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In this section of the course we will study relativistic quantum mechanics. In a
particle accelerator we are interested in, for example, the interactions of highly ener-
getic electrons so the need to combine relativity and quantum mechanics is pressing.
Some remarkable results will come out of this synthesis. In particular we will theo-
retically predict the existence of anti-particles and also fermion spin. Sit back and
enjoy!

1 Non-Relativistic Wave Equation Review

Let’s review how wave equations describe non-relativistic quantum particles. Exper-

imentally we learnt that a particle with definite momentum p and energy £ could be
associated with a plane wave
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To extract I and p from the wave we use operators
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Classically we know that F = p?/2m + V so we arrive at the Schroedinger equation
d h*
h— __ 2
i dt;/} va Y+ Vi (3)

Equally we can write the Schroedinger equation quite generally (with 2 = 1) as

o

where H is the Hamiltonian (i.e. the energy operator).

1.1 Probability Density

Remember that we interpret )*1»dz as the probability that the particle will be found
between x and x+dx. Probability is a conserved quantity - there is always probability
one that the particle will be somewhere!

This means that if the probability of the particle being in some area decreases
then the probability that it lies outside must increase. In other words there is a flow
of probability/current density satisfying the usual conservation equation (cf electric
charge)



Using the divergence theorem (f A.dS = S/ V.A dV') we have the continuity equa-
tion

L4v.J=0 (6)

wherein ,o(j) is the probability density(current). Now we can show using the Schroedinger

equation that p = ¥ *1 satisfies such a relation. We add two copies of the Schroedinger
equation as follows

—i"(SE) + (SE)™% (7)
This gives
hprGe H he % = BV — itV
(8)
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and hence

w ) = V. (¢"Vi — V) (9)

which indeed has the form of a conservation equation with p = ¢*¢.

2 Relativity Review
In relativity an event is described by the four coordinates of a four-vector
' = (et, 7) (10)

Under Lorentz transformations (LT) it transforms - a familiar example of a L'T is a
boost along the z-axis, for which
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with, as usual, 3 = v/c and v = (1 — 32)7"/2, LT’s can be thought of as generalized
rotations.
z* is then a (Contravariant) 4-vector since it transforms as

' — 't =AY " (11)

The Greek labels p,v... € {0,1,2,3} denote Lorentz indices and the summation
convention is used.
The “length” of the 4-vector (¢*t* — |Z|*) is invariant to LTs. In general we define
the Minkowski scalar product of two 4-vectors & and y as
LY = xuyyg;w = Jf“yﬂ (12)
where the metric
9" = g = diag(l,—1,—-1,-1) g g, = 64 = {1 ifp=v
j224 b b b b v v 0 if IL[/ % v

has been introduced. The last step in (12) is nothing but the definition of a covariant

(13)

4-vector (sometimes referred to as Co—vector)

v

Ty = G (14)

To formulate a coherent relativistic theory of dynamics we define kinematic vari-
ables that are also 4-vectors (ie transform as described above). For example, we define
a 4-velocity

dx*
pw_
“ dr

where 7 is the proper time measured by a clock moving with the particle. Everyone

(15)

will agree as to what the clock says at a particular event so this measure of time is
Lorentz invariant and u* transforms as x*. Note

dt dx*
S — 3 1
dT dt 7(071)) ( 6)
and has invariant length
W, = %(c — |0) = ¢* (17)

Similarly 4-momentum provides a relativistic definition of energy and momentum
Pt =mu" = (Efe,p) (18)
The invariant length gives us the crucial relation

Ppn = Bt = |p)* = m*c (19)



Note that d, is a covariant 4-vector,

0

Oxr’

d, = Oux" =6, (20)

so Vi=—9" and 9" = (9°, —6)

I will use natural units in this course. This firstly means redefining the unit of
distance so that ¢ = 1. Secondly I shall redefine the unit of energy so that £ = hv =
2y ie set h = 1. So mass, energy, inverse length and inverse time all have the same

dimensions. Generally think of energy K as the basic unit, e.g mass m has units of
GeV and distance x has unit GeV~!.

