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ABSTRACT

Coded Modulation is a bandwidth efficient scheme
that combines the functions of coding and modu-
lation. In this contribution, a comparative study
of Trellis Coded Modulation (TCM), Turbo Trellis
Coded Modulation (TTCM), Bit-Interleaved Coded
Modulation (BICM) and Iterative Decoding assisted
BICM (BICM-ID) schemes over Gaussian and un-
correlated narrowband Rayleigh fading channels is
presented in the context of 8-level Phase Shift Key-
ing (8PSK), 16 Quadrature Amplitude Modulation
(16QAM) and 64QAM. We comparatively study the
associated decoding complexity, block length and
bandwidth efficiency. It is shown that TTCM con-
stitutes the best compromise scheme, followed by
BICM-ID.

1. INTRODUCTION

One of the most important objectives in the design of digi-
tal cellular systems is the efficient exploitation of the avail-
able spectrum in order to accommodate the ever-increasing
traffic demands. The design of coded modulation schemes
is affected by a variety of criteria. A high squared Free Eu-
clidean Distance (FED) is desired for Additive White Gaus-
sian Noise (AWGN) channels, while high Effective Code
Length (ECL) and minimum product distance are desired
for fading channels [1].

Trellis Coded Modulation (TCM) [2] was proposed orig-
inally for Gaussian channels, which was further developed
for applications in mobile communications [1, 3]. Turbo
Trellis Coded Modulation (TTCM) [4] is a more recent joint
coding and modulation scheme that has a structure similar
to that of the family of power efficient binary turbo codes
[5], but employs TCM schemes as component codes. TTCM
[4] requires 0.5 dB lower Signal-to-Noise Ratio (SNR) at a
bit error rate (BER) of 107 than binary turbo codes over
AWGN channels for 8PSK. TCM and TTCM invoked Set-
Partitioning (SP) based signal labeling, in order to achieve
a higher FED between the unprotected bits of the con-
stellation, so that parallel trellis transitions can be associ-
ated with the unprotected Information Bits (IBs). This re-
duced the decoding complexity. Furthermore, in our TCM
and TTCM investigations, random symbol interleavers were
utilised.

Another coded modulation scheme distinguishing itself
by utilising bit-based interleaving in conjunction with Gray
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Figure 1: System overview of different coded modulation
schemes.

signal constellation labeling is referred to as Bit-Interleaved
Coded Modulation (BICM) [6]. More explicitly, BICM com-
bines conventional convolutional codes with several inde-
pendent bit interleavers, in order to increase the achievable
diversity order. With the aid of bit interleavers the code’s
diversity order can be increased to the binary Hamming dis-
tance of a code [6]. The number of parallel bit-interleavers
equals the number of coded bits in a symbol for the BICM
scheme proposed in [6]. The performance of BICM is bet-
ter than that of TCM over uncorrelated (or perfectly in-
terleaved) narrowband Rayleigh fading channels, but worse
than that of TCM in Gaussian channels due to the reduced
Euclidean distance of the bit-interleaved scheme [6].
Recently iterative joint decoding and demodulation as-
sisted BICM referred to as BICM-ID was proposed in [7,
8], which uses SP based signal labeling. The approach of
BICM-ID is to increase the Euclidean distance of BICM and
hence to exploit the full advantage of bit interleaving with
the aid of soft-decision feedback based iterative decoding

[8].

2. SYSTEM OVERVIEW

The schematic of the coded modulation schemes under con-
sideration is shown in Figure 1. The source generates ran-
dom IBs, which are encoded by one of the TCM, TTCM or
BICM encoders. The coded sequence is then appropriately
interleaved and used to modulate the waveforms according
to the symbol mapping rules. For a narrowband Rayleigh
fading channel in conjunction with coherent detection, the
relationship between the transmitted discrete time signal z+
and the received discrete time signal y; is given by

yi = pexe + n, (1)



where p; is the Rayleigh-distributed fading amplitude hav-
ing an expected value of E(p?) = 1, while n; is the complex
AWGN with variance o7 = 04 = No/2. For AWGN chan-
nels we have p; = 1. The receiver consists of a coherent de-
modulator followed by a deinterleaver and one of the TCM,
TTCM or BICM decoders. TTCM schemes consist of two
component TCM encoders and two parallel decoders. In
BICM-ID schemes the decoder output is appropriately in-
terleaved and fed back to the demodulator input, as shown
in Figure 1.
The log-domain branch metric required for the maximum-

likelihood decoding of TCM and TTCM over fading chan-
nels is

™ = |ye — pewe|”, (2)

whereas the corresponding branch metric for BICM and
BICM-ID is formed by summing the deinterleaved bit met-
rics A of each coded bit v}, yielding

m+1

Tt = Z )\(UZ =b), ®3)

where 7 is the bit position of the coded bit in a constellation
symbol, m is the number of IBs per symbol and b € (0, 1).
The number of coded bits per symbol is (m + 1), since
the coded modulation schemes add one parity bit to the m
IBs by doubling the original constellation size, in order to
maintain the same spectral efficiency of m bits/s/Hz.

