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Section A

A1. At high energies the gauge symmetry of the Standard Model is

SU(3)C ⊗SU(2)L ⊗U(1)Y

Explain how each of the left and right handed spinors of the up quark transform

under these gauge transformations. [4]

A2. Explain Dirac’s interpretation of negative energy states amongst the solutions of

the Dirac equation. [4]

A3. What is Synchrotron Radiation? [2]

The radiative energy loss of a particle by Synchrotron Radiation per revolution

is given by

U0 = βCγE
4/R

where E is the energy of the particle, R is the radius of the accelerator, and

β is the ratio of the particle’s speed to the speed of light, v/c. Cγ = 8.85×
10−5m/GeV 3 for electrons and Cγ = 7.78× 10−18m/GeV 3 for protons. Com-

pute the ratio of energy loss per revolution for a 50 GeV electron and a 7 TeV

proton in the LEP/LHC accelerator. [2]
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A4. Why do Feynman diagrams involving loops of particles give rise to infinities?

Briefly explain how renormalization theory can remove these infinities from

computations of physical observables. [4]

A5. A gluon is associated with the SU(3) generator
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in a basis where the quark colour vector is (R,G,B). Draw the Feynman vertex

and rules for the two non-zero interactions of this gluon with quarks. [2]

A6. If in some area of space a Higgs field generates a mass, m, for a U(1) gauge field

then the gauge field satisfies a massive Klein Gordon equation

(∂µ∂µ +m2)Aµ = 0

Show that static Aµ solutions decay exponentially in that area of space. [2]

TURN OVER
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Section B

B1. The Dirac equation may be written as

i
∂ψ
∂t

= (−iα.∇+βm)ψ

where in the Dirac representation

α =





0 σ

σ 0



 , β =





1 0

0 −1





and

σ1 =





0 1

1 0



 , σ2 =





0 −i

i 0



 , σ3 =





1 0

0 −1





(a) Show that ψ†ψ satisfies an appropriate continuity equation and hence may

be interpreted as the probability density. [7]

(b) Show explicitly that

(σ.p)2 = |p|2

where p is the momentum vector. [4]

(c) Hence show that there are plane wave solutions of the form

ψ =





χ(p)

φ(p)



e−i(Et−p.x)

with both positive and negative energies. [6]

(d) How does the Feynman Stückelberg interpretation account for the negative

energy solutions? [3]
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B2. (a) Draw the Feynman diagram for the process

e+e− → µ+µ−

and hence, using the Feynman rules, write down an expression for the scat-

tering amplitude for this process. [6]

(b) In order to reconstruct such an e+e− collision, the properties of the muons

must be measured by a detector. List the component sub-detectors within a

typical particle physics detector and explain what they measure. [10]

(c) How would a muon be differentiated from other particles in such a detec-

tor? [4]

TURN OVER
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B3. (a) Describe a piece of experimental evidence for the existence of three colours

of quarks. [4]

(b) The existence of three indistguishable colours of each quark implies that the

wave function for the three quark colours, ψ = (R,G,B), must be invariant

under the action of a 3×3 matrix U ,

ψ →Uψ

Why must U be unitary? [4]

(c) The free Dirac equation for ψ would be

(i∂µγµ −m)ψ = 0

where γµ are the Dirac gamma matrices and m the fermion’s mass. Show

the equation is invariant to global transformations of the type above. [2]

(d) U may be parametrized as

U ≡ eigsθaT a

where θa are 8 free parameters, gs a normalization constant, and the T a are

the generators of the group SU(3).

Show, for infinitessimal θa, that to make the Dirac equation for ψ invariant

to gauged or local transformations of this type, 8 gluon fields must be in-

troduced. Explicitly show how the gluons will enter the Dirac equation and

derive their gauge transformations. [10]
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B4. Consider a gauge theory with two U(1) gauge symmetries and a single scalar

field φ. The scalar field couples to the two gauge bosons with equal but opposite

charges. The equations of motion for the two gauge fields are therefore

∂ν∂νAµ
(1)

= iqφ∗Dµφ− iq(Dµφ)∗φ

∂ν∂νAµ
(2) = iqφ∗Dµφ− iq(Dµφ)∗φ

where the covariant derivative is Dµ = ∂µ + iqAµ
(1) − iqAµ

(2). The scalar field in

addition has a potential

V = −1
2µ2|φ|2 +

1
4λ|φ|4

where µ and λ are positive couplings.

(a) Show that the potential is gauge invariant. [2]

(b) Sketch the scalar potential and find the value of φ at the potential minimum,

v. [4]

(c) Show that the gauge bosons acquire mass and that their mass squared matrix

may be written as

(Aµ
(1)

,Aµ
(2)

)2v2





q2 −q2

−q2 q2









Aµ
(1)

Aµ
(2)





[6]

(d) Hence show that there is a massless physical gauge field that is an equal

superposition of Aµ
(1)

and Aµ
(2)

. [8]

END OF PAPER


