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ABSTRACT 

Turbo codes using short binary BCH codes as com- 
ponent codes are investigated. The bit error rate 
(BER) performance of the turbo codes is evaluated 
using binary phase shift keying (BPSK) over addi- 
tive white Gaussian noise (AWGN) channels. The 
effects of various concatenated component codes, 
interleaver size, minimum free-distances, weight-dis- 
tributions as well as puncturing schemes are inves- 
tigated using both union-bounding and simulations. 
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1. INTRODUCTION 

Turbo codes achieve a performance close to the Shannon 
limit[l]. Turbo coding [l, 2, 3, 4, 51 is also referred to as 
parallel-concatenated coding, since it consists of two paral- 
lel constituent systematic encoders linked by an interleaver. 
The block-turbo encoded sequence consists of the informa- 
tion sequence, the parity bits of the first encoder and the 
parity bits of the second encoder. Different component 
codes and puncturing schemes can be employed in order 
to obtain turbo codes with desired rates. For coding rates 
around 1/2 typically Recursive Systematic Convolutional 
(RSC) codes are used as the component codes. However, 
turbo codes using block codes as the component codes were 
found to perform better than RSC codes at near-unity cod- 
ing rates [6]. 

For a given channel, the parameters affecting the per- 
formance of turbo codes include the component codes, the 
decoding algorithms, the interleaver size and algorithm, the 
minimum free-distance and weight-distribution of the codes 
as well as the puncturing scheme. It has been shown in 
[7] that the average bit error probability of turbo codes 
is dominated by a high number of medium-distance weight- 
distribution terms at  low Signal-to-noise Ratios (SNRs). By 
contrast, at high SNRs the performance is predetermined by 
the relatively low number of low-distance, low-weight dis- 
tribution terms, since high-distance codewords are rarely 
encountered in high-SNR channels. It has also been shown 
that the interleaver size and structure have an explicit ef- 
fect on the turbo code’s performance. At low SNRs, the 
interleaver size is much more important than its structure, 
while, at  high SNRs, the performance can be improved by 
appropriately selecting the interleaver structure. 
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The intention of this paper is to characterize the per- 
formance of short binary BCH block codes as turbo com- 
ponent codes. Our further intention is to illuminate their 
weight distribution and to  study the effects of different dis- 
tributions on shaping the associated bit error rate (BER) 
curves to suit various applications. Hence the BER of the 
turbo codes investigated was evaluated by simulation. The 
effects of free-distance, interleaver size, puncturing scheme 
and component codes on the performance was also studied. 
Furthermore, the weight-distribution of turbo codes and its 
effects on the bit error probability was evaluated, indicat- 
ing that most error events were contributed by the first few 
weight-distribution terms. Our finidings are applicable to 
arbitrary constituent codes, interleavers and puncturers, al- 
though for the sake of maintaining a low complexity, here 
we considered short codes and interleavers. 

2. TURBO ENCODER 

The structure of the binary turbo BCH (TBCH) encoder is 
shown in Fig. 1. Two systematic BCH encoders are used 
as component codes with an interleaver placed before the 
second BCH encoder. The interleaver is used to  permute 
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Figure 1: Turbo BCH (TBCH) Encoder Schematic. 

the information databits such that the two encoders are 
operating on the same set of input bits, but - due to  the in- 
terleaver’s randomising effect - on differently ordered input 
sequences. Therefore the information bits of the 1st BCH 
encoder are spread into more than one BCH codewords in 
the 2nd encoder branch. In this contribution block inter- 
leaving was invoked. The interleaver size, N was defined as 
the product of the number of columns, K1, and the number 
of rows, KZ of the interleaver, yielding N = K1 x Kz , 
where N is assumed to be divisible by the information- 
word length, k ,  so that it could be efficiently filled. Hence, 
the value of k ,  which represents the length of information 
databits of the component codes, determines the choice of 
the interleaver. 
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The turbo codeword consists of the information bits - 
which are only transmitted once - followed by the parity 
check bits generated by both encoders. The parity check 
bits are often punctured according to various puncturing 
patterns and then multiplexed. Here the aim of puncturing 
is to obtain a high-rate code, which is implemented by peri- 
odically deleting some of the coded bits from a low-rate en- 
coder's output. Hence, by applying puncturing techniques, 
turbo codes having required code rate can be generated at 
the cost of coding performance degradation. 

