs

• Take following system: see Fig. →

• Forces on m1 and m2 are

F1 = −k1x1− k′(x1− x2)

F2 = −k2x2− k′(x2− x1).

• Newton’s 2nd law in matrix form:
(

m1 0
0 m2

)(

ẍ1

ẍ2

)

=−
(

k1 + k′ −k′

−k′ k2 + k′

)(

x1

x2

)

.

• Eigenvalue equation:
(

(k1 + k′)/m1 −k′/m1

−k′/m2 (k2 + k′)/m2

)(

A1

A2

)

= ω2

(

A1

A2

)

.

• Now specialise to case m1 = m, m2 = 2m, k1 = k,
k2 = 2k and k′ = 2k.

• Eigenvalue equation becomes
(

3 −2
−1 2

)(

A1

A2

)

=
m
k

ω2

(

A1

A2

)

,

or, setting λ = mω2/k,
(

3−λ −2
−1 2−λ

)(

A1

A2

)

=

(

0
0

)

.

• For there to be a solution, determinant of 2× 2
matrix must vanish:

λ2−5λ+4 = 0,

with roots λ = 1 and λ = 4.
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• Corresponding eigenfrequencies are ω =
√

k/m
and ω = 2

√

k/m.

• For each eigenfrequency there is corresponding
eigenvector:

ω =

√

k
m

, A =
1
√

2

(

1
1

)

,

ω = 2

√

k
m

, A =
1
√

5

(

2
−1

)

,

assuming unit modulus for A1 and A2.

1. First normal mode: two masses swing in phase
with same amplitude while middle spring remains
unstretched.

2. Second normal mode: two masses move out of
phase with each other and m1 has twice amplitude
of m2.
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Weak couplings and beats

• Take usual system: see Fig. →

• Forces on m1 and m2 are

F1 = −k1x1− k′(x1− x2)

F2 = −k2x2− k′(x2− x1).

• Newton’s 2nd law in matrix form:
(

m1 0
0 m2

)(

ẍ1

ẍ2

)

=−
(

k1 + k′ −k′

−k′ k2 + k′

)(

x1

x2

)

.

• Eigenvalue equation:
(

(k1 + k′)/m1 −k′/m1

−k′/m2 (k2 + k′)/m2

)(

A1

A2

)

= ω2

(

A1

A2

)

.

Now specialise to a case where m1 = m2 = m,
k1 = k2 = k and k′ = εk.

• Eigenvalue equation (set λ = mω2/k):
(

1+ ε−λ −ε
−ε 1+ ε−λ

)(

A1

A2

)

=

(

0
0

)

.

• From null determinant, quadratic equation for λ:

λ2−2(1+ ε)λ+(1+2ε) = 0,

with roots λ = 1 and λ = 1+2ε.
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• Hence, eigenfrequencies and normal modes are:

ω1 =

√

k
m

, A1 =
1
√

2

(

1
1

)

,

ω2 =

√

(1+2ε)
k
m

, A2 =
1
√

2

(

1
−1

)

.

1. First mode: two masses swing in phase with
same amplitude, central connecting spring re-
mains un-stretched.

2. Second mode: two masses again have same
amplitude, but swing out of phase, alternately
approaching and receding from each other.

• For weak coupling ε� 1, two normal modes have
almost same frequency and can observe beats if
motion contains components from both normal
modes.

• Start system from rest by holding left-hand mass
at a small displacement d to the right while keep-
ing right-hand mass in equilibrium.

• Let go.
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• General solution for motion is:

x(t) = c1A1 cos(ω1t)+ c2A2 cos(ω2t)

+ c3A1 sin(ω1t)+ c4A2 sin(ω2t).

• System starts from rest: dx(t)
dt = 0 → c3 = c4 = 0.

• Impose initial conditions:

x(0) =

(

d
0

)

=

(

d
0

)

=
c1√

2

(

1
1

)

+
c2√

2

(

1
−1

)

.

• Find solutions: c1 = c2 = d/
√

2.

• Motion is given by

x1(t) =
d
2

(

cos(ω1t)+ cos(ω2t)
)

,

x2(t) =
d
2

(

cos(ω1t)− cos(ω2t)
)

.

• Can rewrite as

x1(t) = d cos
(ω2−ω1

2
t
)

cos
(ω1 +ω2

2
t
)

,

x2(t) = d sin
(ω2−ω1

2
t
)

sin
(ω1 +ω2

2
t
)

.

• Both x1 and x2 has “fast” oscillation at average
frequency (ω1+ω2)/2, modulated by “slow” am-
plitude variation at frequency (ω2−ω1)/2 (or vice
versa).

• Displacements show contributions of two normal
modes beating together (for ε = 0.1, see Fig. →):
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As the lecture course is now finished:

you better double-check that you have

filled the empty boxes in your notes

correctly, by comparing your version

with the complete set now found at:

www.hep.phys.soton.ac.uk/courses/phys2006/infocourse.html