3 The Klein Gordon Equation

For a free relativistic particle the total energy F is no longer given by the equation we
used to derive the Schroedinger equation. Instead it is given by the Einstein equation

E?* = 5% + m* (21)
In position space we write the energy-momentum operator as

s

Pt =0t (E,p) = (@'%, —iV) (22)
so that the KG equation becomes
(O +m?*) () =0 (23)
where we have introduced the box notation,
0= 8,0" = 9*/01* — v (24)

and x is the 4-vector (t, 7).

The Klein-Gordon equation has plane wave solutions:
H(x) = Ne =5 (25)

where N is a normalization constant and F = £+/p? + m?.

There are two problems with this equation though. Firstly there are both positive
and negative energy solutions. The negative energy solutions pose a severe problem
if you try to interpret ¢ as a wave function (as indeed we are trying to do). The
spectrum is no longer bounded from below, and you can extract arbitrarily large
amounts of energy from the system by driving it into ever more negative energy
states. Any external perturbation capable of pushing a particle across the energy



gap of 2m between the positive and negative energy continuum of states can uncover
this difficulty. Furthermore, we cannot just throw away these solutions as unphysical
since they appear as Fourier modes in any realistic solution of (23).

A second problem with the wave function interpretation arises when trying to
find a probability density. Since ¢ is Lorentz invariant, |¢|*> does not transform like a
density so we will not have a Lorentz covariant continuity equation d;p + v.J=0.

To search for a candidate we derive such a continuity equation. Start with the
Klein-Gordon equation multiplied by ¢* and subtract the complex conjugate of the
KG equation multiplied by ¢. Defining p and jby

(00 0w
p = (0500, 26)
J = —i(¢Vo—ogVe) (27)

you obtain a covariant conservation equation

9" =0 (28)
where .J is the 4-vector (p, j) It is thus natural to interpret p as a probability density
and J as a probability current. However, for a plane wave solution (25), p = 2|N|*E,
so p 1s not positive definite since we’ve already found E can be negative.

3.1 Feynman Stueckelberg Interpretation

We have found that the Klein-Gordon equation, a candidate for describing the quan-
tum mechanics of spinless particles, admits unacceptable negative energy states when
¢ 1s interpreted as the single particle wave function. There is another way forward
(this is the way followed in the textbook of Halzen & Martin) due to Stueckelberg
and Feynman. Causality forces us to ensure that positive energy states propagate for-
wards in time. But if we force the negative energy states only to propagate backwards
in time then we find a theory that is consistent with the requirements of causality
and that has none of the aforementioned problems. In fact, the negative energy states
cause us problems only so long as we think of them as real physical states propagat-
ing forwards in time. Therefore, we should interpret the emission (absorption) of a
negative energy particle with momentum p# as the absorption (emission) of a positive
energy antiparticle with momentum —p*.

In order to get more familiar with this picture, consider a process with a 7+ and a
photon in the initial state and final state. In figure 2.1(a) the 7% starts from the point
A and at a later time ¢; emits a photon at the point Z;. If the energy of the 7% is
still positive, it travels on forwards in time and eventually will absorb the initial state
photon at ?5 at the point Z5. The final state is then again a photon and a (positive
energy) 7.

There is another process however, with the same initial and final state, shown in
figure 2.1(b). Again, the 7t starts from the point A and at a later time ¢; emits a



photon at the point Z;. But this time, the energy of the photon emitted is bigger
than the energy of the initial 7+. Thus, the energy of the 7+ becomes negative and it
is forced to travel backwards in time. Then at an earlier time 5 it absorbs the initial
state photon at the point #,, thereby rendering its energy positive again. From there,
it travels forward in time and the final state is the same as in figure 2.1(a), namely a
photon and a (positive energy) 7.
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Figure 2.1 - Interpretation of negative energy states

In today’s language, the process in figure 2.1(b) would be described as follows: in
the initial state we have an 77 and a photon. At time {, and at the point #; the
photon creates a 7T-7~ pair. Both propagate forwards in time. The 7% ends up in
the final state, whereas the 7~ is annihilated at (a later) time ¢; at the point ¥y by
the initial state 7+, thereby producing the final state photon. To someone observing
in real time, the negative energy state moving backwards in time looks to all intents
and purposes like a negatively charged pion with positive energy moving forwards in
time. We have discovered anti-matter!