3. CODE R A T E  OF B L O C K  T U R B O  C O D E S  

As an example, a TBCH(7,4,3) code with interleaver size 
of N = K1 x K Z  = 4 x 2 ,  i.e., K1 = 4, Kz = 2 contains 
two 4-bit words. Viewing the coding scheme of Fig.1 as a 
single turbo encoder, the length of the information-word to 
be encoded by the turbo code, K L ,  is given by the size of 
the interleaver, N .  However, since each of the two BCH 
encoders produces n - k = 3 parity bits, where n represents 
the length of the component codes, the total number of 
parity bits, PL, of the turbo codeword is given by: 

N 
k 

PL = - x 2 ( n - k ) ,  

which equals to PL = 2 x 2 x 3 = 12 bits in this example. 
The length of the turbo codeword, L,  is given by: 

L = K L + P L  
= N + - x 2 ( n - k ) ,  N 

k 
which equals to  L = 8 + 12 = 20 bits in our example. 
Consequently, the code rate for non-punctured turbo codes 
can be computed by: 

(3) 

Eq.(3) implies that the unpunctured turbo code rate is in- 
dependent of the interleaver size N .  

By contrast - in conjunction with puncturing - let us 
assume that pw is the number of desirable parity bits after 
puncturing, which have to be appended to the information- 
word in order to  form a codeword. In other words, pw 
indicates the number of parity bits to be retained from the 
total number of PL parity bits. Hence, the code rate of 
punctured block-based turbo codes can be expressed as: 

which is explicitly dependent on the puncturing scheme. 

4. U N I O N  B O U N D  OF BIT E R R O R  
P R O B A B I L I T Y  

Let us assume that the turbo encoded bits are transmitted 
using Binary Phase Shift Keying (BPSK) over the Additive 
White Gaussian Noise (AWGN) channel. The union bound 
of the post-decoding BER using trellis-based soft-decision 
(SD) Viterbi decoding of TBCH codes can be expressed as 
PI: 

where N is the interleaver size, L is the codeword length 
of the TBCH code and d,,, is the minimum Hamming 
distance between two TBCH codewords. The coefficient 
wd is defined as the total number of erroneous information 
databits in a weight-d path and R is the code rate. Finally, 
erfc(z) represents the complementary error function defined 
as [9]: 

erfc(z) = - exp(-t2)dt (6) x- 
while &/No is the bit-SNR. 

5. DISTANCE P R O P E R T I E S  OF T U R B O  
C O D E S  

There are numerous parameters that affect the performance 
of turbo codes. Some of them are inter-related. Hence, 
from now on, we shall focus our attention on the coding 
performance of turbo codes in conjunction with certain pa- 
rameters. In this section, we first consider the effect of 
the distance (or weight) distribution on the coding perfor- 
mance. We note that, since BCH codes are employed as 
the component codes of the TBCH codes investigated, the 
distance properties of TBCH codes are similar to those of 
BCH codes. 

5.1. Effects of Distance Spec t rum 

Let the transmitted codeword be an all-zero codevector, 
where D represents the Hamming distance of a given code- 
word from the all-zero codevector. Moreover, we assume 
that pbp(D) represents the union bound of the bit error 
probability contributed by the codewords having a distance 
of D from the transmitted codevector. The distribution 
of pbp(D) as a function of D is defined as the distance- 
spectrum, which can be expressed as: 

according to Eq.(5) for D = d,,,,d,,, + 1 , .  . . , n .  Ex- 
plicitly, the union bound performance of a code is deter- 
mined by the sum of all the distance-spectrum terms hav- 
ing Hamming distance d,,, , d,,, + 1, . . . , n.  These weight- 
distribution terms have different degree of influence on the 
union bound performance. Specifically, pbp (d,,,) is defined 
as the first distance spectrum term, while pbp(dmln + j - 
l ) ,  j = 1 , 2 , .  . . , n  - k is defined as the j t h  distance spec- 
trum term. 

In turbo codes, the free distance dfree is defined as the 
minimum Hamming distance. WdtVee is the total number of 
erroneous information databits - ie excluding the parity bits 
- in all codewords having a distance corresponding to  the 
free distance from the all-zero codevector. Hence, the first 
distance spectrum term corresponding to the free distance 
is given by: 

Fig. 2 shows the union bound BER performance of the 
TBCH(7,4,3) code and the BER curves corresponding to 
its free-distance, 2nd and 3rd distance spectrum terms as a 
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Figure 2: Union bound performance of the TBCH(7,4,3) 
code for an information segment size of N = 4 x 4 along 
with its simulated performance. The associated BER of the 
first three distance spectrum terms is also shown, demon- 
strating the influence of the free-distance spectrum term on 
the union bound. 

function of the average SNR per bit expressed as Eb/No. 
From the results we notice that the contribution of the 
2nd distance spectrum term is more considerable, than that 
of the 1st term, when &/No < 2dB. However, the union 
bound is more and more dominated by the the free-distance 
spectrum term, when increasing the SNR per bit. 