The BICM bit metrics A before the deinterleaver are
defined as [7]

Avi=b) = minly; — pia|’,

x € x(i,b) 4)

where x (%, b) is the signal set, for which the bit 4 of the sym-
bol has a binary value b. The average bit error probability
of TCM using MPSK [2] over Rician channels at high SNR
is given by [1]

1
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where C is a constant that depends on the distance struc-
ture of the code, B is the number of bits in the transmission
block, while K is the Rician fading parameter. Further-
more, L is the so-called shortest error event path, i.e. the
ECL or the minimum symbol Hamming distance between
the transmitted and received sequence. Finally, Es/Np is
the channel’s symbol energy to noise spectral density ratio.
It is clear from Equation 5 that P, varies inversely propor-
tionally with (Es/No)* and this ratio can be increased by
time and space diversity [1]. Diversity may be obtained by
repetition coding (which reduces the effective data rate),
space-time coded multiple transmitter/receiver structures
(which increases cost and complexity) or by simple inter-
leaving (which induces latency).

The coded modulation schemes that we comparatively
studied are Ungerboeck’s TCM [2], Robertson’s TTCM [4],
Zehavi’s BICM [6] and Li’s BICM-ID [8]. Table 1 shows
the generator polynomials for the TCM and TTCM codes
in octal format. These are systematic codes that add one
parity bit to the IBs. Hence, the coding rate for a 2™T!-

ary signal in PSK or QAM is R = 5. The number of

1+ K)e ¥

./ No ) s Es/[No > K (5)

| Rate [State [ m | H [H' | H | H ]
2/3 8 2 [ 11 [02]04] -
(8PSK) | 64* | 2 | 103 | 30 | 66 | -
3/4 8 3] 11020410
(16QAM) | 64* || 3 | 101 | 16 | 64 | -
5/6 8 2 [ 11 |02 ] 04 -
(64QAM) | 64 * || 2 | 101 | 16 | 64 | -

Table 1: “Punctured” TCM codes with best minimum dis-
tance for PSK and QAM, ©Robertson and Worz [4]. '*
indicates Ungerboeck’s TCM codes [2]. Two-dimensional
(2D) modulation is utilised. Octal format is used to rep-
resent the generator polynomials H* and m denotes the
number of coded IBs.

decoding states for a code of memory K is 2X. When the
number of protected IBs 7 is less than the total number of
original IBs m, there are (m — 1) uncoded IBs and 2™~ ™
parallel transitions in the trellis of the code. Parallel tran-
sitions assist in reducing the decoding complexity and the
memory required.

[ Rate | State [ 5 [ [ &[0 [ dree |
2/3 8 4126 - 4
(8PSK) | (M=3) | 1 | 4 | 7| -
16 7 1 4 - 5
(M=4) | 2 | 5 | 7| -
64 15| 6 | 15 | - 7
(M=6) | 6 | 15 | 17 | -
3/4 8 44|44 4
(16QAM) | (M=3) | 0 6 2 4
0 2 5 5
32 6 2 2 6 5
(M=5) | 1 6 0 7
0 2 5 5
| Rate | State | g1 | g2 | Puncturing | dfree |
5/6 8 15 17 10010 3
(64QAM) | (M=3) 01111
64 133 | 171 11111 3
(M=6) 10000

Table 2: Top table shows the generator polynomials of
Paaske’s code, page 331 of [9]. Bottom table shows those
of the Rate-Compatible Puncture Convolutional codes [10].
M is the code memory and dfyee is the free Hamming dis-
tance. Octal format is used for the polynomial coefficients
g%, while '1’ and ’0’ in the puncturing matrix indicate the
position of the unpunctured and punctured coded bits, re-
spectively.

Table 2 shows the generator polynomials for the BICM
and BICM-ID codes in octal format. These codes are non-
systematic convolutional codes with maximum free Ham-
ming distance. Again, only one extra bit is added to the
IBs. Hence, the coding rate and the spectral efficiency are
similar to that of TCM and TTCM for the 2™ '-ary mod-
ulation schemes used. In order to reduce the required de-
coding memory, the BICM and BICM-ID schemes based
on 64QAM were obtained by puncturing the rate-1/2 codes
following the approach of [10].

Soft decision trellis decoding utilizing the Log-Maximum
A Posteriori (Log-MAP) algorithm [11] was invoked for the



decoding of the coded modulation schemes. The Log-MAP
algorithm is a numerically stable version of the MAP algo-
rithm operating in the log-domain, in order to reduce its
complexity and to mitigate the numerical problems associ-
ated with the MAP algorithm [12].

