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ABSTRACT

A Radial Basis Function (RBF) assisted turbo equa-
liser (TEQ) scheme is investigated, which is based
on various coded modulation schemes. Specifi-
cally, Trellis Coded Moudulation (TCM), Turbo
Trellis Coded Modulation (TTCM), Bit-Interleav-
ed Coded Modulation (BICM) and BICM with
iterative decoding (BICM-ID) are studied, when
communicating over frequency selective fading chan-
nels. At a given complexity, the TTCM RBF-
TEQ provides the best Bit Error Ratio (BER) and
Frame Error Ratio (FER) performance. The RBF-
TEQ structure is shown to provide an SNR per-
formance improvement of about 4dB at a BER of
10~* compared to the conventional non-iterative
DFE scheme.

1. INTRODUCTION

One of the most important criteria in the design of
digital cellular systems is the efficient exploitation
of the available spectrum, in order to accommo-
date the ever-increasing traffic demands. Since the
characteristics of the radio channel are strongly
dependent on the frequency band used, the prop-
agation environment and on the velocity of the
terminal, the information typically has to be pro-
tected by channel coding, in order to keep the
number of transmission errors at a level acceptable
for the desired quality of service. Coded modula-
tion schemes, which are based on combining the
functions of channel coding and modulation, con-
stitute bandwidth efficient arrangements that have
been widely recognized as attractive error con-
trol techniques suitable for numerous applications
[1, 2, 3, 4, 5, 6].

Systems transmitting at high bit rates, such as
150Mb/s for example in Mobile Broadband Sys-
tems (MBS), experience a high grade of channel-
induced dispersion and suffer from Inter Symbol
Interference (ISI) [7]. Hence channel equalisation
techniques are necessary for mitigating these ef-
fects in the context of single carrier modulation.
The application of non-linear Radial Basis Func-
tion (RBF) based equalisation was studied in con-

junction with channel codecs [8, 9], when using a

space-time codec [10] as well as a turbo-equaliser
(TEQ) [11]. The BER performance of RBF-based
turbo equalisation presented in [11] in the context
of Quadrature Amplitude Modulation (QAM) was
similar to that of the conventional trellis-based
turbo equaliser [12]. The RBF-assisted schemes
are however capable of maintaining a lower com-
plexity than their conventional trellis-based coun-
terparts, when communicating over dispersive Ga-
ussian and Rayleigh faded channels.

Motivated by these trends, in this contribution,
we aim for investigating the performance of RBF-
based turbo equalisation (RBF-TEQ) of various
spectrally efficient coded modulation schemes, na-
mely Trellis Coded Modulation (TCM), Turbo Trel-
lis Coded Modulation (TTCM), Bit-Interleaved Co-
ded Modulation (BICM) and BICM with iterative
decoding (BICM-ID) [13].

2. SYSTEM OVERVIEW

The schematic of the transceiver invoking different
coded modulation schemes, namely TCM, TTCM,
BICM, BICM-ID, is shown in Figure 1. The infor-
mation bits u, are encoded by the TCM/TTCM/-
BICM encoder. The coded bits ¢, are interleaved,
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Figure 1: System overview of transceiver with differ-
ent coded modulation schemes using RBF based turbo
equaliser, which performs the equlisation, demodula-
tion and channel decoding iteratively.

mapped to the phasors according to Gray- or Set-
Partitioning (SP)-based labelling and modulated
before transmission. The proposed receiver em-
ploys two Soft-In/Soft-Out (SISO) blocks, namely
the RBF equaliser and the coded modulation de-
coder, as shown in Figure 1. In our simulations,
the decision feedback assisted Jacobian RBF equa-
liser (RBF DFE) of [8] was employed, which re-
duced the complexity of the equaliser by utilis-
ing the Jacobian logarithmic function and deci-
sion feedback for RBF-center selection. The de-
coders were implemented using Log-MAP algo-
rithm for the sake of maintaining a low complexity.
In the schematic of the turbo equaliser depicted
in Figure 1 we used the notation L for denot-
ing the log likelihood values output by the SISO
decoders/equalisers. The superscripts D and E
were used for representing the values output by
the SISO decoder and equaliser, respectively, while
the subscripts a, p and e represent the a priori, a
posteriori and extrinsic likelihood values, respec-
tively. Referring to Figure 1, the SISO equaliser
processes the channel outputs y; as well as the a
priori information L¥(z;) of the coded symbols.
The SISO equaliser also generates the a posteri-
ori values LY (zy) of the coded symbols, which are
then demapped according to Gray- or SP-based
labelling to the phasors of the constellation for
generating the a posteriori log likelihood values
LE (ci) of the coded bits. The extrinsic log likeli-
hood values of the coded bits are then extracted

and deinterleaved before passing them to the SISO
decoder. The extrinsic information L (cy) of the
coded bits obtained from the decoder is then fed
back to the equaliser, where it is used as the a
priori information LY (z}) in the next equalisation
iteration. The following section will present our
simulation results.