Fig. 3 shows the weight-distribution of the TBCH(7,4,3) 
code with interleaver size of N = 4 x 2 and code rate of 
R = 4/(4+3+3) = 0.40, as well as that of the TBCH(7,4,3) 
code with interleaver size of N = 4 x 4 and R = 0.4. It 
can be observed that the weight-distribution is significantly 
changed, when changing the interleaver size N .  Although 
the code rate remained constant, i.e. R = 0.40 for the 
TBCH(7,4,3) code, df,,, for the code with N = 4 x 2 is 
4, while for the code with N = 4 x 4 we have cifree = 5, 
and their corresponding number of ‘D’ terms are 2 and 9, 
respectively. 

4 we show the effect of the distance spectra 
on the bit error rate performance of the TBCH(7,4,3) code 
with N = 4 x 2 and N = 4 x 4, corresponding to the 
weight-distributions in Fig.3, respectively. In the figures, 
the influence of the first and last several distance spectrum 
terms was evaluated. It is clear that the BER effects of the 
higher-weight D-terms are less dramatic. Therefore, the 
distance spectrum terms corresponding to high D values 
have a less significant influence on the union bound BER 
performance. However, we observe in Fig.4 that for the 
TBCH(7,4,3) code having N = 4 x 2, the BER-influence 
of the 2nd spectrum term is higher, than that of the free- 
distance term, when &/No < 5dB. By contrast, for the 
TBCH(7,4,3) code having N = 4 x 4, the BER-curve asso- 
ciated with the 3rd spectrum term is nearer to the union 
bound than the free-distance spectrum term related BER- 
curve, when &/No < 2dB. These results can be explained 
with the aid of the corresponding weight distribution func- 
tions, which were shown in Fig.3. For the TBCH(7,4,3) 

In Fig. 

TBCH(7,4,3) N=4x2 R=0.40 
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Figure 3: Weight distribution of the TBCH(7,4,3) code for 
N = [4 x 4,4 x 21, showing the effects of increasing the 
interleaver size, N ,  of the TBCH codes, which maintaining 
a constant coding rate, R. 

1. 

2. 

3. 

code using N = 4 x 2,  it is observed that the second weight 
spectrum line is significantly higher than the first one, which 
consequently has a significant contribution to the bit error 
rate, even though the probability having five bit errors is 
slightly lower, than that of having four bit errors. Simi- 
larly, for the TBCH(7,4,3) code using N = 4 x 4, the 3rd 
weight spectrum line is significantly higher than both the 
1st and the 2nd weight spectrum lines, which explains the 
relationship amongst the various BER curves in Fig.4 for 
the TBCH(7,4,3) code using N = 4 x 4. 

Nevertheless, a weight-spectrum having a high d f r e e  
will result in an improved union bound BER performance. 
Hence, ‘good’ turbo codes exhibit the following properties: 

High free distance. 

Low ‘density’ of the free-distance weight spectrum 
term. 

The first few weight spectrum lines exhibit low den- 
sities. 

6. EFFECTS OF BLOCK INTERLEAVING 

In this section the performance of various turbo codes was 
evaluated using different interleaving memories. For block 
interleaving, the information bits are written into the block 
interleaver on a row by row basis and then passed to the sec- 
ond encoder on a column by column basis. This interleaver 
has to be fully filled by the databits, before its contents are 
read out, as we discussed previously. 

In Fig.5, the BER performance of the TBCH(7,4,3) code 
with R=0.40 and different interleaver sizes was evaluated 
by union-bounding and by simulations. The union bounds 
were computed from Eq.(5). The results show that - as ex- 
pected - the BER performance of the TBCH(7,4,3) code can 
be improved by increasing the interleaver size. However, the 
incremental performance improvements are reduced, when 
increasing the interleaver size. 
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Figure 4: Union bound BER and the BER contribution of 
other weight-distribution terms of the TBCH(7,4,3) code 
for N = [4 x 2,4 x 41. 

Figure 5: Comparison Of union bound and simulation based 
BER performance for the TBCH(7,4,3) code using N = 
[4 x 1 , 4  x 2,4 x 3,4 x 41. 

7. EFFECTS O F  P U N C T U R I N G  
decreased by transmitting more parity bits, i.e., by increas- 
ing the value of p ,  in Eq.(4). Note that the puncturing 
patterns in the figure are expressed in hexadecimal form. 

7.1. Punc tu r ing  Patterns 

Puncturing is an often-used technique invoked, in order for 
a code to achieve the desired code rate. The more parity 
bits in the codeword of a systematic code are deleted by 
puncturing, the higher the code rate. 