4 Dirac Equation

Historically the Klein Gordon equation was believed to be sick although now we
understand it is telling us about anti-particles. To try to solve the problem of negative
energy solutions Dirac wanted an equation first order in time derivatives. His starting
point was to assume a Hamiltonian of the form,

Hp = a1 P+ as Py + asPs + m (29)

where P; are the three components of the momentum operator p, and «; and 3 are
some unknown (constant) quantities, which, as will be seen below, cannot simply be
commuting numbers.

We should write the momentum operators explicitly in terms of their differential
operators, using equation (22). Then the Dirac equation becomes, using the Dirac
Hamiltonian in equation (29),

oy
za—(—za-V—l—ﬁm)ﬁ) (30)



which is the position space Dirac equation.

If %) is to describe a free particle it must though satisfy the Klein-Gordon equation
so that it has the correct energy-momentum relation. This requirement imposes
relationships among aq, oy, a3 and (3. To see these, apply the operator on each side
of equation (30) twice, i.e. iterate the equation,

I’y i iy i i i 22
—op [—a'a! V'V — i (Ba' + o' B)mV*' + °m*]y
with an implicit sum over 7 and j from 1 to 3. The Klein-Gordon equation by
comparison is
o'

T V'V + m?]yp (31)
If we do not assume that the o' and 3 commute then the KG will be satisfied if
a0 + aja; = 204
fo; + a8 = 0 (32)

g =
for 1,7 =1,2,3. The «o; and 3 cannot be ordinary numbers, but it is possible to give

them a realization as matrices. In this case, ¢» must be a multi-component spinor on
which these matrices act.

In two dimensions a natural set of matrices for the & would be the Pauli matrices

01:<(1) (1)) 02:<? BZ) 03:<(1) _01) (33)

However, there is no other independent 2 x 2 matrix with the right properties for (3,
so the smallest number of dimensions for which the Dirac matrices can be realized is
four. One choice is the Dirac representation:

(D) (%) o

Note that each entry above denotes a two-by-two block and that the 1 denotes the
2 x 2 identity matrix.

There is a theorem due to Pauli that states that all sets of matrices obeying the
relations in (32) are equivalent. Since the hermitian conjugates @' and 37 clearly
obey the relations, you can, by a change of basis if necessary, assume that @ and
are hermitian. All the common choices of basis have this property. Furthermore, we
would like o; and (3 to be hermitian so that the Dirac Hamiltonian (29) is hermitian.

Continuity Equation

If we define .
p=J0=9v,  J=ylay, (35)
then it is a simple exercise using the Dirac equation to show that this satisfies the
continuity equation d,J* = 0. Simply add ¢ DE* + ¢*DF and rearrange it.
Note that p is now positive definite - this seemed like a major achievement to
Dirac.



4.1 Solutions to the Dirac Equation

The wave function in the Dirac equation is a four component vector. To shed light
on what this means lets look at free particle solutions.
We look for plane wave solutions of the form

b= (ggg))) o-i(B=7d) (36)

where ¢(p) and y(p) are two-component spinors that depend on momentum p but
are independent of . Using the Dirac representation of the matrices, and inserting
the trial solution into the Dirac equation gives the pair of simultaneous equations

5(3)=(5"5 ) (3) (37)

There are two simple cases for which equation (37) can readily be solved, namely
1. p =0, m # 0, which might represent an electron in its rest frame.

2. m = 0, p # 0, which describes a massless particle or a particle in the ultra-
relativistic limit (£ > m).

