Relativistic Quantum Mechanics

Question 1:

What is a mass of 1 GeV in kg? What is a cross section of 1 GeV^{-2} in barns?

Answer 1:

Use $E = mc^2$.

$$1eV = 1.6 \times 10^{-19} J \longrightarrow \text{mass of } 1.78 \times 10^{-36} kg$$

So 1GeV is 10^9 bigger ie $1.78 \times 10^{-27} kg$

Next use $E = \hbar c/k$ to relate an energy to a wave vector (distance) (note we want to set $\hbar = 1$ so need an equation with \hbar in connecting energy and length).

$$1eV$$
 corresponds to $\frac{\hbar c}{e}metres = 1.97 \times 10^{-7}m$

So $1GeV^{-1}$ is $1.97 \times 10^{-16}m$ and a cross-section of $1GeV^{-2}$ corresponds to (1 barn = $10^{-28}m^2$)

$$(1.97 \times 10^{-16})^2 m^2 = 3.9 \times 10^{-4} \text{barns}$$

Question 2:

Derive the expressions for probability density in the Klein Gordon and Dirac equations.

Answer 2:

Multiply the KG equation by ϕ^* :

$$\phi^* \left[\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2 \right] \phi = 0$$

Multiply the * of the KG equation by ϕ :

$$\left(\left[\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right]\phi^*\right)\phi = 0$$

Take the second from the first:

$$\phi^* \frac{\partial^2 \phi}{\partial t^2} - \phi \frac{\partial^2 \phi^*}{\partial t^2} - \phi^* \nabla^2 \phi + (\nabla^2 \phi^*) \phi = 0$$

which is

$$\frac{\partial}{\partial t} \left(\phi^* \frac{\partial \phi}{\partial t} - \frac{\partial \phi^*}{\partial t} \phi \right) - \vec{\nabla} \cdot \left(\phi^* \vec{\nabla} \phi - (\vec{\nabla} \phi^*) \phi \right) = 0$$

Which is of the form

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}.\vec{J} = 0$$

with

$$\rho = \left(\phi^* \frac{\partial \phi}{\partial t} - \frac{\partial \phi^*}{\partial t}\phi\right), \qquad \vec{J} = -\left(\phi^* \vec{\nabla} \phi - (\vec{\nabla} \phi^*)\phi\right)$$

You can multiply by i as I did in the notes - then the density is real for a plane wave solution.

Next we multiply the Dirac equation by ψ^{\dagger} († means complex conjugate and transpose)

$$i\psi^{\dagger}\frac{\partial\psi}{\partial t} = \psi^{\dagger}(-i\vec{\alpha}.\vec{\nabla} + \beta m)\psi$$

Take the dagger of the Dirac equation and multiply onto ψ :

$$-i\frac{\partial\psi^{\dagger}}{\partial t}\psi = \psi^{\dagger}(-i\vec{\alpha}.\vec{\nabla} + \beta m)^{\dagger}\psi$$

here we used $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. Now use $\alpha^{\dagger} = \alpha$ and $\beta^{\dagger} = \beta$

$$-i\frac{\partial\psi^{\dagger}}{\partial t}\psi=\psi^{\dagger}(i\vec{\alpha}.\vec{\nabla}+\beta m)\psi$$

Note here ∇ acts to the left not right! Now take this from the first eqn

$$i\psi^{\dagger}\frac{\partial\psi}{\partial t} + i\frac{\partial\psi^{\dagger}}{\partial t}\psi = \psi^{\dagger}(-i\vec{\alpha}.\vec{\nabla}_{left} - i\vec{\alpha}.\vec{\nabla}_{right})\psi$$

Again one ∇ acts on ψ the other on ψ^{\dagger} as indicated.

We finally have

$$i\frac{\partial\psi^{\dagger}\psi}{\partial t} = -i\vec{\nabla}.(\psi^{\dagger}\vec{\alpha}\psi)$$

We which is again a continuity equation and we conclude $\rho = \psi^{\dagger}\psi$ and $\vec{J} = \psi^{\dagger}\vec{\alpha}\psi$.

Question 3:

How would you introduce a potential into the Klein Gordon equation? Think about dimensions and the non-relativistic limit!

Answer 3:

The KG equation is based on

$$E^2 = p^2 c^2 + m^2 c^4$$

Expanding in the non-rel limit

$$E = mc^2 \left(1 + \frac{p^2}{2m}\right)^{1/2} = mc^2 + \frac{p^2}{2m} + \dots$$

Now we want to adjust things so that

$$E - V = \frac{p^2}{2m} + \text{constant}$$

We must use

$$(E - V)^2 = p^2 c^2 + m^2 c^4$$

So the KG equation becomes

$$\left[(i\frac{\partial}{\partial t}-V)^2+\nabla^2\right]\phi=m^2\phi$$

Question 4: (involved)

Consider the wave incident on a potential step shown below.

Show that if $V > m + E_p$ then one cannot avoid getting negative currents and densities. Hint: use the fact that $\phi(x)$ and $\partial \phi(x) / \partial x$ are continuous at x = 0, and ensure that the group velocity $v_g = \partial E / \partial k$ is positive for x > 0. Interpret the solution.