3. SIMULATION RESULTS AND
DISCUSSIONS

In this section we study the performance of TCM, TTCM,
BICM and BICM-ID using computer simulations. The com-
plexity of the coded modulation schemes is compared in
terms of the number of decoding states and the number of
decoding iterations. For a TCM or BICM code of mem-
ory M, the corresponding complexity is proportional to the
number of decoding states S = 2. Since TTCM schemes
invoke two component TCM codes, a TTCM code with ¢
iterations and using an S-state component code exhibits a
complexity proportional to 2.t.S or t.2M*!. As for BICM-
ID schemes, only one decoder is used but the demodulator
is invoked in each decoding iteration. However, the com-
plexity of the demodulator is assumed to be insignificant
compared to that of the decoder. Hence, a BICM-ID code
with ¢ iterations using an S-state code exhibits a complexity
proportional to ¢.S or t.2.

3.1. AWGN Channels
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Figure 2: Effects of block length on the TCM, TTCM and
BICM-ID performance in an 8PSK scheme over AWGN
channels.

Figure 2 illustrates the effects of interleaving block length
on the TCM, TTCM and BICM-ID performance in an 8PSK
scheme over AWGN channels. It is clear from the figure
that a high interleaving block length is desired for the it-
erative TTCM and BICM-ID schemes. The block length
does not affect the BICM-ID performance during the first
pass, since it constitutes a BICM scheme using SP based
phasor labeling. However, if we consider four iterations,
the performance improves, converging faster to the Error-
Free-Feedback (EFF) bound [7] for larger block lengths. At
a BER of 10™* a 500-bit block length was about 1 dB in-
ferior to the 2000-bit block length in the context of the

BICM-ID scheme. A slight further improvement was ob-
tained for the 4000-bit block length. In other words, the
advantage of BICM-ID over TCM is more significant for
larger block lengths. The 8-state TTCM performance also
improves, when using four iterations, as the block length is
increased.
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Figure 3: Effects of decoding complexity on the TCM,
TTCM, BICM and BICM-ID performance in an 8PSK
scheme over AWGN channels using a block length of 4000
IBs (2000 symbols).

Figure 3 shows the effects of the decoding complexity
on the TCM, TTCM, BICM and BICM-ID performance in
an 8PSK scheme over AWGN channels using a block length
of 4000 IBs (2000 symbols). The 64-state TCM, 64-state
BICM, 8-state TTCM using four iterations and 16-state
BICM-ID along with four iterations exhibit a similar com-
plexity. At a BER of 10~*, TTCM requires about 0.6 dB
lower SNR than BICM-ID, 1.6 dB less energy than TCM
and 2.5 dB lower SNR than BICM. When the coding com-
plexity is reduced such that 8-state codes are used in the
TCM, BICM and BICM-ID schemes, their corresponding
performance becomes worse than that of the 64-state codes,
as shown in Figure 3. In order to be able to compare the
associated performance with that of 8-state BICM-ID us-
ing four iterations, 8-state TTCM along with two iterations
is employed. Observe that due to the insufficient number
of iterations, TTCM exhibits only marginal advantage over
BICM-ID.

Figure 4 shows the performance of TCM, TTCM and
BICM-ID invoking 16QAM over AWGN channels using a
block length of 6000 IBs (2000 symbols). Upon comparing
64-state TCM with 32-state BICM-ID using two iterations,
we observed that BICM-ID outperforms TCM, for Ej;/Ng
in excess of 6.8 dB. However, 8-state BICM-ID using an
increased number of iterations, such as four or eight, out-
performs the similar complexity 32-state BICM-ID employ-
ing two iterations as well as 64-state TCM. About 1.2 dB
E, /Ny gain was obtained at BER = 10~* for 8-state BICM-
ID using eight iterations over 64-state TCM at a similar
decoding complexity. Comparing 8-state TTCM using two
iterations and 8-state BICM-ID employing four iterations
reveals that BICM-ID performs better for the Ej, /Ny range
of 5.7 dB to 7 dB. When the number of iterations is in-
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Figure 4: Comparison of TCM, TTCM and BICM-ID em-
ploying 16QAM over AWGN channels using a block length
of 6000 IBs (2000 symbols).

creased to four for TTCM and to eight for BICM-ID, TTCM
exhibits a better performance, as seen in Figure 4.
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Figure 5: Comparison of TCM, TTCM, BICM and BICM-
ID using 64QAM over AWGN channels.