4.1.1 Particle at Rest

For case (1), an electron in its rest frame, the equations (37) decouple and become

simply,

Ex=my, FE¢=—-mo. (38)
So, in this case, we see that y corresponds to solutions with £ = m, while ¢ cor-
responds to solutions with £/ = —m. Dirac had therefore failed to remove these

solutions. In light of our earlier discussions, we no longer need to recoil in horror at
the appearance of these negative energy states.

4.1.2 Dirac’s Interpretation of Negative Energy

As an aside, it is interesting to see how Dirac coped with the negative energy states.

Dirac interpreted the negative energy solutions by postulating the existence of a
“sea” of negative energy states. The vacuum or ground state has all the negative
energy states full. An additional electron must now occupy a positive energy state
since the Pauli exclusion principle forbids it from falling into one of the filled negative
energy states. On promoting one of these negative energy states to a positive energy
one, by supplying energy, an electron-hole pair is created, i.e. a positive energy
electron and a hole in the negative energy sea. The hole is seen in nature as a
positive energy positron. This was a radical new idea, and brought pair creation and
antiparticles into physics.
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Figure 2.2 - Dirac’s filled negative energy states

The problem with Dirac’s hole theory is that it does not work for bosons. Such
particles have no exclusion principle to stop them falling into the negative energy
states, releasing their energy.

4.1.3 General Solutions

The negative energy solutions persist for an electron with p’ = 0 for which the solutions
to equation (37) are

= = . 39

Now we can substitute one of these equations into the other and use (& - p)?* = p*.
Explicitly

@i = (L7 o) .

We find that

G,
from which we deduce that £ = +|/p? + m?|. medskip
We write the positive energy solutions with £ = +|/p? + m?| as

o) = ap ) e, (12)

E—I—mX

while the general negative energy solutions with £ = —|/p? + m?| are

() = (EE_% ) ¢—i(E1=7 ) (43)
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for arbitrary constant ¢ and y. Clearly when p = 0 these solutions reduce to the
positive and negative energy solutions discussed previously.

We want to rewrite the solutions, eqs. (42) and (43), introducing the spinors
Us(s,p) and v,(s,p). The label o € {1,2,3,4} is a spinor index that often will be
suppressed. Take the positive energy solution equation (42) and define

VE+m ( C??,?TX ) e = (s, ple P, (44)
E4+mAT

For the negative energy solution of equation (43), change the sign of the energy,
FE — —F. and the three-momentum, p — —p, to obtain,

VE+m ( %@) P = (s, p)et. (45)

r

In these two solutions F is now (and for the rest of the course) always positive and
given by B = (p? + m?)"/2. The argument s takes the values 1,2, with

X1:<(1))7 X2:<(1))- (46)

The wu-spinor solutions will correspond to particles and the v-spinor solutions to
antiparticles. The role of the two x’s will become clear in the following section, where
it will be shown that the two choices of s are spin labels. Note that each spinor
solution depends on the three-momentum p, so it is implicit that p° = F.

Orthogonality and Completeness
Our solutions to the Dirac equation take the form

Y = Nuge P, Y = Nv.e??  rs=1,2 (47)

The N is a normalization factor. We have already included a normalization factor

v E+m in our spinors. With this factor,
u(r, pyu(s, p) = v'(r, p)o(s, p) = 288", (48)

This corresponds to the standard relativistic normalization of 2F particles per unit
volume - this makes u'u and hence ¢*i transforms like the time component of a
4-vector under Lorentz transformations, as it must to be the zeroth component of J*.
Note that the spinors are orthogonal.

We must further normalize the spatial wave functions. In fact a plane wave is not
normalizable in an infinite space so we will work in a large box of volume V'

/ STide = 2B N2V 6, (49)

where a,b run over the possible values of r,s and the value of p. Note again the
orthogonality of the states. To normalize to 2F particles per unit volume we must

11



set N =1/v/V. Sometimes its helpful to normalize so that [ Vlyd>r = &,y (so that
there is one particle per unit volume) in which case N = 1/v2FEV - this is not a
Lorentz invariant normalization so must be done in a particular frame.

