{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "Univers" 1 24 255 2 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 0 12 0 0 0 1 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 48 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 6 6 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "R3 Fo nt 0" -1 256 1 {CSTYLE "" -1 -1 "Helvetica" 0 12 128 0 128 1 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "R3 Font 2" -1 257 1 {CSTYLE "" -1 -1 "Courier" 0 11 0 128 128 1 2 1 2 0 0 0 0 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT 256 47 "One dimensional lattice \+ with two types of atom." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 775 "This Maple worksheet generates two animations. They illustrate the optical and acoustic modes of vibration for a one dime nsional chain of two types of atom, alternating along the chain, with \+ neighbouring masses joined by springs. The curves are drawn with the m asses in the ratio appropriate for sodium chloride: the lighter sodium atoms are at the odd numbered sites and appear as red circles in the \+ plots, while the heavier chorine atoms live at the even sites and are \+ denoted by blue circles. The background continuous curves of sin (k x \+ - omega(k) t) appear in yellow, one for each type of atom. Remember th at the physical atomic displacements are only defined at the atomic si tes where x = n a for some n (a is the separation between neighbouring masses, set to 1 here)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 531 "To see the plots, first open the section labelled \"Input Commands\" by clicking on the \"+\" symbol in the box at the \+ left margin. Then evaluate the long chain of commands (lines in red, b eginning with \">\") by placing the cursor anywhere on the input and t yping return. This is quite slow (takes about 30 seconds). When it's f inished, Maple will type \"animations generated!\" in blue at the bott om. Now you can see the plots by evaluating the two commands \"optical _mode\" and \"acoustic_mode\" in the sections at the end of the worksh eet." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 37 "J MF 10 Jan 1996. Revised 22 Jan 1998." }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 14 "Input Commands" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "omegaplus := (k,mr) -> sqrt(1 + mr + sqrt((1+mr)^2 - 4*mr*sin(k)^2 ))/2:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "omegaminus := (k,mr) -> sq rt(1 + mr - sqrt((1+mr)^2 - 4*mr*sin(k)^2))/2:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 52 "aplus := (k,mr) -> cos(k)/(1 - 2*omegaplus(k,mr)^2): " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "aminus := (k,mr) -> cos(k)/(1 - 2*omegaminus(k,mr)^2):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "pwaveplu s := (k,x,t,mr) -> sin(k*x - omegaplus(k,mr)*t):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "pwaveminus := (k,x,t,mr) -> sin(k*x - omegaminus(k,mr )*t):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "with(plots):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "nacl := 23/35:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "Curves := animate(\{pwaveplus(Pi/6,x,t,nacl),aplus(Pi/6,nacl)* pwaveplus(Pi/6,x,t,nacl)\}," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "x=0. .11,t=0..2*Pi*19/(20*omegaplus(Pi/6,nacl)),frames=20,color=yellow):" } }{PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "PtList1 := proc(k,t,mr)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 60 " local i; evalf([seq([2*i,pwaveplus(k,2* i,t,mr)],i=0..5)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "end:" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "PtList2 := proc(k,t,mr)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 76 " local i; evalf([seq([2*i+1,aplus(k,mr)*pw aveplus(k,2*i+1,t,mr)],i=0..5)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "end:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "Points1 := [seq(plot(PtLis t1(Pi/6,j*Pi/(10*omegaplus(Pi/6,nacl)),nacl)," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 52 " style=point,symbol=circle,color=blue),j=0..19)]: " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "Points2 := [seq(plot(PtList2(Pi /6,j*Pi/(10*omegaplus(Pi/6,nacl)),nacl)," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 51 " style=point,symbol=circle,color=red),j=0..19)]:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "PtAnim1 := display(Points1,insequ ence=true):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "PtAnim2 := display(P oints2,insequence=true):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "PtAnim \+ := display(\{PtAnim1,PtAnim2\}):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "optical_mode := display(\{Curves,PtAnim\}):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 90 "Curves := animate(\{pwaveminus(Pi/6,x,t,nacl),aminus( Pi/6,nacl)*pwaveminus(Pi/6,x,t,nacl)\}," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "x=0..11,t=0..2*Pi*19/(20*omegaminus(Pi/6,nacl)),frames=20,colo r=yellow):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "PtList1 := proc(k,t,m r)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 61 " local i; evalf([seq([2*i,pw aveminus(k,2*i,t,mr)],i=0..5)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 " end:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "PtList2 := proc(k,t,mr)" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 78 " local i; evalf([seq([2*i+1,aminus (k,mr)*pwaveminus(k,2*i+1,t,mr)],i=0..5)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "end:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "Points1 := \+ [seq(plot(PtList1(Pi/6,j*Pi/(10*omegaminus(Pi/6,nacl)),nacl)," }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 52 " style=point,symbol=circle,color =blue),j=0..19)]:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "Points2 := [se q(plot(PtList2(Pi/6,j*Pi/(10*omegaminus(Pi/6,nacl)),nacl)," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 51 " style=point,symbol=circle,color=red),j= 0..19)]:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "PtAnim1 := display(Poin ts1,insequence=true):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "PtAnim2 := display(Points2,insequence=true):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "PtAnim := display(\{PtAnim1,PtAnim2\}):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "acoustic_mode := display(\{PtAnim,Curves\}):" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "print(`animations generated!`);" }} }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 12 "Optical Mode" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 461 "To see the optical mode animation, evaluate the \+ following command by placing the cursor anywhere on it and typing retu rn. This will pop up a graph to show the animation. On the row of VCR- like buttons that appear at the top of the screen, click on the right \+ button with the loop symbol. This will cause the animation to repeat g iving the illusion of continuous motion. To play the animation click o n the play button, a right-pointing triangle, second from left." }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "optical_mode;" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 13 "Acoustic Mode" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "To see the acoustic mode animation, evaluate the following command ." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "acoustic_mode;" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 19 "Dispersion Relation" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 175 "If you want a reminder, here is a plot of the dispe rsion relation, omega(k), for a chain of two types of atom. It is plot ted with a mass ratio appropriate for sodium chloride." }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 59 "plot(\{omegaplus(k,nacl),omegaminus(k,nacl)\}, k=-Pi/2..Pi/2);" }}}}}{MARK "1" 0 }{VIEWOPTS 1 1 0 1 1 1803 }