Answer 4:

Each wave must also have a temporal piece of the form e^{-iEt} . We must require this temporal behaviour to match at the barrier (set to be at x = 0):

$$ae^{-iE_pt} + be^{-iE_pt} = ce^{-iE_kt}$$

We must have $E_p = E_k$ for this equation to work for all t. We learn, from the KG equation in the barrier that

$$(E_p - V)^2 = k^2 + m^2$$

We next match the amplitudes and x derivatives at x = 0

$$a+b=c$$

$$-ap + bp = -ck$$

Solving together we get

$$b = \frac{p-k}{p+k}a$$

Next we turn to the group velocity in the barrier $(v_g = \frac{\partial E_p}{\partial k})$

$$(E_p - V)^2 = k^2 = m^2$$
$$2\frac{\partial E_p}{\partial k}(E_p - V) = 2k$$

 So

$$\frac{\partial E_p}{\partial k} = \frac{k}{E_p - V}$$

Now.. since $V > E_p$ we deduce that for a positive group velocity k must be negative.

What does this mean? Look at the relation between a and b above - we see

b > a !!

There are more particles reflected than incident!

The probability density in the barrier is given by

$$\rho = \phi^* (i\frac{\partial}{\partial t} - V)\phi + \phi(-i\frac{\partial}{\partial t} - V)\phi^* = 2(E_p - V)|d|^2$$

which is again -ve. There are anti-particles in the barrier.

Conclusion: we are seeing pair creation at the barrier edge!

Question 5:

Prove that the matrices $\vec{\alpha}$ and β in the Dirac equation are traceless with eigenvalues ± 1 . Hence argue that they must be even dimensional.

Answer 5:

We use $\beta^2 = 1$ to write

$$Tr\alpha^{i} = Tr(\alpha^{i}\beta^{2}) = -Tr(\beta\alpha^{i}\beta)$$

the last following from the basic algebra of the α s and β : $\alpha^i \beta = -\beta \alpha^i$.

Now we use the property of Traces that they are cyclic

$$-Tr(\beta\alpha^{i}\beta) = -Tr(\beta^{2}\alpha^{i}) = -Tr\alpha^{i}$$

We can only have

.

$$Tr\alpha^i = 0$$

We square the eigenvalue equation:

$$\alpha^i v = \lambda v \qquad \rightarrow \qquad (\alpha^i)^2 v = \lambda^2 v$$

Since $(\alpha^i)^2 = 1$ we find $\lambda = \pm 1$.

The Trace of a matrix is given by the sum of its eigenvalues. A 2x2 matrix could have $\lambda = +1, -1$, a 4x4 $\lambda = +1, +1, -1, -1...$ we must have even dimension for the Trace to vanish though.

Question 6:

Show that for the Dirac equation solution spinors

$$u^{\dagger}(r,p) \ u(s,p) \ = \ v^{\dagger}(r,p) \ v(s,p) \ = \ 2E\delta^{rs}$$

Answer 6:

We use

$$u_1 = \sqrt{E+m} \begin{pmatrix} 1 \\ 0 \\ \frac{\vec{\sigma}.\vec{p}}{E+m} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

and in detail

$$\vec{\sigma}.\vec{p} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} p_3 & p_1 - ip_2\\p_1 + ip_2 & -p_3 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} p_3\\p_1 + ip_2 \end{pmatrix}$$

Thus

$$u_1^{\dagger} = \sqrt{E+m} \left(1, 0, \frac{p_3}{E+m}, \frac{p_1 - ip_2}{E+m}\right)$$

So finally we can perform

$$u_1^{\dagger}u_1 = (E+m)\left[1 + \frac{1}{(E+m)^2}(p_3^2 + p_1^2 + p_2^2)\right] = (E+m) + \frac{p^2}{E+m}$$

Writing $p^2 = E^2 - m^2 = (E + m)(E - m)$ we get

$$u_1^{\dagger}u_1 = 2E$$

Next

$$u_{2} = \sqrt{E+m} \begin{pmatrix} 0 \\ 1 \\ \frac{\vec{\sigma}.\vec{p}}{E+m} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \sqrt{E+m} \begin{pmatrix} 0 \\ 1 \\ \frac{p_{1}-ip_{2}}{E+m} \\ \frac{-p_{3}}{E+m} \end{pmatrix}$$

 So

$$u_1^{\dagger}u_2 = (E+m)\left[\frac{1}{(E+m)^2}(p_3(p_1-ip_2)+(p_1-ip_2)(-p_3))\right] = 0$$

I'll let you check the others! :-)

Question 7:

Show using the properties of $\vec{\alpha}$ and β that the γ^{μ} must satisfy the Clifford algebra

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}$$

Answer 7:

Remember $\gamma^0 = \beta$ and $\gamma^i = \beta \alpha^i$.

• $\{\gamma^0, \gamma^0\} = 2\beta^2 = 2 = 2g^{00}$

•
$$\{\gamma^0, \gamma^i\} = \beta \beta \alpha^i + \beta \alpha^i \beta = \beta^2 \alpha^i - \beta^2 \alpha^i = 0$$

•
$$\{\gamma^i,\gamma^j\} = \beta \alpha^i \beta \alpha^j + \beta \alpha^j \beta \alpha^i = -\{\alpha^i,\alpha^j\} = -2\delta^{ij}$$

We've used: $\beta \alpha^i = -\alpha^i \beta$ and $\beta^2 = 1$.

Question 8:

Show that

$$\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$$

Answer 8:

Using the relations in question 7:

$$\mu=0:\qquad \gamma^0\gamma^0\gamma^0=\beta^3=\beta=\beta^\dagger=\gamma^{0\dagger}$$

We've used that β is hermitian (as is α for below).

$$\mu=i : \qquad \gamma^0 \gamma^i \gamma^0 = \beta \beta \alpha^i \beta = -\beta \alpha^i$$

Now note

$$(\gamma^i)^{\dagger} = (\beta \alpha^i)^{\dagger} = \alpha^{i\dagger} \beta^{\dagger} = \alpha^i \beta = -\beta \alpha^i$$

So we find $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$.