Remember that the solutions to the wave equation form a complete set of states
meaning that we can expand (like a Fourier expansion) an arbitrary function x(x) in
terms of them

X(x) =3 antu(2) (50)

The a, are the equivalent of Fourier coefficients and if y is a wave function in some
quantum mixed state then |a,|* is the probability of being in the state 1,.

4.2 Spin

Now it is time to justify the statements we have been making that the Dirac equation
describes spin-1/2 particles. We will see that the two components of each of the
positive and negative energy solutions describe spin up and spin down states.

Conserved Quantities: Remember that a conserved quantity in quantum mechan-
ics is described by a time independent operator that commutes with the Hamiltonian.
To prove this we evaluate

i) 4 [ o

" oy . O (51)
Note that F is time independent here. Now we use the Schroedinger equation
. Oy
Hiy = ih— 2
v =in2t (52)
to find
d .
% — %/;/;*(HF — FH)bde (53)

So if the commutator [F, H] vanishes the expectation value is conserved.

Now the Dirac Hamiltonian in momentum space is given in equation (29) as

and the orbital angular momentum operator is
L=Rx p.

L and Hp may not commute because they contain x and p which do not commute
([x:, p;] = 16i;). Evaluating the commutator of L with Hp,

[Zv HD] =

—

p,&ﬂ
70_2}7] Xﬁ
7, (55)

X

[
[

O T T

= 1
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we see that the orbital angular momentum is not conserved (otherwise the commu-
tator would be zero).

Now we would like to find a total angular momentum J that is conserved, by
adding an additional operator S to Z,

J=L+5, [J Hpl=0. (56)

To this end, consider the three matrices,
= 5 0 . .
= (U ) = —1a100030, (57)

where the first equivalence is merely a definition of % and the last equality can be
verified by an explicit calculation. The 5 /2 have the correct commutation relations
to represent angular momentum, since the Pauli matrices do, and their commutators
with @ and [ are,

5,8 =0, (X, o] = 2iggjpan. (58)

Here ¢;;; is a totally anti-symmetric tensor which is zero if any of the three indices
are the same - 123 1s +1, and we get a minus sign if we interchange any two indices
s0 €913 = —1. From the relations in (58) we find that

X, Hp] = —2id x . (59)

Comparing equation (59) with the commutator of L with Hp in equation (55),
you see that

[Z+ ivHD] =0,

[N

and we can identify

§ =

[\Dl»—\

as the additional quantity that, when added to Lin equation (56), yields a conserved
total angular momentum J. We interpret S as an angular momentum intrinsic to

52_1<5-5 0)_§<1 0)
T4\ 0 F-3) 4\0 1)

and, recalling that the eigenvalue of J? for spin j is j(j + 1), we conclude that S
represents spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised.

the particle. Now

We worked in the Dirac representation of the matrices for convenience, but the result
is necessarily independent of the representation.
Now consider the u-spinor solutions u(s, p) of equation (44). Choose p'= (0,0, p.)

and write
vV E+m 0
0 VvV E+m
Ut = U(l,p) = T—m |~ Uy = u(va) = 0 . (60)
0 —E—-m

13



With these definitions, we get

1 1
SZUT == §UT7 SZU¢ == —§U¢.

So, these two spinors represent spin up and spin down along the z-axis respectively.

For the v-spinors, with the same choice for p, write,

E—m 0
0 —/E—m
v, = U(l,p) - \/m ) Uy = U(27p) - 0 ’ (61)
0 vV E+m

where now,

1 1
SZU¢ == §U¢, SZUT == _§UT‘

This apparently perverse choice of up and down for the v’s is actually quite sensible
when one realizes that a negative energy electron carrying spin +1/2 backwards in
time looks just like a positive energy positron carrying spin —1/2 forwards in time.