The total size of the parity section for the TBCH(7,4,3) 
code with interleaver size N = 4 x 4 is given by Eq.(l), 
which is 24 bits in this case. Hence, there are N / k  = 4 
information-words in the interleaver and there are N / k  = 4 
codewords produced by each encoder, before new infor- 
mation databits are written into the interleaver in a new 
turbo encoding cycle. Each codeword has n - k = 3 par- 
ity bits, which are punctured according to the puncturing 
patterns. Hence, each puncturing pattern has n - A = 3 
bits. If, for example, the 3 parity bits of a 7-bit code- 
word of the TBCH(7,4,3) code are punctured by the pat- 
tern 011b;n , then the codeword becomes 'ddddOpp', where 
'd' represents the position of the unpunctured information 
databit, 'p' represents the position of the unpunctured par- 
ity bit, and '0' represents the position of the punctured 
parity bit. Each encoder produces N / k  = 4 codewords at 
each cycle, hence there are 8 puncturing patterns associ- 
ated with the 8 original BCH codewords for the two en- 
coder outputs. Let us represent the puncturing patterns 
by [Pipipi, PiPiPi, PiPiPi, PiPiPi, Pzpd'z, PzPzPz, 
PzPzPz, PZpZPZ]bin, which represents the 8 x 3 = 24 parity 
bits of a turbo-coded word, where Pi represents the par- 
ity of the first encoder and P2 that of the second encoder. 
These binary puncturing patterns are then converted into 
hexadecimal form for reasons of compactness. 

7.2. Performance of Punc tu r ing  

As we discussed at the beginning of this section, punctur- 
ing a codeword results in a trade-off between transmission 
efficiency and coding performance. This phenomenon is ex- 
plicitly portrayed in Fig. 6, where the BER performance 
of the TBCH(7,4,3) code is enhanced, as the code rate is 

Soft Decision TBCH(7,4,3) N=4x4 codes 

1 2 3 4 5 6 7 8  

Figure 6: Union bound BER performance of the 
TBCH(7,4,3) code using an N = 4 x 4 interleaver for 
R=[0.41,0.44,0.57], showing the effect of puncturing by in- 
creasing the coding rate, R. 

We also note that the BER performance of a turbo code 
having a fixed code rate depends on the specific puncturing 
pattern employed. Fig.7 demonstrates this effect, where 
the results were computed according to Eq.(5), indicating 
that the performance of the codes may differ significantly 
by applying different puncturing patterns. Hence, for each 
application the optimum puncturing patterns have to be 
found. 

For the TBCH(7,4,3) code using an interleaver size of 
N = 4 x 4 and p ,  = 12, when half of the parity bits are 
deleted, the optimum puncturing patterns have been ob- 
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Figure 7: Union bound BER performance of the 
TBCH(7,4,3) code using an N = 4 x 4 interleaver and a 
range of puncturing patterns with R = 417, showing the 
effect of puncturing at  a constant coding rate, R. 

tained, which are in Table 1. It can be expressed as 45BA5C 
in hexadecimal form , or 0 1000 10 1 10 1 1 10 100 10 1 1 100=45B A5 C 
in the binary form, as shown in Fig.7. This pattern results 
in dmin = 3, which is the highest possible distance that 
could be found for all puncturing patterns associated with 
pw = 12. The corresponding weight density is W(d,i,) = 
20, which is the lowest possible value for the punctured code 
with d,,, = 3 that can be achieved. 

dddd 
dddd 

Table 1: The optimum puncturing patterns of the 
TBCH(7,4,3) code using N = 4 x 4, where ‘d’ and ‘XI  

represent the positions of the original information databit 
and the interleaved information databit, respectively, while 
‘1’ and ‘0’ represent the positions of the unpunctured and 
punctured parity bits, respectively. The puncturing pattern 
can be expressed as 45BA5C in hexadecimal form. 

8. SUMMARY AND CONCLUSION 

Our discussions have been focused on analysing the perfor- 
mance and weight distribution of short block based turbo 
codes. The effect of turbo interleaving and puncturing were 
studied. We found that there is a certain grade of freedom in 
shaping the weight distribution and hence the BER curve. 
However, further study is required, in order to improve the 
TBCH code design flexibility by facilitating a more ’be- 
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spoke’ BER curve design for specific applications. A range 
of algorithms that can be used for decoding the TBCH codes 
studied in this contribution were characterised in [lo], while 
as an application example, an adaptive-rate turbo block 
coded transceiver was proposed and investigated in 1111. 
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