3. RESULTS AND DISCUSSION

‘ Scheme H Rate ‘ State ‘ m ‘ HY ‘ H! ‘ H? ‘
TCM 2/3 64* | 2 | 103 | 30 | 66
TTCM 2/3 81 2 11 02 | 04

Table 1: Parameters of the 8PSK TCM and TTCM
codecs used. "’ indicates Ungerbdck’s TCM codes [1].
“Punctured” TCM codes are used as the TTCM com-
ponent codes. An octal format is used for representing
the generator polynomials H* and m denotes the num-
ber of coded information bits per modulated symbol.

‘ Scheme H Rate ‘ State ‘ gt ‘ g° ‘ g° ‘
BICM 2/3 64 | 15| 6 |15
BICM-ID | 2/3 8141|1216

Table 2: Parameters of the 8PSK BICM and BICM-ID
codecs used. Octal format is used for representing the
generator polynomials g¢ of Paaske’s code, page 331 of
[14].

The 8PSK coded modulation schemes studied
are Ungerbock’s TCM [1], Robertson’s TTCM [15],
Zehavi’s BICM [3] and Li’s BICM-ID [5] which
were discussed in detail in [13]. The parameters
of the various encoders used in our simulations
are shown in Table 1 for the TCM and TTCM
schemes, and in Table 2 for the BICM and BICM-
ID schemes. The TTCM scheme invokes two com-
ponent TCM codes, as described in Table 1. The
number of decoder iterations is 4 and 8 for the
TTCM and BICM-ID schemes, respectively. The
specific parameters of the TCM, TTCM, BICM
and BICM-ID schemes in Tables 1 and 2 were fixed
such that all schemes exhibited a similar complex-
ity, where the complexity was deemed propotional
to the code’s memory and to the number of de-
coding iterations. A Time Division Multiple Ac-
cess (TDMA)/Time Division Duplex (TDD) sys-
tem was considered, providing 16 slots per 4.615 ms
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Figure 2: BER (left) and FER (right) performance of the 8PSK RBF-DFE-TEQ TCM and TTCM schemes
for transmission over the symbol-spaced dispersive two-path Rayleigh fading channel. The channel interleaver
and deinterleaver operate on a four-burst basis. The BER performance of the 8PSK TTCM scheme employing
conventional DFE having with a feedforward order of seven and feedback order of one instead of the RBF-DFE-TEQ

is also shown for comparison.

TDMA frame, while the transmission burst dura-
tion was 288 us, as specified in the Pan-European
FRAMES proposal [16].

Figures 2 and 3 show the Bit Error Ratio (BER)
and Frame Error Ratio (FER) performance of var-
ious coded modulation schemes, where the RBF
DFE used the feedforward order of m = 2, feed-
back order of n = 1 and decision delay of 7 =
1 for transmission over two-path, symbol-spaced
Rayleigh fading channels having a normalised Dopp-
ler frequency of 3.25 x 107°. In our simulations we
assumed that the channel was sufficiently slowly
fading for employing a frame-invariant channel im-
pulse response (CIR). Perfect CIR estimation was
considered. For our initial study, the channel in-
terleaver length was set to four transmission bursts,
where the system had a total latency of less than
20ms. As seen in Figures 2 and 3, the TCM,
TTCM, BICM and BICM-ID RBF-DFE-TEQ sche-
mes were capable of achieving a BER of 10~* after
the second iteration for a channel SNR of 19dB,
18dB, 19.5dB and 19dB, respectively. The TEQ
BER iteration gain for the TCM, TTCM, BICM
and BICM-ID schemes are 2.5dB, 1dB, 1.5dB and
1dB, respectively. We observed that at a given
complexity, the iterative schemes employing iter-
ative decoding and TEQ provide a better perfor-
mance compared to a non-iterative scheme, espe-
cially for higher SNRs, even though the compo-
nent codes of the iterative TTCM and BICM-ID
schemes are less powerful. The additional gain

achieved by outer iterative loop of the TEQ was
lower for the iterative decoding schemes, i.e. for
TTCM and BICM-ID, than for their non-iterative
counterparts, since a substantial iteration gain was
already attained by the iterative coded modula-
tion decoder. As for the non-iteratively decoded
TCM and BICM schemes, TCM performs better
than BICM in the slow Rayleigh fading channel.
However, if a longer channel interleaver is em-
ployed, the channel fading will be less correlated
and BICM will perform better than TCM [3].

The BER performance of the 8PSK TTCM sche-
me using a low complexity conventional minimum
mean square DFE having a feedforward order of
7 and feedback order of 1 was also portrayed in
Figure 4 for the sake of performance comparison.
At the cost of a higher computational complex-
ity, the RBF-DFE-TEQ TTCM scheme is capable
of providing a SNR improvement of 4dB at BER
of 10* compared to the TTCM scheme using a
conventional DFE.