4.3 Lorentz Covariant Notation

There is a more compact way of writing the Dirac equation, which requires that we
get to grips with some more notation. Define the y-matrices,

V=8, F=pd (62)

In the Dirac representation,

<o B) =5 0) )

In terms of these, the relations between the & and [ in equation (32) can be written
compactly as,

{797} = 2¢". (64)

Combinations like a,v" occur frequently and are conventionally written as,

d = a, " = a'y,,

pronounced “a slash.”
Observe that using the y-matrices the Dirac equation (30) becomes

(i) — m)w> = 0. (65)

or, in momentum space,

(= m)is =0, (66)
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The spinors u and v satisfy

(p—m)uls,p) = 0, (67)
(p+m)v(s,p) = 0, (68)

since for v(s,p), ¥ — —F and p' — —p.

We want the Dirac equation (65) to preserve its form under Lorentz transforma-
tions eq. (11). We've just naively written the matrices in the Dirac equation as 7,
however this does not make them a 4-vector! They are just a set of numbers in four
matrices and there’s no reason they should change when we do a boost. However,
the notation is deliberately suggestive, for when combined with Dirac fields you can
construct quantities that transform like vectors and other Lorentz tensors (we won’t
show this here). Since 0" does transform, for the equation to be Lorentz covariant
we are led to propose that ¢ transforms too. As an example of such a transformation
lets look at Parity transformations
Parity

Consider parity (space inversion) transformations, P: ¢, — ¢, -

We wouldn’t expect physics to change because of such a redefinition of our axes
labelling. For the Dirac equation to remain the same though we must also transform

P as

@/J—M//:((l) _01)¢ (69)

To see this works note that under Parity

LR AV 2 gV
@:(_?6 o )7 e e (70)
. o .

o) (E)-(h) o

This means we can write the parity transformed Dirac equation

So

(i) = m)y’ =0 (72)

as
1 0 .
(5 2 )@—me=o (73)
which has the same solutions as the Dirac equation before the transformation as we
require.

The upshot is that we have discovered that particles and anti-particles have op-
posite intrinsic parity.

15



4.4 Massless (Ultra-relativistic) Fermions

At very high energies we may neglect the masses of particles (£? ~ |p]?). Let us look,
therefore, at solutions of the Dirac equation with m = 0, on the basis that this will
be an extremely good approximation for many situations.

From equation (37) we have in this case

E¢=7c-px, Ex=35-po. (74)

These equations can easily be decoupled by taking linear combinations and defining
the two component spinors Ny, and Ng,

Nr=x+¢, Np=x—9¢ (75)

which leads to
ENp =& -pNg, ENp =—6-pNy. (76)

The system is in fact described by two entirely separated two component spinors. If
we take them to be moving in the z direction, and noting that o3 = diag(1, —1), we
see that there is one positive and one negative energy solution in each.

Further since £/ = |p]| for massless particles, these equations may be written

T PN, = Ny, |—;|pNR = Np (77)
p

17l

Now 16—'? is known as the helicity operator (i.e. it is the spin operator projected

s 9 15
in the dliprection of motion of the momentum of the particle). We see that the N,
corresponds to solutions with negative helicity, while Nr corresponds to solutions
with positive helicity. In other words Ny, describes a left-handed particle while Ng
describes a right-handed particle, and each type is described by a two-component
spinor.

Note that under parity transformations ¢ — o (like R x p), p — —p, therefore
g-p— —a-p,i.e. the spinors transform into each other:

NL > NR. (78)

So a theory in which Ny, has different interactions to Ng (such as the standard model
in which the weak force only acts on left handed particles) manifestly violates parity.

Although massless particles can be described very simply using two component
spinors as above, they may also be incorporated into the four-component formalism
as follows. From equation (30) we have, in momentum space,

Pl =a - pi.

For such a solution,

—

ap, S5
7577Z) = 75 —| 77Z) = 2 — 77Z)7
7] 1]
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using the spin operator S = %i = 1474, with % defined in equation (57). But gﬁ/|ﬁ|
is the projection of spin onto the direction of motion, i.e. the helicity, and is equal to

+1/2. Thus (14+?)/2 projects out the particle with helicity 1/2 (right handed) and
(1—+°)/2 projects out the particle with helicity —1/2 (left handed):

define the four-component spinors g and vy,.
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