Due to the associated SP, the intrasubset distance of
TCM and TTCM increases down the partition tree. It
was shown in [4] that we only need to encode m = 2 out
of 5 IBs in the 64QAM/TTCM for target BERs around
10~° in AWGN channels. Hence there are 2°™ = 8 par-
allel transitions due to the three uncoded IBs in the trel-
lis of 64QAM/TTCM. Figure 5 illustrates the performance
of TCM, TTCM, BICM and BICM-ID using 64QAM over
AWGN channels. When using a block length of 10000 IBs
(2000 symbols), 8-state TTCM with four iterations is the
best candidate, followed by the similar complexity 8-state
BICM-ID scheme employing eight iterations. Again, TCM
performs better than BICM in AWGN channels. When
a block length of 1250 IBs (250 symbols) was used, both
TTCM and BICM-ID experienced a performance degrada-
tion. It is also seen in Figure 5 that BICM-ID performs

closer to TTCM, when a longer block length is used.

3.2. Uncorrelated Narrowband Rayleigh Fading Chan-
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Figure 6: Comparison of TCM, TTCM, BICM and BICM-
ID for 8PSK over uncorrelated Rayleigh fading channels
using a block length of 4000 IBs (2000 symbols).

The uncorrelated Rayleigh fading channels implied us-
ing an infinite-length interleaver over narrowband Rayleigh
fading channels. Figure 6 shows the performance of 64-
state TCM, 64-state BICM, 8-state TTCM using four it-
erations and 16-state BICM-ID employing four iterations
in an 8PSK scheme over uncorrelated narrowband Rayleigh
fading channels for a block length of 4000 IBs (2000 sym-
bols). These four coded modulation schemes have a similar
complexity. As can be seen from Figure 6, TTCM performs
best, followed by BICM-ID, BICM and TCM. At a BER
of 107%, TTCM performs about 0.7 dB better than BICM-
ID, 2.3 dB better than BICM and 4.5 dB better than TCM.
The error floor of TTCM [4] was lower than the associated
EFF bound of BICM-ID. However, the BERs of TTCM and
BICM-ID were identical at Ey/No = 7 dB.

Figure 7 compares the performance of TCM, TTCM
and BICM-ID invoking 16QAM over uncorrelated narrow-
band Rayleigh fading channels using a block length of 6000
IBs (2000 symbols). Observe that 32-state BICM-ID using
two iterations outperforms 64-state TCM for Ej /Ny in ex-
cess of 9.6 dB. For the same complexity, the 8-state BICM-
ID invoking eight iterations outperforms 64-state TCM be-
yond E}/No = 8.2 dB. Similar to 8PSK, the coding gain
of BICM-ID over TCM in the context of 16QAM is more
significant over narrowband Rayleigh fading channels com-
pared to AWGN channels. Near the E,/No of 11 dB the
8-state BICM-ID approaches the EFF bound, hence 32-
state BICM-ID using two iterations exhibits a better per-
formance due to its lower EFF bound. Observe also that
8-state BICM-ID using four iterations outperforms 8-state
TTCM employing two iterations in the range of Ey/Ny =
8.5 dB to 12.1 dB. Increasing the number of iterations only
marginally improve the BICM-ID, but results in a signifi-
cant gain for TTCM. The performance of 8-state TTCM
using four iterations is better than that of 8-state BICM-
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Figure 7: Comparison of TCM, TTCM and BICM-

ID for 16QAM over uncorrelated narrowband Rayleigh
fading channels transmitting 2000 symbols/block (6000
IBs/block).

ID along with eight iterations for Ej /Ny values in excess of
9.6 dB.
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Figure 8: Comparison of TCM, TTCM, BICM and BICM-
ID using 64QAM over uncorrelated narrowband Rayleigh
fading channels.

Figure 8 illustrates the performance of TCM, TTCM,
BICM and BICM-ID invoking 64QAM over uncorrelated
narrowband Rayleigh fading channels. Using a block length
of 10000 IBs (2000 symbols), 64-state BICM performs bet-
ter than 64-state TCM for Ej; /Ny in excess of 15 dB. BICM-
ID exhibits a lower error floor than TTCM in this scenario,
since BICM-ID encodes all the five IBs while TTCM en-
codes only two of the six 64QAM bits. The three unpro-
tected IBs of TCM and TTCM render these schemes less
robust to the uncorrelated fading channel. If we use a bet-
ter TCM or TTCM code generator that encodes all the five
IBs, a better performance is expected. Reducing the block
length from 2000 symbols to 250 symbols resulted in a small
degradation for TTCM, but yielded a significant degrada-

tion for BICM-ID.

4. CONCLUSION

In conclusion, at a given complexity TCM performs bet-
ter than BICM in AWGN channels, but worse in uncor-
related narrowband Rayleigh fading channels. However,
BICM-ID using soft decision feedback outperforms TCM
and BICM over both AWGN and uncorrelated narrowband
Rayleigh fading channels at the same decoding complex-
ity. TTCM has shown superior performance over the other
coded modulation schemes studied, but exhibited a higher
error floor due to the uncoded IBs over uncorrelated nar-
rowband Rayleigh fading channels.
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