Figures 2 and 3 demonstrate that a FER of 1072
is achieved at the channel SNR of 19dB, 17dB, 18.5
and 18dB for the TCM, TTCM, BICM and BICM-
ID schemes, respectively. Furthermore, TEQ as-
sisted iteration gains of 3dB, 2dB, 2dB and 2dB
were attained after the second iteration, when con-
sidering the FER curves of Figures 2 and 3. The
TEQ provides a higher iteration gain in terms of
the FER performance. Overall, the TTCM scheme
provided the best overall performance.
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Figure 3: BER (left) and FER (right) performance of the 8PSK RBF-DFE-TEQ BICM and BICM-ID schemes
for transmission over the symbol-spaced dispersive two-path Rayleigh fading channel. The channel interleaver and

deinterleaver operate on a four-burst basis.

The TEQ structure is capable of exploiting the
multipath and temporal diversity and hence its
performance improves with the aid of time-diversity
provided by the system’s channel interleaver as
well as with advent of the channel’s multipath di-
versity. This is demonstrated in Figure 4 for the
TCM scheme. The notation RBF(m,n,7) in Fig-
ure 4 refers to the RBF equaliser’s feedforward
order m, feedback order n and decision delay 7
employed in our simulations. The performance of
the TCM scheme recorded for transmission over
non-dispersive Gaussian and Rayleigh faded chan-
nels is also shown for reference in Figure 4 as the
best possible TCM Gaussian and TCM Rayleigh
bounds. For determining the Rayleigh bound, the
system utilized a channel interleaver length of four
burst depth. The BER performance of the RBF-
DFE-TEQ was found to be better in Figure 4 than
the Rayleigh bound for the SNR range above 12
dBs. The error propagation induced SNR. degra-
dation is less than 2.5dB, as shown in Figure 4,
when we compare the performance curves associ-
ated with the perfect or correct symbols as well
as with potentially erroneous symbols fed back to
the RBF equaliser. The associated performance
degradation decreases, as the channel SNR im-
proves. Comparing the performance gains due to
multipath diversity, the achievable performance of
the system communicating over 2-path and 3-path
equal-weighted symbol-spaced, Rayleigh faded chan-
nels is approximately 8dB and 5dB away from

the Rayleigh bound at a BER of 10~* for the
first TEQ iteration. At the final TEQ iteration,
the performance recorded for the 2-path and 3-
path Rayleigh faded channel is improved by ap-
proximately 2dB and 5dB, respectively. Hence,
the TEQ’s iterative gains improve upon increas-
ing the multipath diversity. Figure 4 also demon-
strates an approximately 10dB better SNR per-
formance at the BER of 1074, when the chan-
nel interleaver depth is increased from one to four
transmission bursts. The TEQ’s iteration gain im-
proves from 0.5dB for a single-burst interleaver to
about 2dB for a four-burst interleaver. The perfor-
mance of the proposed RBF TEQ assisted coded
modulation scheme can be further improved by
capitalising on additional spatial diversity, as it
was demonstrated by Tonello in [17] for the 4PSK
BICM scheme using the trellis-based TEQ.

4. CONCLUSIONS

We have studied a RBF-DFE-TEQ system in con-
junction with various coded modulation schemes.
At a given complexity, the iterative TTCM scheme
using TEQ provides the best performance, as seen
in Figure 2, especially for higher SNRs. TTCM is
followed by BICM-ID, TCM and BICM in terms
of both the BER and FER preference order. Two
TEQ iterations were found to be sufficient for at-
taining the best possible BER and FER perfor-
mance. We observed in Figure 2 that the RBF-
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Figure 4: BER performance of the 8PSK TCM scheme
for various system parameters.

DFE-TEQ is capable of providing an SNR per-
formance improvement of 4dB at a BER of 1074,
when compared to the low-complexity conventional
DFE benchmarker in conjunction with the TCM
scheme, although this is achieved at the cost of a
higher computational complexity. We also demon-
strated that the performance of the RBF-DFE-
TEQ assisted coded modulation scheme signifi-
cantly improves with the advent of channel-coding
assisted time diversity and channel induced mul-
tipath diversity. The SNR performance improved
by more than 10dB, when the channel interleaver
length was increased from one to four transmission
bursts. The RBF-TEQ-DFE assisted coded mod-
ulation scheme using a four-burst channel inter-
leaver provided an SNR performance improvement
of about 10dB in comparison to the non-dispersive
Rayleigh channel’s performance bound. For at-
taining a performance closer to the non-dispersive
Gaussian bound, a higher interleaver length is nec-
essary, which inevitably increases the transmission
latency. Alternatively, space diversity has to be
provided, which is only possible at a higher com-
plexity.
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